
Expansion-based QBF Solving on
Tree Decompositions�

Günther Charwat and Stefan Woltran

Institut für Informationssysteme, TU Wien
Favoritenstraße 9-11, 1040 Vienna, Austria
{gcharwat, woltran}@dbai.tuwien.ac.at

Abstract. In recent years, various approaches for quantified Boolean
formula (QBF) solving have been developed, including methods based on
expansion, skolemization and search. Here, we present a novel expansion-
based solving technique that is motivated by concepts from the area of
parameterized complexity. Our approach relies on dynamic programming
over the tree decomposition of QBFs in prenex conjunctive normal form
(PCNF). Hereby, BDDs are used for compactly storing partial solutions.
Towards efficiency in practice, we integrate dependency schemes and ded-
icated heuristic strategies. Our experimental evaluation reveals that our
implementation is competitive to state-of-the-art solvers on instances
with one quantifier alternation. Furthermore, it performs particularly
well on instances up to a treewidth of approximately 80. Results indi-
cate that our approach is orthogonal to existing techniques, with a large
number of uniquely solved instances.

1 Introduction

Quantified Boolean formulae (QBFs) extend propositional logic by explicit uni-
versal and existential quantification over variables. They can be used to com-
pactly encode many computationally hard problems, which makes them amenable
to application fields where highly complex tasks emerge, e.g. formal verification,
synthesis, and planning. In this work we consider the problem of deciding sat-
isfiability of QBFs (QSAT) which is, in general, PSPACE-complete [33]. We
present an approach that is motivated by results from the area of parameterized
complexity: many computationally hard problems are fixed-parameter tractable
(fpt) [14], i.e., they can be solved in time f(p) · nO(1) where n is the input size,
p the parameter, and f a computable function. It is known that QSAT is fpt
w.r.t. the combined parameter quantifier alternations plus treewidth of the QBF
instance (this follows from [12]), but not w.r.t. treewidth alone [4].

Intuitively, treewidth captures the “tree-likeness” of a graph. It emerged from
the observation that computationally hard problems are usually easier to be
solved on trees than they are on arbitrary graphs. Treewidth is defined on tree

� This work was supported by the Austrian Science Fund (FWF): Y698. Rudimentary
ideas were presented at the QBF’16 workshop [11].

16

decompositions (TDs). Our approach employs dynamic programming (DP) over
the TD of the primal graph of QBFs in prenex conjunctive normal form (PCNF).
Partial solutions of the DP are obtained via locally restricted expansion. The
practical feasibility of this approach rests on the following pillars. First, we make
use of binary decision diagrams (BDDs) [10] for compactly storing information
in our dedicated data structure. Second, we consider structure in the quantifier
prefix by integrating dependency schemes (see, e.g., [31]) into our DP algorithm.
Finally, we introduce optimization techniques such as dynamic variable removal
and TD selection based on characteristics beyond treewidth. By design, our novel
approach is expected suitable for QBF instances of low-to-medium treewidth and
a restricted number of quantifier alternations.

The concept most closely related to ours was developed by Pan and Vardi [24].
There, variables are eliminated based on an elimination ordering that also under-
lies the construction of the tree decomposition in our approach. However, their
approach requires the variables to be eliminated from the inner- to the outer-
most quantifier level, a restriction that we circumvent in this work. Treewidth
and its relation to (empirical) hardness of QBFs was studied, for instance, by
Pulina and Tacchella [27] and Marin etal. [23]. There, quantified treewidth is
considered, a generalization of primal treewidth that includes the variable or-
dering as specified in the QBF prefix. Additionally, there exists a QBF solver
that uses treewidth to dynamically decide between resolution and search during
the solving process [26]. Further approaches that consider structural aspects of
QBFs include search-based solving based on dependencies between variables [22],
decomposition of the QBF according to the quantifier level of variables [28], and
restoring structure in instances converted to PCNF [6].

The presented algorithms are implemented in the QBF solver dynQBF which
is freely available at https://dbai.tuwien.ac.at/proj/decodyn/dynqbf/. We
conduct an experimental evaluation along the lines of the QBF competition [25]
in 2016. In comparison with state-of-the-art solvers, results show that our ap-
proach is particularly competitive on instances with one quantifier alternation.
Furthermore, the implementation performs well on instances that exhibit a width
of up to 80, even for instances with more quantifier alternations. Additionally, we
observe a large number of instances that is uniquely solved by dynQBF. These
observations underline the practical potential of parameterized algorithms in
highly competitive domains and we believe that the techniques used in our sys-
tem (space efficient storage via BDDs, TD selection, etc.) will also prove useful
when efficient dynamic programming algorithms for other problems are to be
implemented.

2 Preliminaries

As usual, a literal is a variable or its negation. A clause is a disjunction of
literals. A Boolean formula in conjunctive normal form (CNF) is a conjunction
of clauses. We sometimes denote clauses as sets of literals, and a formula in CNF

G. Charwat et al. Expansion-based QBF Solving on Tree Decompositions

17

as a set of clauses. Herein, we consider quantified Boolean formulae (QBFs) in
closed prenex CNF (PCNF) form.

Definition 1. In a PCNF QBF Q.ψ, Q is the quantifier prefix and ψ is a CNF
formula, also called the matrix. Q is of the form Q1X1Q2X2 . . . QkXk where
Qi ∈ {∃, ∀} for 1 ≤ i ≤ k, Qi �= Qi+1 for 1 ≤ i < k, and X = {X1, . . . , Xk} is
a partition over all variables in ψ. For a variable x ∈ Xl (1 ≤ l ≤ k), l is the
level of x, and k − l + 1 the depth of x.

We frequently use the following notation: Given a QBF Q.ψ with Q =
Q1X1 . . . QkXk and an index i with 1 ≤ i ≤ k, quantifierQ(i) = Qi gives the i-th
quantifier. For a variable x, levelQ(x) returns the level of x; depthQ(x) returns
the depth of x in Q; and quantifierQ(x) = QlevelQ (x) returns the quantifier for x.
Finally, for a clause c ∈ ψ, we denote by variablesψ(c) the variables occurring in
c. We will usually omit the subscripts whenever no ambiguity arises.

Example 1. As our running example, we will consider the QBF Q.ψ with Q =
∃ab ∀cd ∃ef and ψ = (a∨c∨e)∧(¬a∨b)∧(¬b∨f)∧(d∨¬e), which is satisfiable.

A tree decomposition (TD) [29] is a mapping from a graph to a tree, where
each node in the TD can contain several vertices of the original graph.

Definition 2. A tree decomposition of a graph G = (V,E) is a pair T =
(T, bagT) where T = (N,F) is a (rooted) tree with nodes N and edges F , and
bagT : N → 2V assigns to each node a set of vertices, such that:

1. For every vertex v ∈ V , there exists a node n ∈ N such that v ∈ bagT (n).
2. For every edge e ∈ E, there exists a node n ∈ N such that e ⊆ bagT (n).
3. For every vertex v ∈ V , the subtree of T induced by {n ∈ N | v ∈ bagT (n)}
is connected.

Intuitively, Condition 1 and 2 guarantee that the whole graph is covered by
the TD, and Condition 3 is the connectedness property, which, roughly speaking,
states that a vertex cannot “reappear” in unconnected parts (w.r.t. the bags).
The width of T is defined as maxn∈N |bagT (n)| − 1. The treewidth t of a graph
is the minimum width over all its TDs. Given a graph and an integer t, deciding
whether the graph has at most treewidth t is NP-complete [3]. However, the
problem itself is fpt when t is considered as parameter. Additionally, there exist
good polynomial-time heuristics for constructing TDs [8, 13].

A TD T = ((N,F), bagT) is weakly normalized, if each n ∈ N is either a leaf
node (n has no children), an exchange node (n has exactly one child n1, such
that bagT (n) �= bagT (n1)), or a join (n has children n1, . . . , nm such that m ≥ 2,
and bagT (n) = bagT (n1) = · · · = bagT (nm)). Given a TD T = (T, bagT) with
T = (N,F), for a node n ∈ N we denote its set of children in T by childrenT (n).
We specify firstChildT (n) and nextChildT (n) to iterate over the children, and
hasNextChildT (n) to check whether further children exist. The node type is
checked with isLeafT (n), isExchangeT (n) and isJoinT (n). For a node n with
single child node n1, changed bag contents are accessed by introducedT (n) =

G. Charwat et al. Expansion-based QBF Solving on Tree Decompositions

18

G: a b f

c e d

T : a, c, en6

a, c, en3 a, c, en5

a, bn2

b, fn1

d, en4

Fig. 1. Primal graph G and a possible TD T of G for the QBF in Example 1.

bagT (n) \ bagT (n1) and removedT (n) = bagT (n1) \ bagT (n). isRootT (n) returns
true if n has no parent node.

Our algorithm for QBF solving is based on a TD of the given QBF Q.ψ,
which is obtained from the graph Gψ = (V,E) where V are the variables occur-
ring in ψ and each clause in ψ forms a clique in Gψ, i.e. E = {(x, y) | x, y ∈
variablesψ(c), c ∈ ψ, x �= y} (called primal or Gaifman graph). Given a TD
T = (T, bagT) of QBF Q.ψ, we define clausesT ,ψ(n) = {c ∈ ψ | variablesψ(c) ⊆
bagT (n)}.

Example 2. Consider our running example. Figure 1 illustrates the graph repre-
sentation G of ψ, and T is a weakly-normalized TD for G of width 2.

3 Dynamic Programming-based QBF Solving

In a nutshell, the algorithm proceeds as follows. Given a QBF instance Q.ψ, we
heuristically construct a weakly normalized TD T = (T, bagT) with T = (N,F)
of the primal graph of ψ. Then, T is traversed in post-order. For each n ∈ N we
compute partial solution candidates and store them in a dedicated data structure.
In this context, partial means that the data structure is restricted to variables
occurring in bagT (n). Candidate refers to the fact that other parts of the QBF
might not yet be considered. At the root node, the whole instance was taken
into account and the problem is decided.

3.1 Data structure

We define so-called nested sets of formulae (NSFs) where the innermost sets con-
tain reduced ordered binary decision diagrams (BDDs) [10]. A BDD compactly
represents Boolean formulae in form of a rooted directed acyclic graph (DAG).
For a fixed variable ordering, BDDs are canonical, i.e., equivalent formulae are
represented by the same BDD, a property that is vital to our approach. Intu-
itively, nestings will be used to differentiate between quantifier blocks, and BDDs
store parts of the QBF matrix.

Definition 3. Given a QBF Q.ψ with k quantifiers, we have a nested set of
formulae (NSF) of depth k which is inductively defined over the depth of nestings
d with 0 ≤ d ≤ k: for d = 0, the NSF is a BDD; for 1 ≤ d ≤ k, the NSF is a set
of NSFs of depth d− 1.

G. Charwat et al. Expansion-based QBF Solving on Tree Decompositions

19

� ⊥ (¬a ∨ b) ⊥ a ∧ b c ⊥ (¬a ∨ b) ∧ c ⊥ a ∧ b ∧ c

Fig. 2. Example NSF N , represented as tree, and N [B/B ∧ c] applied to N .

For a QBF Q.ψ with Q = Q1X1 . . . QkXk and an NSF N of depth k, for
any NSF M appearing somewhere in N we denote by depth(M) the depth
of the nesting of M , levelQ(M) = k − depth(M) + 1 is the level of M , and
quantifierQ(M) = QlevelQ(M) (for levelQ(M) ≤ k). We define the procedure
init(k, φ) that initializes an NSF with k levels (and hence of depth k), such that
each set contains exactly one NSF, and the innermost NSF represents φ. For
instance, init(3,�) returns {{{�}}}. Furthermore, for an NSF N we denote by
N [B/B�] the replacement of each BDD B in N by B�. For a BDD B, restriction
of a variable v is denoted by B[v/�] or B[v/⊥]. Quantification and standard
logical operators are applied as usual.

Example 3. Suppose we are given an NSF N = {{{�,⊥}}, {{¬a ∨ b}, {⊥}, {a ∧
b}}}. In the examples, we will illustrate nested sets as trees where leaves contain
the formulae represented by the BDDs. Figure 2 shows the tree representing N
together with the one resulting from N [B/B ∧ c].

NSFs can be used to efficiently keep track of parts of the solution space
(with respect to the TD), instead of representing the whole QBF instance at
once. Internal elements of the NSF have quantifier semantics, as we will show
later. Opposed to the similar concept of quantifier trees [5], NSFs are defined
as recursive sets in order to automatically remove trivial redundancies. Further-
more, the depth is specified by the number of quantifiers, not by the number of
variables. We remark that although CNFs of bounded treewidth can be stored
entirely in a BDD of polynomial size, existential quantification can result in an
exponential blowup [15]. Our NSFs mitigate this by only storing parts of the
QBF’s CNF in the BDDs.

3.2 Main Procedure

Algorithm 1 illustrates the recursive procedure for the post-order traversal of
the TD and computing the partial solution candidates. It is called with the root
node of the TD and returns an NSF that represents the overall solution. In leaf
nodes, an NSF of k levels is initialized with the innermost set containing a BDD
that represents the clauses associated with the current node. In an exchange
node, variables are removed as well as introduced (w.r.t. the bag’s contents).
Removed variables are handled by “splitting” the NSF. Procedure split(N, x)
(see Algorithm 2) implements a variant of locally restricted expansion: at the
level of x in N , each NSF M contained in N is replaced by two NSFs that
distinguish between assignments of x to ⊥ and �. Observe that thereby any oc-
currence of x in the BDDs is removed. This guarantees that the size of each BDD

G. Charwat et al. Expansion-based QBF Solving on Tree Decompositions

20

Algorithm 1: solve(n)

Input : A tree decomposition node n
Output: An NSF with partial solution candidates for n

1 if isLeaf (n) then N := init(k, clauses(n))
2 if isExchange(n) then
3 N := solve(firstChild(n))
4 for x ∈ removed(n) do N := split(N, x)
5 N := N [B/B ∧ clauses(n)]

6 if isJoin(n) then
7 N := solve(firstChild(n))
8 while hasNextChild(n) do
9 M := solve(nextChild(n))

10 N := join(N,M)

11 end

12 if isRoot(n) then N := evaluateQ(n,N)
13 return N

Algorithm 2: split(N, x)

Input : An NSF N and a variable x
Output: An NSF split at level(x) w.r.t. assignments to x

if level(N) = level(x) then
return {M [B/B[x/⊥]],M [B/B[x/�]] | M ∈ N}

else return {split(M,x) | M ∈ N}

Algorithm 3: join(N1, N2)

Input : NSFs N1 and N2 of same depth
Output: A joined NSF

if depth(N1) = 0 then return N1 ∧N2

else return {join(M1,M2) | M1 ∈ N1,M2 ∈ N2}

is bounded by the bag’s size. Furthermore, since (reduced ordered) BDDs are
canonical and thanks to the set semantics of NSFs, the overall resulting NSF’s
size is bounded by the bag’s size and depth (i.e., the number of quantifiers).
Removal of variable x from the BDDs is admissible due to the connectedness
property of the TD: x will never reappear somewhere upwards the TD, and there-
fore all clauses containing x were already considered. After splitting, the clauses
associated with the current node are added to the NSF’s BDDs via conjunction.
In join nodes, NSFs computed in the child nodes are successively combined by
procedure join(N1, N2) (see Algorithm 3). The procedure guarantees that the
structure (nesting) of the NSFs to be joined is preserved. BDDs in the NSFs
are combined via conjunction, thus already considered information of both child
nodes is retained.

G. Charwat et al. Expansion-based QBF Solving on Tree Decompositions

21

Algorithm 4: evaluateQ(n,N)

Input : A tree decomposition node n and an NSF N
Output: A BDD B of N after evaluation of quantifiers

if depth(N) = 0 then B := N
else

X := {x | x ∈ bag(n) and level(x) = level(N)}
if quantifier(N) = ∃ then

B := ∃X �
M∈N evaluateQ(n,M)

else if quantifier(N) = ∀ then
B := ∀X �

M∈N evaluateQ(n,M)
return B

¬a ∧ ¬e ∧ c ¬a ∧ (c ∨ e) ⊥ ¬e ∧ (a ∨ c) ⊥ (a ∨ c ∨ e)

n6

¬a ∧ (c ∨ e) ⊥ (a ∨ c ∨ e)

n3

¬a ∧ ¬b (¬a ∨ b)

n2

(¬b ∨ f)

n1

¬e ∧ (a ∨ c) (a ∨ c ∨ e)

n5

(d ∨ ¬e)

n4

Fig. 3. Computed NSFs at the decomposition nodes of our running example.

So far, quantifiers were not taken into account in our algorithm. This is only
done in the root node r of the TD, where the problem is decided by applying
quantifier elimination as shown in Algorithm 4. Our approach is similar to that
described by Pan and Vardi [24], but restricted to the bag contents and quan-
tifiers are recursively evaluated over the nestings. Procedure evaluateQ(r,N)
combines the elements of the NSF by disjunction (for existential quantifiers) or
conjunction (for universal quantifiers), starting at the innermost NSFs. Thereby,
variables contained in the current bag are removed by quantified abstraction (i.e.,
they get existentially or universally quantified and thereby also removed from the
BDDs). Thus, this procedure finally returns a single BDD B without variables.
If B ≡ ⊥, the QBF is unsatisfiable, otherwise it is satisfiable.

Example 4. Figure 3 shows the NSFs computed at the TD nodes of our running
example (without quantifier evaluation at the root node). In n1, an NSF of depth
3 is initialized with (¬b∨f), i.e., the clause associated with this TD node. In n2,

G. Charwat et al. Expansion-based QBF Solving on Tree Decompositions

22

�
⊥

¬a ∧ c

¬a ∧ ¬e ∧ c

¬a

¬a ∧ (c ∨ e)

a

a ∨ c

⊥ ¬e ∧ (a ∨ c)

�

⊥ (a ∨ c ∨ e)

∃
∀
∃

Fig. 4. (Intermediate) results for evaluateQ(n6, N) executed on the NSF of root node
n6.

variable f is removed. Hence the NSF is split at level(f) = 3, once by setting f
to ⊥ (left NSF branch) yielding ¬b, and once by � (right branch), yielding �.
Furthermore, the current clause (¬a∨b) is added to these BDDs via conjunction,
giving {{{¬a ∧ ¬b, (¬a ∨ b)}}}. The algorithm proceeds similarly for nodes n3,
n4 and n5. In n6, the NSFs are joined. For instance, the leftmost branches in
n3 and n5 are joined by conjunction of ¬a ∧ (c ∨ e) and ¬e ∧ (a ∨ c), yielding
¬a∧¬e∧ c. Figure 4 shows the NSF N in root node n6 together with the BDDs
obtained recursively when applying evaluateQ(n6, N). The procedure returns �,
as the QBF from Example 1 is satisfiable.

3.3 Dependency Schemes

Quantifiers in QBFs introduce dependencies between variables. Let x and y be
variables of the QBF, and assume that y is dependent on x. Then, the assignment
to y is dependent on the assignment to x [30] (i.e., reordering x and y in the prefix
changes satisfiability). So far, when a variable is removed splitting is applied to
distinguish between variable assignments. With this, even if x is removed before
y, we implicitly keep track of these assignments in our NSF data structure.
Hence, when y is removed later, its dependency on x is accounted for, and our
algorithm remains sound. However, if all variables dependent on x were already
removed, the distinction between assignments is not necessary. We considered
several dependency schemes (for details, see e.g., [31]). Let Q.ψ be a PCNF
QBF with k quantifiers and x, y be variables of Q.ψ. Then (x, y) ∈ DS

Q.ψ w.r.t.
dependency scheme S ∈ {naive, simple, standard} if:

1. naive: level(x) < k;
2. simple: level(x) < level(y); and
3. standard: level(x) < level(y), quantifier(x) �= quantifier(y) and there is

an X-path from x to y for some X ⊆ {z | z ∈ Xi, level(x) < i ≤ k,
quantifier(z) = ∃}. An X-path is a sequence c1, . . . , cl of clauses in ψ, s.t.
x ∈ c1, y ∈ cl and cj ∩ cj+1 ∩X �= ∅ for 1 ≤ j < l (see [21] for details).

dependentSQ.ψ(x) = {y | (x, y) ∈ DS
Q.ψ} denotes the set of variables that are

dependent on x in Q.ψ w.r.t. S.
Towards our adapted algorithm, for a TD node n of T , we recursively define

by removedSubT (n) = removedT (n) ∪
�

m∈childrenT (n) removedSubT (m) the set

of removed variables in the subtree of T rooted at n. Let removedBelowT (n) =

G. Charwat et al. Expansion-based QBF Solving on Tree Decompositions

23

Algorithm 5: S-dependentSplit(n,N, x)

Input : Tree decomposition node n, NSF N , variable x
Output: An NSF with abstracted or split x

if dependentS(x) ⊆ removedBelow(n) then
if quantifier(x) = ∃ then return N [B/∃xB]
if quantifier(x) = ∀ then return N [B/∀xB]

else return split(N, x)

removedSubT (n)\ removedT (n) be the variables removed below n in T . In Algo-
rithm 1, split(M,x) is replaced with S-dependentSplit(n,N, x) (see Algorithm 5).
Whenever all variables dependent on x were already removed, x is removed by
quantified abstraction. Otherwise, the standard split(N, x) procedure is called.

Example 5. The NSF at node n2 of Figure 3 reduces to {{{(¬a∨b)}}} (for all de-
pendency schemes). Furthermore, we haveDstandard

Q.ψ = {(a, c), (a, d), (c, e), (d, e)}.
Since dependent(b) = {}, b can be existentially abstracted in n3. However, in n5,
d must be split, since dependent(d) = {e} �⊆ removedBelow(n5) = {}.

We remark that for all considered dependency schemes variables at the in-
nermost level can be removed by quantified abstraction. Hence our algorithms
can be simplified, as the NSFs at depth 1 always only contain a single BDD. In
particular, for 2-QBFs (i.e. instances of the form ∀X1∃X2.ψ) the general NSF
data structure could then be replaced by just a set of BDDs. Furthermore, we
observed that in almost all 2-QBF instances (used in Section 5) variables at
level 2 are dependent on those at level 1. For 2-QBFs, we thus apply the easily
computable naive dependency scheme. For other instances standard turned out
to be superior to simple and naive.

4 Towards Efficiency in Practice

Clause splitting. Given a QBF Q.ψ, we construct a TD of width w for the primal
graph of ψ. Due to Conditions 2 and 3 of Definition 2, w ≥ maxc∈ψ|c| − 1 holds,
i.e., the size of the largest clause gives a lower bound for w. To reduce this
bound, we apply clause splitting, which is a standard technique implemented in
many QBF solvers and preprocessors: a fresh variable is added (once positively,
once negatively) to the parts of a split clause, and quantified existentially in
the innermost quantifier block. Experiments preceding this work reveal that
splitting clauses larger than 30 yields good results, without introducing too many
additional variables.

TD selection. It was shown that TD characteristics besides width play a crucial
role in practice [2]. In 2-QBF instances usually most computational effort is re-
quired for joining the NSFs. We consider the number of children in join nodes
jNodes(T) which is given as joinChildCount(T) =

�
j∈jNodes(T)|childrenT (j)|.

G. Charwat et al. Expansion-based QBF Solving on Tree Decompositions

24

Algorithm 6: removeRedundant(N)

Input : An NSF N
Output: An NSF without supersets

if depth(N) > 1 then
for M ∈ N do M := removeRedundant(M)
for M1,M2 ∈ N and M1 �= M2 do

if M1 ⊂ M2 then N := N \ {M2}
end

else
for M1,M2 ∈ N and M1 �= M2 do

if quantifier(N) = ∃ and M1 ∨M2 = M1 then
N := N \ {M2}

if quantifier(N) = ∀ and M1 ∧M2 = M1 then
N := N \ {M2}

end
return N

Additionally, we consider the following TD characteristic. Variable dependencies
can be exploited more efficiently if the variables are removed in the TD from the
innermost to the outermost quantifier block. Let removedBelowLevelT ,Q(n, l) =
{b | b ∈ removedBelowT (n) and levelQ(b) < l}. Now, removedLevel(T , Q) =�

n∈N

�
r∈removedT (n) |removedBelowLevelT ,Q(n, level(r))|. We construct several

TDs (using the min-fill heuristics [13]) and then select the one minimizing
joinChildCount(T) (for 2-QBFs) or removedLevel(T , Q) (for instances with more
quantifier blocks). We observe that 10 decompositions are sufficient to increase
performance, despite the additional effort in the decomposition step.

Redundant NSF removal. Two BDDs in the same nesting of an NSF are re-
dundant if they are in a subset relation w.r.t. the represented models (which
is similar to subsumption checking [7]), or if two NSFs in the same nesting are
in a subset relation. Algorithm 6 gives the pseudo-code for removing unneces-
sary elements1. Since the procedure includes a recursive comparison of all NSFs,
checking for redundant NSFs is expensive. Nevertheless, periodic checks are re-
quired to circumvent an explosion in size in join nodes.

Example 6. Figure 5 shows an NSF N before and after removeRedundant(N).
For instance, consider the leftmost branch of the NSF at depth 1, i.e. {⊥,¬a}.
Since quantifier(N1) = ∃ and ⊥ ∨ ¬a ≡ ¬a, ⊥ is removed. At depth 2, we
subsequently have {{¬a}, {¬a, c}}. Since {¬a} ⊆ {¬a, c}, {¬a, c} is removed.

Intermediate unsatisfiability checks. Procedure evaluateQ(n,N) can be applied
to any NSF during the TD traversal. If it returns ⊥, the QBF is unsatisfiable.

1 When dependency schemes are considered, the NSFs at depth 1 contain only a single
BDD. Then, subset checking w.r.t. models of the BDDs can be shifted by one level.

G. Charwat et al. Expansion-based QBF Solving on Tree Decompositions

25

⊥ ¬a ¬a c a a ∨ c

∃
∀
∃

¬a a ∨ c

∃
∀
∃

Fig. 5. Example NSF before (left) and after (right) compression.

However, if it returns �, the QBF might still be unsatisfiable due to clauses
that are encountered later in the traversal. In our setting, the overhead for these
checks is negligible.

Estimated NSF size. For a node n of decomposition T , let sizeNSF (n) be the
number of BDDs in the NSF N computed at node n, and maxSizeBDD(n) be
the size of the largest BDD in N . The size of a BDD is determined by the number
of nodes in the DAG of the BDD. sizeNSF (n) can be kept small by delaying
splitting of removed variables. Instead, the variable is stored in a cache for later
removal. However, this usually increases maxSizeBDD(n) (since the variable is
not removed from the BDDs), and the size of BDDs is no longer bounded by the
bag size. Hence, NSF and BDD sizes have to be carefully balanced.

BDD variable ordering. The size of a BDD can be exponential in the number
of variables. Nontheless, in practice the size may be exponentially smaller, in
particular in case a “good” variable ordering is applied [16]. Since finding an
optimal variable ordering is in general NP-hard [10], BDD-internal heuristics for
finding such a good ordering can be used. For our purposes, we initialize the
ordering with the variables’ occurrence in the instance (which usually implies
that the ordering corresponds to their occurrence in the QBF prefix), and apply
dynamic reordering during the computation via lazy sifting.

5 Experimental Evaluation

The presented algorithms are implemented in the dynQBF system, which relies
on HTD [1] for tree decomposition construction, CUDD [32] for BDD man-
agement, and optionally DepQBF [20] for computing the standard dependency
scheme. We compare our system to publicly available QBF solvers that partic-
ipated successfully in the 2016 QBF competition (QBFEval’16) [25]. Systems
include the 2-QBF solver AReQS (20160702) [18], the search-based solvers De-
pQBF 5.0.1 [20] and GhostQ (CEGAR 2016) [17], the expansion-based system
RAReQS 1.1 [17], CAQE 2 [28] that relies on variable level-based decomposition;
as well as Questo 1.0 [19] and QSTS (2016) [9] that use SAT solvers. We consider
the 305 2-QBF’16 and 825 PCNF’16 competition instances. Since preprocessing
oftentimes influences performance, we additionally evaluate the solvers on the
instances preprocessed with Bloqqer 37. Tests are performed on a single core
of an Intel Xeon E5-2637 (3.5GHz) running Debian 8.3, with a time limit of 10
minutes and 16 GB of memory. For preprocessing we use the same configuration.

G. Charwat et al. Expansion-based QBF Solving on Tree Decompositions

26

Table 1. 2-QBF’16: System comparison for the original (left) and preprocessed (right)
instances.

2-QBF’16 (original)

System Solved Time � ⊥ U

AReQS 181 79K 126 55 0
dynQBF 170 86K 140 30 13
GhostQ 156 98K 108 48 0
DepQBF 120 116K 55 65 11
QSTS 97 132K 60 37 8
Qesto 78 140K 47 31 2
RAReQS 70 142K 44 26 0
CAQE 57 151K 35 22 1

dynQBF Bo10 203 68K 154 49
dynQBF Ao10 169.9 86K 141.5 28.4

2-QBF’16 (preprocessed)

System Solved Time � ⊥ U

Qesto 236 50K 160 76 0
RAReQS 232 51K 161 71 1
dynQBF 221 53K 172 49 43
DepQBF 221 56K 143 78 1
QSTS 220 58K 162 58 2
CAQE 204 65K 153 51 0
AReQS 202 66K 141 61 0
GhostQ 151 95K 123 28 0

dynQBF Bo10 225 49K 172 53
dynQBF Ao10 221.2 53K 171.0 50.2

Table 2. 2-QBF’16 (preprocessed, non-trivial): Influence of width w on the system
performance.

w ≤ 80 (86 instances) w > 80 (89 instances)
System Solved Time System Solved Time

dynQBF 79 6K RAReQS 69 17K
DepQBF 41 28K QSTS 69 18K
Qesto 39 31K Qesto 67 19K
RAReQS 33 34K DepQBF 50 28K
CAQE 28 36K AReQS 47 28K
AReQS 25 38K CAQE 46 29K
QSTS 21 40K dynQBF 12 47K
GhostQ 9 47K GhostQ 12 49K

In the following, we report on the number of solved, solved satisfiable (�)
and unsatisfiable (⊥) instances. The stated time is the accumulated user time in
thousands of seconds (K), including a penalty of 600 seconds per instance that
is not solved. Additionally, we give the number of instances uniquely solved by
a single system (U). dynQBF is run with one random, fixed seed. However, the
performance is influenced by the heuristically constructed TD. To gain an insight
into the potential of our current implementation, we also provide a virtual best
dynQBF analysis over 10 seeds (each running for up to 10 minutes). Best of 10
(Bo10) reports the number of instances solved in any of the 10 runs, as well as
the minimum time required, and average of 10 (Ao10) reports the average case.

2-QBF’16. Table 1 shows that our system is competitive to state-of-the-art
solvers on 2-QBF instances. On the original instances, only the 2-QBF solver
AReQS performs better. When considering 10 different seeds, Bo10 indicates
that there is still potential for our feature-based tree decomposition selection.
Regarding preprocessing, 130 out of 305 instances are directly solved by Bloqqer.
Qesto and RAReQS benefit the most from preprocessing. Overall, dynQBF is
particularly strong on satisfiable instances. Additionally, we report on a large

G. Charwat et al. Expansion-based QBF Solving on Tree Decompositions

27

Table 3. PCNF’16: System comparison for the original (left) and preprocessed (right)
instances.

Original

System Solved Time � ⊥ U

GhostQ 592 153K 300 292 14
QSTS 548 173K 276 272 13
DepQBF 436 242K 188 248 14
CAQE 399 268K 182 217 0
Qesto 368 287K 159 209 3
dynQBF 365 291K 184 181 14
RAReQS 338 299K 129 209 8

dynQBF Bo10 421 259K 212 209
dynQBF Ao10 365.5 292K 184.6 180.9

Preprocessed

System Solved Time � ⊥ U

RAReQS 633 126K 301 332 14
Qesto 618 134K 298 320 1
DepQBF 596 144K 296 300 7
QSTS 592 149K 294 298 3
CAQE 589 155K 295 294 1
GhostQ 571 161K 293 278 1
dynQBF 494 203K 239 255 21

dynQBF Bo10 515 193K 249 266
dynQBF Ao10 494.8 202K 239.1 255.7

Table 4. PCNF’16 (preprocessed, non-trivial): Influence of width w on the system
performance.

w ≤ 80 (182 instances) w > 80 (302 instances)
System Solved Time System Solved Time

RAReQS 137 28K RAReQS 155 98K
dynQBF 134 32K Qesto 148 100K
Qesto 129 34K DepQBF 131 108K
DepQBF 124 36K CAQE 129 114K
QSTS 123 37K QSTS 128 112K
CAQE 119 40K GhostQ 112 120K
GhostQ 118 41K dynQBF 19 171K

number of uniquely solved instances. For the original data set, they mostly stem
from QBF encodings for ranking functions (“rankfunc*”). Interestingly, after
preprocessing we observe that 43 instances from the area of formal verification
(“stmt*”) are uniquely solved.

To study the influence of treewidth on solving, we consider the 175 prepro-
cessed instances that are not solved directly by Bloqqer. Since computing the
exact treewidth is infeasible, we use HTD [1] to heuristically obtain an over-
approximation. In Table 2, the data set is partitioned based on the computed
width w. Here, the influence of the width on the performance of dynQBF be-
comes apparent.

PCNF’16. Results for the PCNF’16 data set are summarized in Table 3. The
obtained data confirms that dynQBF is indeed sensitive to the number of quan-
tifier blocks (k). For the original instances we measure an average k of 17, and
14.8 for instances solved by dynQBF. 75 instances have 2 (or less) quantifier
blocks, of which dynQBF solves the most instances (55). Of the 391 instances
with k = 3, dynQBF solves 142 instances, while the best solver here is GhostQ
with 299 instances. Of the 359 instances with k > 3, dynQBF solves 168 in-
stances, but GhostQ solves 256 instances. With preprocessing, 341 instances are

G. Charwat et al. Expansion-based QBF Solving on Tree Decompositions

28

solved by Bloqqer. Interestingly, all solvers except GhostQ benefit from prepro-
cessing. Regarding the impact of quantifiers on the performance of dynQBF we
obtain a similar picture as for the original instances. Overall, we again observe
several instances uniquely solved by dynQBF.

As in the 2-QBF setting, we consider the width w of the preprocessed, non-
trivial instances. Table 4 again shows that dynQBF performs well on instances
where w ≤ 80: here, k is 4.9 for all instances on average, and 3.7 for instances
solved by dynQBF.

6 Conclusion

In this paper we introduced an alternative approach for QBF solving. Our al-
gorithm is inspired by concepts from parameterized complexity, yielding a new
expansion-based solver technique that mitigates space explosion by dynamic pro-
gramming over the TD and by using BDDs. First ideas for dependency scheme
integration were presented, and we discussed entry points for heuristic optimiza-
tions of our technique. We conducted a thorough experimental analysis along the
lines of QBFEval’16, which shows that our approach is already competitive for
2-QBF instances as well as on instances of width up to 80 (even for more quan-
tifier blocks). Additionally, we showed that the behavior of our system is indeed
different from the diverse field of existing techniques. Seen in a broader context,
our results clearly demonstrate the potential of parameterized algorithms for
problems beyond NP in practice, in particular when combined with BDDs.

References

1. Abseher, M., Musliu, N., Woltran, S.: htd – a free, open-source framework for tree
decompositions and beyond. Tech. Rep. DBAI-TR-2016-96, TU Wien (2016)

2. Abseher, M., Musliu, N., Woltran, S.: Improving the efficiency of dynamic pro-
gramming on tree decompositions via machine learning. J. Artif. Intell. Res. 58,
829–858 (2017)

3. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings
in a k-tree. SIAM J. Algebra. Discr. Meth. 8, 277–284 (1987)

4. Atserias, A., Oliva, S.: Bounded-width QBF is PSPACE-complete. J. Comput.
Syst. Sci. 80(7), 1415–1429 (2014)

5. Benedetti, M.: Quantifier trees for QBFs. In: Proc. SAT. LNCS, vol. 3569, pp.
378–385. Springer (2005)

6. Benedetti, M.: sKizzo: A suite to evaluate and certify QBFs. In: Proc. CADE.
LNCS, vol. 3632, pp. 369–376. Springer (2005)

7. Biere, A.: Resolve and expand. In: Proc. SAT. LNCS, vol. 3542, pp. 59–70. Springer
(2004)

8. Bodlaender, H.L., Koster, A.M.C.A.: Treewidth computations I. Upper bounds.
Inf. Comput. 208(3), 259–275 (2010)

9. Bogaerts, B., Janhunen, T., Tasharrofi, S.: Solving QBF instances with nested
SAT solvers. In: Proc. Beyond NP. AAAI Workshops, vol. WS-16-05. AAAI Press
(2016)

G. Charwat et al. Expansion-based QBF Solving on Tree Decompositions

29

10. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers 100(8), 677–691 (1986)

11. Charwat, G., Woltran, S.: Dynamic programming-based QBF solving. In: Proc.
QBF. CEUR Workshop Proceedings, vol. 1719, pp. 27–40. CEUR-WS.org (2016)

12. Chen, H.: Quantified constraint satisfaction and bounded treewidth. In: Proc.
ECAI. pp. 161–165. IOS Press (2004)

13. Dechter, R.: Constraint Processing. Morgan Kaufmann (2003)
14. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-

puter Science, Springer (1999)
15. Ferrara, A., Pan, G., Vardi, M.Y.: Treewidth in verification: Local vs. global. In:

Proc. LPAR. LNCS, vol. 3835, pp. 489–503. Springer (2005)
16. Friedman, S.J., Supowit, K.J.: Finding the optimal variable ordering for binary

decision diagrams. In: Proc. DAC. pp. 348–356. ACM (1987)
17. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with coun-

terexample guided refinement. In: Proc. SAT. LNCS, vol. 7317, pp. 114–128.
Springer (2012)

18. Janota, M., Marques-Silva, J.: Abstraction-based algorithm for 2QBF. In: Proc.
SAT. LNCS, vol. 6695, pp. 230–244. Springer (2011)

19. Janota, M., Marques-Silva, J.: Solving QBF by clause selection. In: Proc. IJCAI.
pp. 325–331. AAAI Press (2015)

20. Lonsing, F., Bacchus, F., Biere, A., Egly, U., Seidl, M.: Enhancing search-based
QBF solving by dynamic blocked clause elimination. In: Proc. LPAR. LNCS, vol.
9450, pp. 418–433. Springer (2015)

21. Lonsing, F., Biere, A.: A compact representation for syntactic dependencies in
QBFs. In: Proc. SAT. LNCS, vol. 5584, pp. 398–411. Springer (2009)

22. Lonsing, F., Biere, A.: DepQBF: A dependency-aware QBF solver. J. SAT 7(2-3),
71–76 (2010)

23. Marin, P., Narizzano, M., Pulina, L., Tacchella, A., Giunchiglia, E.: An empiri-
cal perspective on ten years of QBF solving. In: Proc. RCRA. CEUR Workshop
Proceedings, vol. 1451, pp. 62–75. CEUR-WS.org (2015)

24. Pan, G., Vardi, M.Y.: Symbolic decision procedures for QBF. In: Proc. CP. LNCS,
vol. 3258, pp. 453–467. Springer (2004)

25. Pulina, L.: The ninth QBF solvers evaluation - preliminary report. In: Proc. QBF.
CEUR Workshop Proceedings, vol. 1719, pp. 1–13. CEUR-WS.org (2016)

26. Pulina, L., Tacchella, A.: A structural approach to reasoning with quantified
Boolean formulas. In: Proc. IJCAI. pp. 596–602. AAAI Press (2009)

27. Pulina, L., Tacchella, A.: An empirical study of QBF encodings: From treewidth
estimation to useful preprocessing. Fundam. Inform. 102(3-4), 391–427 (2010)

28. Rabe, M.N., Tentrup, L.: CAQE: A certifying QBF solver. In: Proc. FMCAD. pp.
136–143. IEEE (2015)

29. Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Comb.
Theory, Ser. B 36(1), 49–64 (1984)

30. Samer, M., Szeider, S.: Backdoor sets of quantified Boolean formulas. J. Autom.
Reasoning 42(1), 77–97 (2009)

31. Slivovsky, F., Szeider, S.: Computing resolution-path dependencies in linear time.
In: Proc. SAT. LNCS, vol. 7317, pp. 58–71. Springer (2012)

32. Somenzi, F.: CU Decision Diagram package release 3.0.0. Department of Electrical
and Computer Engineering, University of Colorado at Boulder (2015)

33. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time (pre-
liminary report). In: Proc. TOC. pp. 1–9. ACM (1973)

G. Charwat et al. Expansion-based QBF Solving on Tree Decompositions

30

