
Computing Stable and Preferred Extensions of
Dynamic Bipolar Argumentation Frameworks

Gianvincenzo Alfano, Sergio Greco, and Francesco Parisi

Department of Informatics, Modeling, Electronics and System Engineering,
University of Calabria, Italy,

email:{g.alfano, greco, fparisi}@dimes.unical.it

Abstract. Bipolar argumentation frameworks (BAFs) extend Dung’s argumenta-
tion frameworks to explicitly represent the notion of support between arguments,
in addition to that of attack. BAFs can be profitably used to model disputes be-
tween two or more agents, with the aim of deciding the sets of arguments that
should be accepted to support a point of view in a discussion. However, since
new arguments, attacks, and supports are often introduced to take into account
new available knowledge, BAFs as well as the set of accepted arguments (under
a given semantics) change over the time.
In this paper we tackle the problem of efficiently recomputing sets of accepted
arguments of dynamic BAFs (under the preferred and stable semantics). In partic-
ular, focusing on a deductive interpretation of support, we introduce an incremen-
tal algorithm that, given an initial BAF, an initial extension for it, and an update,
computes an extension of the updated BAF.
The experiments show that our technique is faster than computing an extension
of the updated BAF from scratch.

1 Introduction

Argumentation has emerged as one of the central fields in Artificial Intelligence [12,
44, 6, 42]. In particular, Dung’s abstract argumentation framework [25] is a simple, yet
powerful formalism for modelling disputes between two or more agents. The formal
meaning of an argumentation framework is given in terms of argumentation semantics,
which intuitively tell us the sets of arguments (called extensions) that should be accepted
to support a point of view in a discussion.

Bipolar argumentation frameworks (BAFs) are an interesting extension of the Dung’s
frameworks, which allow two kinds of interactions between arguments to be modeled:
the attack relation (as in Dung’s argumentation frameworks) and the support relation.
Several interpretations of the notion of support have been proposed in the literature [4,
19–21, 14, 45] (see [24] for a comprehensive survey). In this paper, we focus on deduc-
tive support [14, 45] which is intended to capture the following intuition: if argument
a supports argument b then the acceptance of a implies the acceptance of b, and the
non-acceptance of b implies the non-acceptance of a.

Although most research in argumentation focused on static frameworks (i.e., frame-
works not changing over the time), BAFs are often used to model dynamic systems [8,

31, 41, 7, 23]. In fact, usually a BAF represents a temporary situation, and new argu-
ments, attacks, and supports can be added/retracted to take into account new available
knowledge. For instance, for disputes among users of online social networks [40, 2],
arguments, attacks, and supports are continuously added/retracted by users to express
their point of view in response to the last move made by the adversaries (often disclos-
ing as few arguments/attacks as possible).

However, the definition of evaluation algorithms for dynamic BAFs and the anal-
ysis of the computational complexity taking into account such dynamic aspects have
been mostly neglected, whereas in these situations incremental computation techniques
could greatly improve performance. Recently, focusing on Dung’s AFs, in [1] we have
proposed a technique for incrementally computing extensions for dynamic AFs. That is,
given an AF, an initial extension for it, and an update, we devised an efficient technique
for computing an extension of the updated AF.

In this paper, we show that the technique proposed in [1] can be profitably used to
compute extensions of dynamic BAFs. Thus, here we address the following problem:
given a BAF B0, an initial extension E0 for it, and an update u, determine an extension
E of the updated BAF u(B0), which is obtained from B0 by applying update u.

We make the following contributions:

1) We identify early-termination conditions for checking whether a given extension
for an initial BAF is still an extension for the updated BAF. When these conditions
hold, we do not need to recompute an extension of the updated BAF.

2) We build on the meta-argumentation approach proposed in [14] to define a reduc-
tion of the problem of determining an extension of an updated BAF to that of deter-
mining an extension of a corresponding updated Dung’s argumentation framework.

3) We define an incremental algorithm for computing extensions of dynamic BAFs by
leveraging on the incremental technique proposed in [1].

4) We performed an experimental analysis showing that our incremental approach out-
performs the computation from scratch, where the fastest solvers from the Interna-
tional Competition on Computational Models of Argumentation (ICCMA) 1 taking
as input the Dung’s argumentation frameworks resulting from the transformation
of item 2) are used.

2 Bipolar Argumentation Frameworks

We assume the existence of a setArg of arguments. An abstract bipolar argumentation
framework (BAF for short) [4] is a triple 〈A,Σ,Π〉, where (i) A ⊆ Arg is a (finite) set
whose elements are referred to as arguments, (ii) Σ ⊆ A × A is a binary relation
over A whose elements are called attacks, (iii) Π ⊆ A× A is a binary relation over A
whose elements are called supports, and (iv)Σ∩Π = ∅. Thus, a Dung’s argumentation
framework (AF) [25] is a BAF of the form 〈A,Σ, ∅〉.

An argument is an abstract entity whose role is entirely determined by its relation-
ships with other arguments. A BAF can be viewed as a directed graph where each node
corresponds to an argument and each edge in the graph corresponds to either an attacks

1 http://argumentationcompetition.org

ba

d e

f

c

Fig. 1. BAFs B0 of Example 1

a b c

a b c

Supported attack

Mediated attack

Fig. 2. Supported and mediated attacks

or a support. Given a BAF B, the bipolar interaction graph for B (denoted as GB) has
two kinds of edges: one for the attack relation (→) and another one for the support
relation (⇒), as shown in the following example.

Example 1. Consider the BAF B0 = 〈A0, Σ0, Π0〉 where :

– A0 = {a, b, c, d, e, f};
– Σ0 = {(a, c), (c, b), (b, d), (d, e), (e, d), (e, e), (e, f)};
– Π0 = {(a, b)}

The bipolar interaction graph GB0
for B0 is shown in Fig.1. 2

Several interpretations of the notion of support have been proposed in the litera-
ture [24]. In this paper, we focus on deductive support [14] which is intended to capture
the following intuition: if argument a supports argument b then the acceptance of a im-
plies the acceptance of b, and thus the non-acceptance of b implies the non-acceptance
of a. Given this interpretation of support, the coexistence of the support and attack
relations in BAFs entails that new kinds of “implicit” attacks should be considered.

Given a BAF 〈A,Σ,Π 〉, a supported attack for an argument b ∈ A by argument
a1 ∈ A is a sequence a1Πa2Π . . .ΠanΣ b with n ≥ 1. Note that a direct attack a1Σb
is a supported attack. Thus a supported attack is a (possibly empty) chain of supports
followed by an attack. Moreover, we say that there is a mediated attack for argument a1
by argument b if there is an attack bΣan and a sequence of supports a1Πa2Π . . .Πan
and with n ≥ 1. Thus, for a mediated attack the chain of supports ends in an which
is attacked by b. Supported and mediated attacks are illustrated in Figure 2, where a
chain consisting of only one support is considered. The BAF of Example 1 contains a
supported attack from argument a to d, and a mediated attack from argument c to a.

Another kind of implicit attack which we do not consider in this paper because of
the deductive interpretation of support is the secondary attack [21], which occurs when
in a BAF there is a sequence bΣa1Πa2Π . . .Πan with n ≥ 1. Considering supported
and secondary attacks leads to an alternative interpretation of support [21]. However,
when considering a deductive interpretation of support, secondary attacks may lead
to counterintuitive results [24], though they are useful in contexts where support is
interpreted differently.

Given a BAF 〈A,Σ,Π 〉, we say that a set S ⊆ A set-attacks an argument b ∈ A
iff there exists a supported or mediated attack for b by an argument a ∈ S. We use S+

to denote the set of arguments set-attacked by S. Moreover, we say that a set S ⊆ A

defends an argument a ∈ A iff for each b ∈ A such that {b} set-attacks a, it is the case
that S set-attacks b (i.e., b ∈ S+).

Given a BAF 〈A,Σ,Π 〉, a set S ⊆ A is conflict-free iff there are no two arguments
a, b ∈ S such that {a} set-attacks b. Moreover, a conflict-free set S ⊆ A is said to be
admissible iff it defends all of its arguments.

Example 2. Continuing our example, for the BAF B0 of Example 1, it is easy to see
that {a} defends argument b (as {a} set-attacks c which set-attacks b). The set {a, b} is
conflict-free as neither a set-attacks b nor b set-attacks a, while {a, d} is not conflict-free
as a set-attacks d (by means of the supported attack (a, d)). Moreover, S = {c, d, f}
is an admissible set as it is conflict-free and S defends all of its arguments: c defends
itself from a by the mediated attack from c to a; d is defended by c, and f is defended
by d. The set of admissible sets for B0 is {{∅}, {a}, {c}, {a, b}, {c, d}, {c, d, f}}. 2

Given a BAF 〈A,Σ,Π 〉, a preferred extension (pr) for a BAF is an admissible
set which is a maximal (w.r.t ⊆). Furthermore, a conflict-free set S ⊆ A is a stable
extension (st), if and only if it set-attacks all the arguments in A \ S. (Note that this
implies that S is admissible).

Given a BAF B and a semantics S ∈{pr, st}, we use ES(B) to denote the set of
extensions for B according to S. For the BAF B0 of Example 1, we have that the set of
the stable extensions is Est(B0) = {{c, d, f}}, while the set of the preferred extensions
is Epr(B0) = {{a, b}, {c, d, f}}. 2

Labelling. Following the approach of [6], where argumentation semantics have been
characterized in terms of labelling, we define a labelling function for BAFs. A labelling
for a BAF B = 〈A,Σ,Π〉 is a total function L : A→ {IN, OUT, UN} assigning to each
argument a label: L(a) = IN means that argument a is accepted, L(a) = OUT means
that a is rejected, while L(a) = UN means that a is undecided.

Let in(L) = {a | a ∈ A ∧ L(a) = IN}, out(L) = {a | a ∈ A ∧ L(a) = OUT},
and un(L) = {a | a ∈ A ∧ L(a) = UN}. In the following, we also use the triple
〈in(L), out(L), un(L)〉 to represent the labelling L.

Given a BAF B = 〈A,Σ,Π〉, a labelling L for B is said to be admissible (or legal)
if ∀a ∈ in(L) ∪ out(L) it holds that (i) L(a) = OUT iff ∃ b ∈ A such that a ∈ {b}+
and L(b) = IN; and (ii) L(a) = IN iff L(b) = OUT for all b ∈ A such that a ∈ {b}+.
Moreover, L is a complete labelling iff conditions (i) and (ii) hold for all a ∈ A.

Between extensions and complete labellings there is a bijective mapping defined as
follows: for each extension E there is a unique labelling L = 〈E,E+, A \ (E ∪ E+)〉
and for each labelling L there is a unique extension in(L). We say that L is the labelling
corresponding to E. For instance, considering the BAF B0 of Example 1, the labelling
corresponding to the preferred extension E = {a, b} is L = 〈{a, b}, {c, d}, {e, f}〉.

In the following, we say that the status of an argument a w.r.t. a labelling L (or its
corresponding extension in(L)) is IN (resp., OUT, UN) iff L(a) = IN (resp., L(a) =
OUT, L(a) = UN). We will avoid to mention explicitly the labelling (or the extension)
whenever it is understood.

2.1 Updates

An update u for a BAF B0 allows us to change B0 into a BAF B by adding or removing
an argument, an attack, or a support. The addition (resp., deletion) of an argument awill
be denoted as +a (resp. −a), whereas the addition (resp., deletion) of an attack from
a to b will be denoted as +(a → b) (resp., −(a → b)). Moreover, the addition (resp.,
deletion) of a support from a to b will be denoted as +(a⇒ b) (resp., −(a⇒ b)).

We will use u(B0) to denote the BAF resulting from the application of an update u
to the initial BAF B0. For instance, for BAF B0 = 〈A0, Σ0, Π0〉, if u = +(f ⇒ b), we
have that u(B0) = +(f ⇒ b)(B0) = 〈A0, Σ0, Π0 ∪ {(f, b)}〉, while if u = −(b→ d),
we have that u(B0) = 〈A0, Σ0 \ {(b, d)}, Π0〉.

Applying an update u to a BAF implies that its semantics (set of extensions or
labellings) may change. Continuing our running example, for the BAF B0 of Example
1 and the update u = +(f ⇒ b), we have that the set of the stable extensions for the
updated BAF B = +(f ⇒ b)(B0) is Est(B) = {{c, d}}, while the set of the preferred
extensions is Epr(B) = {{a, b}, {c, d}}. In fact, the addition of the support between
f and b entails that additional implicit attacks must be considered: a supported attack
between f and d, and a mediated one between c and f .

In the following, for the sake of the presentation, we consider only feasible updates
which are defined as follows. Adding an argument as well as removing an attack/support
are feasible updates. The deletion of an argument is feasible only if a is isolated, that is
there is no argument b attacking/supporting a or being attacked/supported by a, where
a is not necessarily distinct from b. The addition of an attack (resp., support) between
a and b is feasible only if a and b are arguments of the initial BAF B0 and there is
no already a support (resp. attack) between a and b in B0. Clearly, the general updates
can be simulated by a sequence of feasible updates. For instance, an isolated argument a
can be deleted after deleting all attacks and supports involving a (by performing feasible
updates). Analogously, adding an attack or a support between an argument a in B0 and
a new argument b can be simulated as a sequence of updates of the form +b,+(a→ b)
or +b,+(a⇒ b).

It is worth noting that if B is obtained from B0 through the addition (resp. deletion)
of a set S of isolated argument, then, let E0 be an extension for B0, it is the case that
E = E0 ∪ S (resp. E = E0 \ S) is an extension for B that can be trivially computed.
Thus, in the following we do not discuss further updates of the form +a or−a. We will
focus on updates of the forms±(c→ d) and±(e⇒ f), where±means either + or−.

3 Incremental Computation

Given a BAF B0, a preferred/stable extension E0 for B0, and an update u, our approach
to recompute a preferred/stable extension E of an updated BAF u(B0) consists of the
following three main steps.

1) We identify conditions ensuring that a given extension E0 for the initial BAF B0
(under the preferred or stable semantic) is still an extension for the updated BAF
u(B0). In such case, the update u does not invalidate the initial extension E0, and
it will be immediately returned by our algorithm.

2) Given B0, E0 and u, we transform the initial BAF B0 into an equivalent Dung’s AF
M0, a corresponding extensionEm

0 , and an update um forM0. Our transformation
is based on the meta-argumentation approach proposed in [14], though in our case
we need to take into account the initial extension E0 and the update u.

3) Given the AFM0, its extension Em
0 , and the update um forM0, we use the incre-

mental technique proposed in [1] for computing an extension Em of the updated
AF um(M0) w.r.t. Em

0 . The technique identifies a reduced AF sufficient to com-
pute an extension of the whole AF and use state-of-the-art algorithms to recompute
an extension of the reduced AF only. Then from an extension Em of the updated
AF um(M0), we derive an extension E of an updated BAF u(B0).

In the next sections we describe in detail the three steps above.

3.1 Early-Termination Conditions

Given a BAF B0, an initial extension E0 whose corresponding labelling is L0, and an
update u, for each pair of initial statuses L0(a) and L0(b) of the arguments involved in
the update, Tables 1 – 4 tell us if E0 is still an extension after performing the update
under the preferred or stable semantics.

Proposition 1 (Extension preservation for addition/deletion of an attack/support).
Let B0 be a BAF, S ∈ {pr,st} a semantics, E0 ∈ ES(B0) an extension of B0 under
semantics S, L0 the labelling corresponding to E0, and u an update. If S is in the cell
〈L0(a), L0(b)〉 of Table 1 and u = +(a → b) [resp., Table 2 and u = +(a ⇒ b);
Table 3 and u = −(a→ b); Table 4 and u = −(a⇒ b))], then E0 ∈ ES(u(B0)).

If some of the conditions of Proposition 1 holds, then the given initial extension of
the initial BAF is still an extension of the updated one, and thus the above-mentioned
steps 2) and 3) can be skipped — the algorithm just returns the initial extension which
is also an extension for the updated BAF. For instance, considering the BAF B0 of
Example 1, the update u = −(b → d), and preferred extension E0 = {c, d, f}, since
L0(b) = OUT and L0(d) = IN, Table 3 says that E0 = {c, d, f} is still an extension
of the BAF u(B0). Similarly, considering u = +(c ⇒ f), and again the preferred
extension E0 = {c, d, f}, since L0(c) = L0(f) = IN, Table 2 tell us that E0 is still an
extension of the updated BAF.

Conditions similar to those of Proposition 1 were identified in [1] for updates of
Dung’s AFs, where support is not considered. However, those conditions could be used
only at step 3) when applying the technique of [1] to the meta-argumentation frame-
workM0, that is, after performing the transformation of step 2). Therefore, to avoid to
uselessly perform step 2), we provided Proposition 1, which can be used to check for
cases for which the initial extension is preserved directly on the input BAF.

3.2 The Meta-Argumentation Framework

Given the initial BAF B0 and an updated u for it, we define the corresponding meta-
argumentation framework as follows.

update L0(b)

+(a→ b) IN UN OUT

L0(a)
IN pr, st
UN pr

OUT pr,st pr,st

Table 1. Cases for which E0 ∈ ES(u(B0))
for u = +(a→ b).

update L0(b)

+(a⇒ b) IN UN OUT

L0(a)
IN pr,st
UN

OUT pr,st pr pr,st

Table 2. Cases for which E0 ∈ ES(u(B0))
for u = +(a⇒ b).

update L0(b)

−(a→ b) IN UN OUT

L0(a)
IN NA NA
UN NA pr

OUT pr,st pr pr,st

Table 3. Cases for which E0 ∈ ES(u(B0))
for u = −(a→ b).

update L0(b)

−(a⇒ b) IN UN OUT

L0(a)
IN pr,st NA NA
UN pr NA

OUT pr,st pr

Table 4. Cases for which E0 ∈ ES(u(B0))
for u = −(a⇒ b) .

Definition 1 (Meta AF). Let B = 〈A,Σ,Π〉 be a BAF, and u an update for B of
the form u = ±(c → d) or u = ±(e ⇒ f). Then, the meta-AF for B w.r.t. u is
M = 〈Am, Σm〉 where:

i) Am = { a | a ∈ A} ∪ {Xa,b, Ya,b | (a, b) ∈ Σ} ∪
{Xc,d, Yc,d | u = +(c→ d)} ∪
{Za,b | (a, b) ∈ Π} ∪
{Ze,f | u = +(e⇒ f)}

ii) Σm = {(a,Xa,b), (Xa,b, Ya,b), (Ya,b, b) | (a, b) ∈ Σ} ∪
{(c,Xc,d), (Xc,d, Yc,d) | u = +(c→ d)} ∪
{(b, Za,b), (Za,b, a) | (a, b) ∈ Π} ∪
{(f, Ze,f) | u = +(e⇒ f)}

As an example, the (interaction graph of the) meta AFM0 for the for the BAF B0
of Example 1 w.r.t the update u = +(f ⇒ b) is shown in Figure 3.

Our definition of meta-argumentation framework builds on that proposed in [14] and
consider additional (meta)arguments (e.g., Zf,b in Figure 3) and attacks (e.g., (b, Zf,b)
in Figure 3) that will allow us to simulate (positive) updates to be performed on BAF
B0 by means of updates performed on the corresponding the meta-AFM0. (We do not
need to add additional arguments/attack to simulate negative updates, as it is sufficient
to remove attacks already present in the original construction of [14]). The meta AF of
Definition 1 collapses to the construction of [14] if we have no updates.

Thus, updates for a given BAFs can be modeled by means of updates for the corre-
sponding meta-AF, as detailed in what follows.

Definition 2 (Updates for the Meta AF). Let B = 〈A,Σ,Π〉 be a BAF, and u an
update for B of the form u = ±(c→ d) or u = ±(e⇒ f). The corresponding update

a
f

Xe,e

Za,b

d

Xb,d

Yb,d

b

Xe,f

Xa,c

Ya,c

Xd,e Yd,e e

Ye,d Xe,d

Ye,f

Ye,e

Zf,b

c

Xc,b

Yc,b

Fig. 3. Meta AFM0 for the BAF B0 of Figure 1 w.r.t. the update u = +(f ⇒ b).

um for the meta-AFM for B w.r.t. u is as follows:

um =

+(Ze,f , e) if u = +(e⇒ f)

−(Ze,f , e)) if u = −(e⇒ f))

+(Yc,d, d) if u = +(c→ d)

−(Yc,d, d)) if u = −(c→ d))

Continuing our running example, the update for the meta AFM0 corresponding to
the BAF B0 of Example 1 and the update u = +(f ⇒ b) is um = +(Zf,b, f).

The last ingredient we need before being ready to apply the incremental technique
of [1] is the initial extension Em

0 for the AFM0. It is obtained from that of initial BAF
B0 by essentially propagating the labels of the arguments in B0 as follows.

Definition 3 (Initial Extension/Labelling for the Meta AF). Given the BAF B0 =
〈A,Σ,Π〉 and its initial labelling L0, the corresponding initial labelling Lm

0 for the
meta-AFM0 = 〈Am, Σm〉 is as follows:

– Lm
0 (a) = L0(a) for all a ∈ A ∩Am

– Lm
0 (Xa,b) = IN ifL0(a) = OUT,Lm

0 (Xa,b) = OUT ifL0(a) = IN, andLm
0 (Xa,b) =

UN ifL0(a) = UN, for all Xa,b ∈ Am

– Lm
0 (Ya,b) = L0(a) for all Ya,b ∈ Am

– Lm
0 (Za,b) = IN ifL0(b) = OUT,Lm

0 (Za,b) = OUT ifL0(b) = IN, andLm
0 (Za,b) =

UN ifL0(b) = UN, for all Za,b ∈ Am

For instance, with reference to Figure 3, and the preferred extension E0 = {c, d, f}
for the BAF B0 of Example 1, we have that the labelling corresponding to E0 is
L0 = 〈{c, d, f}, {a, b, e}, ∅〉, and thus Lm

0 (Zf,b) = IN since Lm
0 (b) = L0(b) = OUT.

Moreover, Lm
0 (Ye,f) = L0(e) = OUT.

The following proposition characterizes the relationship between extensions of up-
dated BAFs and extension of updated for meta AFs.

Proposition 2. Let B0 = 〈A,Σ,Π〉 be a BAF, S ∈ {pr,st} a semantics, and E0 ∈
ES(B0) an extension of B0 under S.
LetM0 be meta AF for B0 w.r.t. u, Em

0 the initial S-extension forM0 corresponding
to E0, and um the update forM0 corresponding to u.
Then, there is E ∈ ES(u(B0)) iff there is Em ∈ ES(um(M0)) such that E = Em ∩A.

Algorithm 1 Incr-BAF(B0, u, E0,S, SolverS)
Input: BAF B0 = 〈A0, Σ0Π0〉,

update u of the form u = ±(a⇒ b) or u = ±(a→ b),
an initial S-extension E0,
semantics S ∈ {pr,st},
function SolverS (A) returning an S-extension for AF A if it exists, ⊥ otherwise;

Output: An S-extension E for u(B0) if it exists, ⊥ otherwise;;
1: if checkProp(B0, u, E0,S) then
2: return E0;
3: LetM0 = 〈Am, Σm〉 be the the meta-AF for B0 w.r.t. u (cf. Definition 1);
4: Let um be the update forM0 corresponding to u (cf. Definition 2)
5: Let Em

0 be the initial S-extension forM0 corresponding to E0; (cf. Definition 3)
6: Let Em = Incr-Alg(M0, u

m,S, Em
0 , SolverS) [1]

7: if (Em 6= ⊥) then
8: return E = (Em ∩A0);
9: else

10: return ⊥;

3.3 Incremental Algorithm

Given a BAF B0, a semantics S ∈{pr, st}, an extension E0 ∈ ES(B0), and an update
u of the form u = ±(a ⇒ b) or u = ±(a → b), we define an incremental algorithm
(Algorithm 1) for computing an extension E of the updated BAF u(B0), if it exists
(note that for the stable semantics, the set of extensions Est(u(B0)) of the updated AF
may be empty; in this case, the algorithm returns ⊥).

Algorithm 1 works as follows. It first checks if the initial extension E0 is still an
extension of the updated BAF at Line 1, where checkProp(B0, u, E0,S) is a function
returning true iff some of the conditions of Proposition 1 holds. If this is the case, it
immediately returns the initial extension. Otherwise, it computes the (meta) AF M0

(Line 3), the update um for M0 (Line 4), and the initial S-extension Em
0 for M0

(Line 5). Next it invokes the incremental algorithm Incr-Alg proposed in [1] with input
parameters M0, u

m,S, Em
0 , and SolverS , where SolverS is any external solver that

can compute an S-extension for the input AF.
Roughly speaking, the technique in [1] uses state-of-the-art algorithms to compute

an extension on a subset of the input AF. More in detail, it consists of three steps:
(i) First a sub-AF, called reduced AF, is identified on the basis of the the set of ar-
guments influenced by an update [37–39] and additional information provided by the
initial extension. In our running example, given the meta AFM0 of Figure 3 the up-
date um = +(Zf,b, f), and the extension Em

0 corresponding to the preferred extension
E0 = {c, d, f}, the influenced set consists of argument f only. The reduced AF is built
by adding to the subgraph induced by the influenced set, additional arguments and at-
tacks containing needed information on the “external context”, i.e. information about
the status of arguments which are attacking some argument in the influenced set. Con-
tinuing our example, the reduced AF consists of the two arguments Zf,b and f and the
attack (Zf,b, f) between them.

(ii) Second, a non-incremental algorithm (e.g., Cegartix [28] for S = pr, ASPARTIX-
D [36] for S = st) is used to compute an extension of the reduced AF — this is done
by calling function SolverS in Algorithm 1. In our example the external solver returns
the preferred extension Er = {Zf,b} for the reduced AF.
(iii) Finally, the final extension Em of the whole (meta) AF is obtained by merging a
portion of its initial extension with that computed for the reduced AF (i.e.,Er = {Zf,b}
in our example) by the external solver SolverS . The result of the merging operation in
our example will be Em = {c, d, Yc,b, Za,b, Zf,b, Xa,c, Yc,b, Yd,e, Xe,d, Xe,e, Xe,f}.

After calling the incremental algorithm Incr-Alg of [1] over the (meta-) AF M0,
the extension of the updated BAF (if any) is obtained by projecting out the extension
Em returned by Incr-Alg over the set of arguments A0 of the initial BAF (Line 8). In
our example, we obtain the extension E = {c, d} = Em ∩A0 for the updated BAF.

4 Experimental Results

We implemented a C++ prototype and, for each semantics S ∈{pr, st}, we compared
the performance of Algorithm 1 with that of the best ICCMA’15 solver for the compu-
tational task S-SE, that is the task of determining some S-extension. In particular, given
a BAF B0, a semantics S ∈{pr, st}, an extension E0 ∈ ES(B0), and an update u of
the form u = ±(a ⇒ b) or u = ±(a → b), we compare the following two strategies
for computing an extension E ∈ ES(u(B0)) of the updated BAF:

– Incremental computation, that is, Algorithm 1 with inputB0, u, E0,S , and SolverS ;
– Computation from scratch, where an extension E of the updated BAF u(B0) is

computed by running SolverS over the (meta-)AF for um(M0).

where SolverS is Cegartix [28] for S = pr and ASPARTIX-D [36] for S = st (these
solvers are the winners of the ICCMA’15 competition for the computational task S-SE).

Dataset. We generated a set of BAFs by starting from AFs used as benchmarks at
ICCMA’15, available at http://argumentationcompetition.org/2015/results.html. Given
a percentage p ∈ {10%, 20%} of support, for each AF Ad = 〈Ad, Σd〉 in the ICCMA
dataset, we generate two BAFs B0 = 〈Ad, Σ

p, Πp〉 as follows. We selected p × |Σd|
attacks in Σd in a random way, and converted them into supports. That is, let Σr ⊆ Σd

be the set of the chosen p × |Σd| attacks in Σd. For each (a, b) ∈ Attr, we added a
support randomly chosen in {(a, b), (b, a)} to Πp. Finally, we set Σp = Σd \Σr.

Methodology. For each semantics S ∈{pr, st}, for each BAF B0 = 〈A0, Σ0, Π0〉 in
the dataset, we considered every S-extension E0 of B0 as an initial extension. Then, we
randomly selected an update u of the form +(a→ b) (with a, b ∈ A0 and (a, b) 6∈ Σ0),
or +(a ⇒ b) (with a, b ∈ A0 and (a, b) 6∈ Π0), or −(a → b) (with (a, b) ∈ Σ0), or
−(a ⇒ b) (with (a, b) ∈ Π0). Next, we computed an S-extension E for the updated
BAF u(B0) by calling Algorithm 1. Finally, the average run time of our incremen-
tal algorithm to compute an S-extension was compared with the average run time of
Cegartix for S = pr and ASPARTIX-D for S = st to compute an S-extension for
um(M0) from scratch.

Results. Figure 4 reports the average run times (log scale) of the incremental compu-
tation (Incr-BAF) and the computation from scratch. Each data point reported in the
figure is the average time over 30 runs. The figure shows how the running time vary
w.r.t. the semantics (preferred or stable), the percentage (10% or 20%) of edges of the
type support in the initial BAF, and the number of arguments in the meta AFM0 for
the given BAF and update. It is worth noting that the number of arguments and attacks
in the meta AFM0 is much greater then the number of arguments and attacks/supports
in the initial BAF B0 = 〈A0, Σ0, Π0〉, whose size (in terms of nodes and edges in the
interaction graph) is that of the original AFAd = 〈Ad, Σd〉 in the ICCMA dataset used
to build B0. Specifically, from Definition 1, it is easy to see that the number of argu-
ments ofM0 turns out to be |A0| + |Π0| + 2 × |Σ0|, while the number of attacks is
2× |Π0|+ 3× |Σ0|.

29274 166636 331028
102

103

104

N. of Arguments

S = pr, p=10%

Cegartix

Incr-BAF

29274 166636 331028

103

104

N. of Arguments

S = st, p=10%

ASPARTIX-D

Incr-BAF

27867 180155 313810

103

104

N. of Arguments

S = pr, p=20%

Cegartix

Incr-BAF

27867 180155 313810

103

104

N. of Arguments

S = st, p=20%

ASPARTIX-D

Incr-BAF

Fig. 4. Run times (ms) of ICCMA solvers and Incr-BAF, for semantics S and percentage p of
supports showed on the top of each graph, versus the number of arguments in the meta AF.

From the results reported in Figure 4, we can draw the following conclusions:

– Our algorithm outperforms the competitors that compute the extensions from scratch.
In particular, the time saved by the incremental computation increases exponen-
tially with respect to the size of the input BAF.

– The improvements obtained for the two semantics (preferred and stable) are similar.
That is, our incremental approach is quite insensitive w.r.t. the semantics adopted.

– The improvements obtained increase when increasing the percentage of support
from 10% to 20%. In fact, for a given fixed number n = |Σ0| + |Π0| of the edges
in the interaction graph for BAF B0, it is the case that increasing the percentage of
edges in Π0 (and thus decreasing |Σ0|) yields to smaller meta AFs.

5 Related Work

A comprehensive introduction to (static) abstract argumentation frameworks (AFs) can
be found in [6], while [24] provides a survey of bipolar argumentation frameworks
(BAFs). Although the idea underlying AFs is simple and intuitive, most of the semantics
proposed so far suffer from a high computational complexity [27, 26, 29, 30, 32–35].
Complexity bounds and evaluation algorithms for AFs have been deeply studied in the
literature, but most of this research focused on static frameworks, whereas, in practice,
AFs (as well as BAFs) are not static systems [8, 31, 41, 7, 23].

There have been significant efforts coping with dynamics aspects of Dung’s abstract
argumentation frameworks. as discussed in what follows. [15, 16] have investigated the
principles according to which a grounded extension of a Dung’s abstract argumenta-
tion frameworks does not change when the set of arguments/attacks are changed. [17,
18] have addressed the problem of revising the set of extensions of an argumentation
framework, and studied how the extensions can evolve when a new argument is consid-
ered. They focus on adding one argument interacting with one initial argument (i.e. an
argument which is not attacked by any other argument). [13] have studied the evolution
of the set of extensions after performing a change operation (addition/removal of argu-
ments/interaction). Dynamic argumentation has been applied to decision-making of an
autonomous agent by [5], where it is studied how the acceptability of arguments evolves
when a new argument is added to the decision system. The division-based method, pro-
posed by [41] and then refined by [7], divides the updated framework into two parts:
affected and unaffected, where only the status of affected arguments is recomputed af-
ter updates. Recently, [46] introduced a matrix representation of argumentation frame-
works and proposed a matrix reduction that, when applied to dynamic argumentation
frameworks, resembles the division-based method in [41].

Other relevant works on dynamic aspects of Dung’s argumentation frameworks in-
clude the following. [8] have proposed an approach exploiting the concept of splitting
of logic programs to deal with dynamic argumentation. The technique considers weak
expansions of the initial AF, where added arguments never attack previous ones. [11]
have investigated whether and how it is possible to modify a given AF so that a desired
set of arguments becomes an extension, whereas [43] have studied equivalence between
two AFs when further information (another AF) is added to both AFs. [9] have focused
on expansions where new arguments and attacks may be added but the attacks among
the old arguments remain unchanged, while [10] have characterized update and dele-
tion equivalence, where adding/deleting arguments/attacks is allowed (deletions were
not considered by [43, 9]).

Bipolarity in argumentation is discussed in [4], where a survey of the use of bipolar-
ity is given, as as well as a formal definition of BAF that extends the Dung’s concept of
argumentation framework by including supports is provided. The notion of support has

been found useful in many application domains, including decision making [3]. How-
ever, as discussed in [24], different interpretations of the concept of support have been
proposed. The acceptability of arguments in the presence of the support relation was
first investigated in [19]. Then, to handle bipolarity in argumentation, [20, 21] proposed
an approach based on using the concept of coalition of arguments, where arguments are
grouped together, and defeats occur between coalitions. However, when considering a
deductive interpretation of support [14, 45], as we did in this paper, coalitions may lead
to counterintuitive results [24], though they are useful in contexts where support is in-
terpreted differently. Changes in bipolar argumentation frameworks have been studied
in [22], where it is shown how the addition of one argument together with one support
involving it (and without any attack) impacts the extensions of the updated BAF.

To the best of our knowledge, this is the first paper addressing the problem of effi-
ciently and incrementally computing extensions of dynamic BAFs.

6 Conclusion and Future Work

We introduced a technique for the incremental computation of extensions of dynamic
BAFs. Following the meta-argumentation approach [24], according to which BAFs are
translated into semantically equivalent AFs, we introduced a translation where updates
and initial extensions of BAFs are taken into account. Then, we exploited the incremen-
tal algorithm recently proposed in [1] and computed extensions of the meta AFs, from
which the updated extensions of BAFs are obtained. Our experiments showed that the
incremental technique outperforms the computation from scratch.

Although in this paper we focused on updates consisting of adding/removing one
attack/support, our technique can be extended to deal with sets of updates performed
simultaneously. Indeed, the construction described in [38] for reducing the application
of a set of updates to the application of a single attack update can be easily extended to
deal with multiple updates for BAFs.

Moreover, our technique can be extended to consider second-order attacks [14] for
BAFs, that is, (i) attacks from an argument or an attack to another attack and (ii) attacks
from an argument to a support. This allows the representation of a kind of defeasible
support, according to which the support itself can be attacked. In fact, analogously to
what done in Section 3.2, we can build on the definition of meta-AF introduced in [14]
for encoding second-order attacks, and then we can extend it to deal with updates for
such kind of BAFs. The incremental algorithm of [1] could be used again by taking as
input the meta AF resulting from such transformation.

Finally, we also plan to extend our technique to deal with other interpretations of
support, particularly the approach in [20, 21] where meta AFs are also adopted to cope
with bipolarity in argumentation.

References

1. Gianvincenzo Alfano, Sergio Greco, and Francesco Parisi. Efficient computation of exten-
sions for dynamic abstract argumentation frameworks: An incremental approach. In IJCAI,
pages 49–55, 2017.

2. Teresa Alsinet, Josep Argelich, Ramn Bjar, Csar Fernndez, Carles Mateu, and Jordi Planes.
An argumentative approach for discovering relevant opinions in twitter with probabilistic
valued relationships. Pattern Recognition Letters, In press, 2017.

3. Leila Amgoud, Jean-François Bonnefon, and Henri Prade. An argumentation-based ap-
proach to multiple criteria decision. In ECSQARU, pages 269–280, 2005.

4. Leila Amgoud, Claudette Cayrol, and Marie-Christine Lagasquie-Schiex. On the bipolarity
in argumentation frameworks. In NMR, pages 1–9, 2004.

5. Leila Amgoud and Srdjan Vesic. Revising option status in argument-based decision systems.
J. Log. Comput., 22(5):1019–1058, 2012.

6. Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. An introduction to argumen-
tation semantics. The Knowledge Engineering Review, 26(4):365–410, 2011.

7. Pietro Baroni, Massimiliano Giacomin, and Beishui Liao. On topology-related properties of
abstract argumentation semantics. A correction and extension to dynamics of argumentation
systems: A division-based method. AI, 212:104–115, 2014.

8. Ringo Baumann. Splitting an argumentation framework. In LPNMR, pages 40–53, 2011.
9. Ringo Baumann. Normal and strong expansion equivalence for argumentation frameworks.

AI, 193:18–44, 2012.
10. Ringo Baumann. Context-free and context-sensitive kernels: Update and deletion equiva-

lence in abstract argumentation. In ECAI, pages 63–68, 2014.
11. Ringo Baumann and Gerhard Brewka. Expanding argumentation frameworks: Enforcing and

monotonicity results. In COMMA, pages 75–86, 2010.
12. Trevor J. M. Bench-Capon and Paul E. Dunne. Argumentation in artificial intelligence. AI,

171(1015):619 – 641, 2007.
13. Pierre Bisquert, Claudette Cayrol, Florence Dupin de Saint-Cyr, and Marie-Christine

Lagasquie-Schiex. Characterizing change in abstract argumentation systems. In Trends in
Belief Revision and Argumentation Dynamics, volume 48, pages 75–102. 2013.

14. Guido Boella, Dov M. Gabbay, Leendert W. N. van der Torre, and Serena Villata. Support
in abstract argumentation. In COMMA, pages 111–122, 2010.

15. Guido Boella, Souhila Kaci, and Leendert W. N. van der Torre. Dynamics in argumentation
with single extensions: Abstraction principles and the grounded extension. In ECSQARU,
pages 107–118, 2009.

16. Guido Boella, Souhila Kaci, and Leendert W. N. van der Torre. Dynamics in argumentation
with single extensions: Attack refinement and the grounded extension. In ArgMAS Workshop,
pages 150–159, 2009.

17. Claudette Cayrol, Florence Dupin de Saint-Cyr, and Marie-Christine Lagasquie-Schiex. Re-
vision of an argumentation system. In KR, pages 124–134, 2008.

18. Claudette Cayrol, Florence Dupin de Saint-Cyr, and Marie-Christine Lagasquie-Schiex.
Change in abstract argumentation frameworks: Adding an argument. JAIR, 38:49–84, 2010.

19. Claudette Cayrol and Marie-Christine Lagasquie-Schiex. On the acceptability of arguments
in bipolar argumentation frameworks. In ECSQARU, pages 378–389, 2005.

20. Claudette Cayrol and Marie-Christine Lagasquie-Schiex. Bipolar abstract argumentation
systems. In Argumentation in Artificial Intelligence, pages 65–84. 2009.

21. Claudette Cayrol and Marie-Christine Lagasquie-Schiex. Coalitions of arguments: A tool
for handling bipolar argumentation frameworks. Int. J. Intell. Syst., 25(1):83–109, 2010.

22. Claudette Cayrol and Marie-Christine Lagasquie-Schiex. Change in abstract bipolar argu-
mentation systems. In SUM, pages 314–329, 2015.

23. Günther Charwat, Wolfgang Dvorák, Sarah Alice Gaggl, Johannes Peter Wallner, and Stefan
Woltran. Methods for solving reasoning problems in abstract argumentation - A survey. AI,
220:28–63, 2015.

24. Andrea Cohen, Sebastian Gottifredi, Alejandro Javier Garc´INa, and Guillermo Ricardo
Simari. A survey of different approaches to support in argumentation systems. Knowledge
Eng. Review, 29(5):513–550, 2014.

25. Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games. AI, 77(2):321–358, 1995.

26. Paul E. Dunne. The computational complexity of ideal semantics. AI, 173(18):1559–1591,
2009.

27. Paul E. Dunne and Michael Wooldridge. Complexity of abstract argumentation. In Argu-
mentation in Artificial Intelligence, pages 85–104. 2009.

28. Wolfgang Dvorák, Matti Järvisalo, Johannes Peter Wallner, and Stefan Woltran. Complexity-
sensitive decision procedures for abstract argumentation. AI, 206:53–78, 2014.

29. Wolfgang Dvorák, Reinhard Pichler, and Stefan Woltran. Towards fixed-parameter tractable
algorithms for argumentation. In KR, 2010.

30. Wolfgang Dvorák and Stefan Woltran. Complexity of semi-stable and stage semantics in
argumentation frameworks. Information Processing Letters, 110(11):425–430, 2010.

31. Marcelo A. Falappa, Alejandro Javier Garcia, Gabriele Kern-Isberner, and Guillermo Ri-
cardo Simari. On the evolving relation between belief revision and argumentation. The
Knowledge Engineering Review, 26(1):35–43, 2011.

32. Bettina Fazzinga, Sergio Flesca, and Francesco Parisi. Efficiently estimating the probability
of extensions in abstract argumentation. In SUM, pages 106–119, 2013.

33. Bettina Fazzinga, Sergio Flesca, and Francesco Parisi. On the complexity of probabilistic
abstract argumentation frameworks. ACM Trans. Comput. Log., 16(3):22, 2015.

34. Bettina Fazzinga, Sergio Flesca, and Francesco Parisi. On efficiently estimating the probabil-
ity of extensions in abstract argumentation frameworks. Int. J. Approx. Reasoning, 69:106–
132, 2016.

35. Bettina Fazzinga, Sergio Flesca, Francesco Parisi, and Adriana Pietramala. PARTY: A mo-
bile system for efficiently assessing the probability of extensions in a debate. In DEXA, pages
220–235, 2015.

36. Sarah Alice Gaggl and Norbert Manthey. ASPARTIX-D ready for the competition, 2015.
37. Sergio Greco and Francesco Parisi. Efficient computation of deterministic extensions for

dynamic abstract argumentation frameworks. In ECAI, pages 1668–1669, 2016.
38. Sergio Greco and Francesco Parisi. Incremental computation of deterministic extensions for

dynamic argumentation frameworks. In JELIA, pages 288–304, 2016.
39. Sergio Greco and Francesco Parisi. Incremental computation of grounded semantics for

dynamic abstract argumentation frameworks. In COREDEMA, pages 66–81, 2016.
40. Nadin Kökciyan, Nefise Yaglikci, and Pinar Yolum. Argumentation for resolving privacy

disputes in online social networks: (extended abstract). In AAMAS, pages 1361–1362, 2016.
41. Bei Shui Liao, Li Jin, and Robert C. Koons. Dynamics of argumentation systems: A division-

based method. AI, 175(11):1790–1814, 2011.
42. Sanjay Modgil and Henry Prakken. Revisiting preferences and argumentation. In IJCAI,

pages 1021–1026, 2011.
43. Emilia Oikarinen and Stefan Woltran. Characterizing strong equivalence for argumentation

frameworks. AI, 175(14-15):1985–2009, 2011.
44. Iyad Rahwan and Guillermo R. Simari. Argumentation in Artificial Intelligence. Springer

Publishing Company, Incorporated, 1st edition, 2009.
45. Serena Villata, Guido Boella, Dov M. Gabbay, and Leendert W. N. van der Torre. Modelling

defeasible and prioritized support in bipolar argumentation. Ann. Math. Artif. Intell., 66(1-
4):163–197, 2012.

46. Yuming Xu and Claudette Cayrol. The matrix approach for abstract argumentation frame-
works. In Proc. of International Workshop on Theory and Applications of Formal Argumen-
tation (TAFA), pages 243–259, 2015.

