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Abstract. It is a classical result that the monadic fragment of second-
order logic admits elimination of second-order quantifiers. Recently, the
separated fragment (SF) of first-order logic has been introduced. SF
generalizes the monadic first-order fragment without equality, while pre-
serving decidability of the satisfiability problem. Therefore, it is a natural
question to ask whether SF also admits elimination of second-order quan-
tifiers. Interestingly, already Ackermann answered this question in the
negative as far as full SF with unrestricted occurrences of second-order
quantifiers is concerned. However, with appropriate restrictions on the
syntax of a second-order version of SF, one could hope to define a sub-
stantial extension of the monadic fragment that admits second-order
quantifier elimination. The present note is about preliminary results of
ongoing research in this direction. As a first positive result a restricted
second-order version of SF is defined that admits the elimination of at
least one existential second-order quantifier. The elimination of existen-
tial second-order quantifiers from a monadic sentence without equality
constitutes a special case of the methods presented here.

Keywords: Second-order quantifier elimination · separated fragment ·
monadic fragment

1 Introduction

It is a classical result that the monadic fragment of second-order logic admits
elimination of second-order quantifiers. This was discovered by Löwenheim [6],
Skolem [7], and Behmann [2].

Recently, the separated fragment (SF) of first-order logic has been intro-
duced [8]. It constitutes a syntactic generalization of well-known first-order
fragments: the Bernays–Schönfinkel–Ramsey fragment—the class of relational
∃∗∀∗ sentences—and the monadic first-order fragment without equality—the
class of relational sentences over predicate symbols of arity at most one. The
satisfiability problem for SF sentences (SF-Sat) is decidable, but computationally
very hard: SF-Sat is k-NExpTime-hard for every positive integer k [10]. In other
words, SF-Sat is non-elementary. The definition of SF is based on restricting
the syntax of first-order sentences in prenex normal form. However, neither the
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arity of predicate symbols nor the shape of quantifier prefixes is restricted. The
defining principle for SF sentences is that universally and existentially quantified
variables do not occur together in atoms. Leading existential quantifiers are
exempt from this rule. The sentence ∀x1∃y1∀x2∃y2. R(x1, x2)↔ Q(y1, y2) is an
exemplary SF sentence.

As SF generalizes the monadic first-order fragment without equality while
retaining a decidable satisfiability problem, it is natural to ask whether a second-
order version of SF admits elimination of second-order quantifiers. Interestingly,
already Ackermann gave a negative answer to this question. In an article from
1935 [1], Ackermann argued that the quantifier ∃P in the following formula
cannot be eliminated: ∃P. P (x) ∧ ¬P (y) ∧ ∀uv. ¬P (u) ∨ P (v) ∨ ¬N(u, v). The
only atom in this formula that could potentially break the separateness condition
is N(u, v). But since both variables u and v are universally quantified, universal
variables are separated from existential variables and the sentence is in SF.

Although Ackermann’s observation seems to be discouraging, it only means
that there is, apparently, no straight-forward way of extending the quantifier-
elimination techniques that work for second-order monadic logic to the separated
fragment. The purpose of this note is to present certain syntactic restrictions
that allow the elimination of existentially quantified unary predicate symbols in
separated formulas. The presented results are of a preliminary character and are
not yet fully developed. They provide only a first hint at some directions that
might be worth following in future work.

In Section 2 we present the used notation and some basic results. A definition
of the separated fragment is given in Section 3. The main result is developed in
Section 4 and concisely formulated in Theorem 8. Finally, Section 5 concludes
with a discussion of the results and future directions.

2 Notation and Preliminaries

We consider second-order logic formulas with equality. We call a formula relational
if it contains neither function nor constant symbols. In all formulas, if not explicitly
stated otherwise, we tacitly assume that no variable occurs freely and bound
at the same time and that no variable is bound by two different occurrences of
quantifiers. For convenience, we sometimes identify tuples x̄ of variables with the
set containing all the variables that occur in x̄. By vars(ϕ) we denote the set of
all variables occurring in ϕ.

The symbol |= denotes the is-a-model-of relation as well as semantic entail-
ment of formulas, i.e. ϕ |= ψ holds whenever for every structure A and every
variable assignment β, A, β |= ϕ entails A, β |= ψ. The symbol |=| denotes
semantic equivalence of formulas, i.e. ϕ |=| ψ holds whenever ϕ |= ψ and ψ |= ϕ.

The following are standard lemmas that we simply add for completeness.

Lemma 1 (Miniscoping). Let ϕ,ψ, χ be formulas, and assume that x and y
do not occur freely in χ. We have the following equivalences, where ◦ ∈ {∧,∨}:

(i) ∃y.(ϕ ∨ ψ) |=| (∃y.ϕ) ∨ (∃y.ψ) (ii) ∀x.(ϕ ∧ ψ) |=| (∀x.ϕ) ∧ (∀x.ψ)
(iii) ∃y.(ϕ ◦ χ) |=| (∃y.ϕ) ◦ χ (iv) ∀x.(ϕ ◦ χ) |=| (∀x.ϕ) ◦ χ
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Lemma 2. Let ψ[t] be some second-order formula in which the term t occurs.
Let x be some first-order variable that does not occur in ψ[t]. Then, ψ[t] is
semantically equivalent to ∀x. x = t→ ψ[x], where ψ[x] is derived from ψ[t] by
replacing every occurrence of t with the variable x.

3 The Separated Fragment

Consider a second-order formula ϕ. We say that two disjoint sets of first-order
variables X and Y are separated in ϕ if and only if for every atom A in ϕ we
have vars(A) ∩X = ∅ or vars(A) ∩ Y = ∅.

The following definition of the separated fragment is a slightly simplified
version of the fragment investigated in [8] and in [10]. In contrast to the original,
we do not consider constant symbols here.

Definition 3 (Separated fragment (SF)). The separated fragment (SF) of
first-order logic consists of all relational first-order sentences with equality that
are of the form ∃z̄ ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ, in which ψ is quantifier free, and in
which the two sets x̄1 ∪ . . . ∪ x̄n and ȳ1 ∪ . . . ∪ ȳn are separated. The tuples z̄
and ȳn may be empty, i.e. the quantifier prefix does not have to start with an
existential quantifier and it does not have to end with an existential quantifier
either.

Notice that the variables in z̄ are not subject to any restriction concerning their
occurrences.

It is not hard to see that SF generalizes the Bernays–Schönfinkel–Ramsey
fragment (relational ∃∗∀∗ prenex formulas with equality) and the monadic first-
order fragment without equality (see [8], Theorem 9). The reason why certain
monadic sentences with equality do not belong to SF is that, although SF
sentences may contain equality, non-separated equations are not allowed in SF.
For example, the sentence ∃y∀x. x = y belongs to SF whereas ∀x∃y. x = y does
not.

As already mentioned in the introduction, it is known that the satisfiability
problem for SF sentences (SF-Sat) is decidable and non-elementary [8, 10]. These
results rely on an equivalence-preserving transformation from SF into the Bernays–
Schönfinkel–Ramsey fragment (BSR): for every SF sentence there is an equivalent
sentence in the BSR fragment. This transformation will be the starting point
for showing that quantifier elimination is possible for a certain extension of the
separated fragment with second-order quantifiers.

Lemma 4. Let ϕ := ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ(x̄, ȳ, z̄) be a relational first-order
formula in which ψ is quantifier free and the sets x̄ := x̄1 ∪ . . . ∪ x̄n and
ȳ := ȳ1 ∪ . . . ∪ ȳn are separated. Moreover, we assume that every variable
occurring in the quantifier prefix and in z̄ also occurs in the matrix ψ.

Let x̃1, . . . , x̃m1
⊆ x̄ and ỹ1, . . . , ỹm2

⊆ ȳ be partitions of the sets x̄ and
ȳ, respectively, such that the x̃1, . . . , x̃m1

, ỹ1, . . . , ỹm2
are nonempty, pairwise

disjoint, and pairwise separated in ϕ. Then, ϕ is equivalent to a finite disjunction
of formulas of the form
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(∧

k

∀x̃′′k .
∨

`

Kk`(x̃
′′
k , z̄)

)
∧
(∧

i

∃ỹ′′i .
∧

j

Lij(ỹ
′′
i , z̄)

)
,

where the Kk` and the Lij are literals whose atoms are renamed variants of
atoms that occur in ϕ. Moreover, any two sets x̃′′k1 , x̃

′′
k2

with k1 6= k2, ỹ′′i1 , ỹ
′′
i2

with i1 6= i2, and x̃′′k , ỹ
′′
i are separated in the resulting formula.

Proof. The proof is an adaptation of the proof of Lemma 12 in [10]. For conve-
nience, we pretend that z̄ is empty. The argument works for nonempty z̄ as well.
We will make use of the following auxiliary lemma:

Claim I (Lemma 11 in [10]):
Let I and Ji, i ∈ I, be sets that are finite, nonempty, and pairwise disjoint.
The elements of these sets serve as indices. Let

∃v̄.
∧

i∈I

(
χi(ū) ∨

∨

k∈Ji
ηk(v̄, ū)

)

be some first-order formula where the χi and the ηk denote arbitrary sub-
formulas that we treat as indivisible units in what follows. We say that
f : I → ⋃

i∈I Ji is a selector if for every i ∈ I we have f(i) ∈ Ji. We denote
the set of all selectors of this form by F .
Then, the above formula is equivalent to

∧

S ⊆ I
S 6= ∅

(∨

i∈S
χi(ū)

)
∨
∨

f∈F

(
∃v̄.

∧

i∈S
ηf(i)(v̄, ū)

)
.

♦

We transform ϕ into an equivalent CNF formula of the form

∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn.
∧

i∈I

(
χi(x̄) ∨

∨

k∈Ji
Lk(ȳ)

)

where I and the Ji are finite, pairwise disjoint sets of indices, the subformulas χi
are disjunctions of literals, and the Lk are literals. By Claim I, we can construct
an equivalent formula of the form

ϕ′ := ∀x̄1∃ȳ1 . . . ∀x̄n.
∧

S ⊆ I
S 6= ∅

(∨

i∈S
χi(x̄)

)
∨
∨

f∈F

(
∃ȳn.

∧

i∈S
ηf(i)(ȳ)

)

where F is the set of all selectors over the index sets Ji, i ∈ I. Applying
miniscoping (Lemma 1), we move inward the universal quantifier block ∀x̄n and
thus obtain

ϕ′′ := ∀x̄1∃ȳ1 . . . ∃ȳn−1.
∧

S ⊆ I
S 6= ∅

(
∀x̄n.

∨

i∈S
χi(x̄)

)
∨
∨

f∈F

(
∃ȳn.

∧

i∈S
ηf(i)(ȳ)

)
.
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We now iterate these two steps in an alternating fashion until all quantifier blocks
have been moved inwards in the described way. The constituents of the result

ϕ(3) :=
∧
q

(
χ

(3)
q ∨

∨
p η

(3)
qp

)
of this process have the form

χ(3)
q = ∀x̄1.

∨

`1

∀x̄2.
∨

`2

(
. . .
( ∨

`n−1

∀x̄n.
∨

i∈S`1,...,`n−1

χi(x̄)
)
. . .
)

where the S`1,...,`n−1 are certain subsets of I and the χi are still disjunctions of
literals, and

η(3)
qp = ∃ȳ1.

∧

`1

∃ȳ2.
∧

`2

(
. . .
( ∧

`n−1

∃ȳn.
∧

k∈J`1,...,`n−1

Lk(ȳ)
)
. . .
)

where the J`1,...,`n−1
are certain subsets of

⋃
i∈I Ji.

By definition of the sets x̃1, . . . , x̃m1
, which are pairwise separated in the

χ
(3)
q , we can rewrite every χ

(3)
q into the following form by regrouping the inner

disjuncts:

χ(4)
q = ∀x̄1.

∨

`1

∀x̄2.
∨

`2

(
. . .
( ∨

`n−1

∀x̄n.
∨

i′=1,...,m1

χ′¯̀i′(x̃i′)
)
. . .
)

where the χ′¯̀i′ are (possibly empty) disjunctions of literals. Analogously, we

rewrite every η
(3)
qp into the form

η(4)
qp = ∃ȳ1.

∧

`1

∃ȳ2.
∧

`2

(
. . .
( ∧

`n−1

∃ȳn.
∧

j′=1,...,m2

η′¯̀j′(ỹj)
)
. . .
)

where the η′¯̀j′ are (possibly empty) conjunctions of literals.

We then observe the following equivalences, starting from χ
(4)
q :

∀x̄1.
∨

`1

∀x̄2.
∨

`2

(
. . .
( ∨

`n−1

∀x̄n.
∨

i′=1,...,m1

χ′¯̀i′(x̃i′)
)
. . .
)

|=| ∀x̄1.
∨

`1

∀x̄2.
∨

`2

(
. . .
( ∨

`n−1

∨

i′=1,...,m1

∀(x̄n ∩ x̃i′). χ
′
¯̀i′(x̃i′)

)
. . .
)

|=| ∀x̄1.
∨

`1

∀x̄2.
∨

`2

(
. . .
( ∨

i′=1,...,m1

∨

`′n−1

∀(x̄n ∩ x̃i′). χ
′
¯̀′i′(x̃i′)

)
. . .
)

...

|=|
∨

i′=1,...,m1

∀(x̄1 ∩ x̃i′).
∨

`′1

∀(x̄2 ∩ x̃i′).
∨

`′2

(
. . .
( ∨

`′n−1

∀(x̄n ∩ x̃i′). χ
′
¯̀′i′(x̃i′)

)
. . .
)

|=|
∨

i′=1,...,m1

∀x̃′i′ . χ′′i′(x̃′i′) ,
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where the χ′′i′ are disjunctions of literals. Before moving universal quantifiers
outwards in the last step of the above transformation, bound variables are
renamed such that all quantifiers bind pairwise distinct variables. Analogously,
we have

η(4)
qp |=|

∧

j′=1,...,m2

∃ỹ′j′ . η′′j′(ỹ′i′) ,

where the η′′j′ are conjunctions of literals.

Consequently, we have rewritten ϕ(3) =
∧
q

(
χ

(3)
q ∨

∨
p η

(3)
qp

)
into an equivalent

formula ϕ(4) of the form

ϕ(4) =
∧

q

(( ∨

i′=1,...,m1

∀x̃′i′ . χ′′qi′(x̃′i′)
)
∨
(∨

p

∧

j′=1,...,m2

∃ỹ′j′ . η′′qpj′(ỹ′i′)
))

.

After renaming bound variables again such that all quantifiers bind pairwise dis-
tinct variables, we transform ϕ(4) into an equivalent formula that is a disjunction
of formulas of the form

∧

k

(
∀x̃′′k .

∨

`

Kk`(x̃
′′
k)
)
∧
∧

i

(
∃ỹ′′i .

∧

j

Lij(ỹ
′′
i )
)
.

ut

The just proven lemma will provide the syntactic transformations necessary
to eliminate second-order quantifiers that occur in a separated formula under
certain conditions.

Example 5. We have already mentioned the following SF sentence in the intro-
duction: ϕ := ∀x1∃y1∀x2∃y2. R(x1, x2)↔ Q(y1, y2). As indicated by Lemma 4,
nested alternating quantifiers can be transformed away. An intermediate result
of this process is

∀x1∃y1.
((
∀x2. R(x1, x2)

)
∨
(
∃y2.¬Q(y1, y2)

))

∧
((
∀x2.¬R(x1, x2)

)
∨
(
∃y2. Q(y1, y2)

))
.

Continuing the transformation process, we eventually obtain

(
∃y1y2y3. Q(y1, y2) ∧ ¬Q(y1, y3)

)

∨
((
∀x1x2. R(x1, x2)

)
∧
(
∃y1y2. Q(y1, y2)

))

∨
((
∀x1x2.¬R(x1, x2)

)
∧
(
∃y1y2.¬Q(y1, y2)

))

∨
((
∀x1x2x3. R(x1, x2) ∨ ¬R(x1, x3)

)
∧
(
∃y1y2. Q(y1, y2)

)
∧
(
∃y3y4.¬Q(y3, y4)

))
,

which is equivalent to ϕ but does not contain any quantifier alternation.
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4 Elimination of Second-Order Quantifiers

In this section we formulate syntactic restrictions that enable the elimination
of second-order quantifiers over unary predicates from sentences that belong
to the separated fragment. The notion of separation of sets of variables in a
formula plays a central role in our criterion. However, this time it is not only
of interest that universal variables are separated from existential variables. It is
rather of importance that within each set of non-separated variables there is at
most one that occurs as the argument of the predicate symbol that is bound by
the quantifier we intend to eliminate.

Lemma 6. Let ϕ := ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ(x̄, ȳ, z̄) be a relational first-order
formula in which ψ is quantifier free and the sets x̄ := x̄1 ∪ . . . ∪ x̄n and
ȳ := ȳ1 ∪ . . . ∪ ȳn are separated. We assume that every variable occurring in the
quantifier prefix and in z̄ also occurs in the matrix ψ.

Let x̃1, . . . , x̃m1
⊆ x̄ and ỹ1, . . . , ỹm2

⊆ ȳ be partitions of the sets x̄ and
ȳ, respectively, such that the x̃1, . . . , x̃m1

, ỹ1, . . . , ỹm2
are nonempty, pairwise

disjoint, and pairwise separated in ϕ. Let P be a unary predicate symbol satisfying
the following conditions:

(1) For every set x̃i, 1 ≤ i ≤ m1, there is at most one variable x∗i ∈ x̃i for which
ϕ contains atoms P (x∗i ).

(2) For every set ỹi, 1 ≤ i ≤ m2, there is at most one variable y∗i ∈ ỹi for which
ϕ contains atoms P (y∗i ).

Then ∃P. ϕ is equivalent to a finite disjunction of formulas of the form

θ(z̄) ∧ ∃P.
∧

k1

(
∀x̃′k1 . χk1(x̃′k1 , z̄) ∨ P (x∗k1)

)
∧
∧

k2

(
∀x̃′k2 . χ′k2(x̃′k2 , z̄) ∨ ¬P (x∗k2)

)

∧
∧

i1

(
∃ỹ′i1 . ηi1(ỹ′i1 , z̄) ∧ P (y∗i1)

)
∧
∧

i2

(
∃ỹ′i2 . η′i2(ỹ′i2 , z̄) ∧ ¬P (y∗i2)

)

∧
∧

`1

P (z∗`1) ∧
∧

`2

¬P (z∗`2) ,

where (a) the χk1 and the χ′k2 are disjunctions of literals and the ηi1 and the
η′i2 are conjunctions of literals, (b) all the atoms in θ and in the χk1 , χ′k2 , ηi1 ,
and ηi2 are renamed variants of atoms that occur in ϕ and do not contain the
predicate symbol P , and (c) the variables z∗`1 , z∗`2 are pairwise distinct and stem
from z̄.

Proof. By Lemma 4, we know that ϕ can be rewritten to an equivalent formula
that is a finite disjunction of formulas in which no universal quantifier lies within
the scope of an existential quantifier and vice versa. We apply this transformation
to ϕ and obtain a formula as described in Lemma 4. In the next step, we isolate
atoms that exclusively contain variables from z̄, narrow the scopes of first-order
quantifiers so that these atoms are not within their scopes anymore, and transform
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the resulting formulas into a formula ϕ′ that is a disjunction of formulas of the
form (∧

k

∀x̃′k.
∨

`

Kk`(x̃
′
k, z̄)

)
∧
(∧

i

∃ỹ′i.
∧

j

Lij(ỹ
′
i, z̄)

)
∧
∧

r

Mr(z̄) ,

where the Kk` and the Lij are literals whose atoms are renamed variants of
atoms that occur in ϕ and contain at least one variable from some x̃′k or ỹ′i. The
Mr are literals whose atoms occur in ϕ and contain exclusively variables from z̄.
Moreover, any two sets x̃′k1 , x̃

′
k2

with k1 6= k2, ỹ′i1 , ỹ
′
i2

with i1 6= i2, and x̃′k, ỹ
′
i

are separated in ϕ′. By inspection of the transformations performed in the proof
of Lemma 4, we observe that Conditions (1) and (2) are preserved such that they
also apply to the sets x̃′k and ỹ′i with respect to variables x∗k and y∗i , respectively.

This enables us to regroup the disjunctions and conjunctions in the con-
stituents of ϕ′ such that each of these disjuncts has the form

∧

k′

(
∀x̃′k′ .

(∨

`′

Kk′`′(x̃
′
k′ , z̄)

)
∨ [¬]P (x∗k′)

)

∧
∧

i′

(
∃ỹ′i′ .

(∧

j′

Li′j′(ỹ
′
i′ , z̄)

)
∧ [¬]P (y∗i′)

)

∧
(∧

r′

Mr′(z̄)
)
∧
∧

q

[¬]P (z∗q ) ,

where the literals Kk′`′ , Li′j′ , and Mr′ do not contain the predicate symbol P .
The variables z∗q stem from z̄. Moreover, we replace disjuncts (conjuncts) which
contain two literals P (v) and ¬P (v) with the logical constant true (false).
Having this, it only remains to regroup conjuncts and distribute the existential
quantifier ∃P over the topmost disjunction, in order to obtain the formula
advertised in the lemma. ut

The formula resulting from the lemma gives us the right starting point for the
elimination of the second-order quantifier ∃P from a formula. Before we elaborate
on this, we present the lemma that we shall employ for elimination.

Lemma 7 (Basic elimination lemma, see [11] and [2]). Let P be a unary
predicate symbol and let χ, η be first-order formulas in which P does not occur.
Then, ∃P.

(
∀x. χ∨P (x)

)
∧
(
∀x. η∨¬P (x)

)
is semantically equivalent to ∀x. χ∨η.

Consider a formula ϕ := ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn.ψ(x̄, ȳ, z̄) as described in Lemma 6.
Moreover, let there be sets x̃1, . . . , x̃m1 and ỹ1, . . . , ỹm2 and a unary predicate
symbol P as described in the lemma. Then, Lemma 6 stipulates the existence of
a formula equivalent to ϕ that is a disjunction of formulas of the form

θ(z̄) ∧ ∃P.
∧

k1

(
∀x̃′k1 . χk1(x̃′k1 , z̄) ∨ P (x∗k1)

)
∧
∧

k2

(
∀x̃′k2 . χ′k2(x̃′k2 , z̄) ∨ ¬P (x∗k2)

)

∧
∧

i1

(
∃ỹ′i1 . ηi1(ỹ′i1 , z̄) ∧ P (y∗i1)

)
∧
∧

i2

(
∃ỹ′i2 . η′i2(ỹ′i2 , z̄) ∧ ¬P (y∗i2)

)

∧
∧

`1

P (z∗`1) ∧
∧

`2

¬P (z∗`2) ,

74



in which we can eliminate the quantifier ∃P as follows. The shape of the above
formula is very similar to what Behmann called “Eliminationshauptform” in [2]
(see [11] for a modern exposition of Behmann’s results related to quantifier
elimination). With the next two transformation steps we come closer to the
syntactic shape of the “Eliminationshauptform”. First, we narrow the scope of
the first-order quantifiers that do not bind variables x∗k or y∗i .

θ(z̄) ∧ ∃P.
∧

k1

(
∀x∗k1 .

(
∀(x̃′k1 \{x∗k1}). χk1(x̃′k1 , z̄)

)
︸ ︷︷ ︸

=: χ∗k1

∨P (x∗k1)
)

∧
∧

k2

(
∀x∗k2 .

(
∀(x̃′k2 \{x∗k2}). χk2(x̃′k2 , z̄)

)
︸ ︷︷ ︸

=: χ∗k2

∨¬P (x∗k2)
)

∧
∧

i1

(
∃y∗i1 .

(
∃(ỹ′i1 \{y∗i1}). η′i1(ỹ′i1 , z̄)

)
︸ ︷︷ ︸

=: η∗i1

∧P (y∗i1)
)

∧
∧

i2

(
∃y∗i2 .

(
∃(ỹ′i2 \{y∗i2}). η′i2(ỹ′i2 , z̄)

)
︸ ︷︷ ︸

=: η∗i2

∧¬P (y∗i2)
)

∧
∧

`1

P (z∗`1) ∧
∧

`2

¬P (z∗`2)

Next, we treat the subformulas χ∗k and η∗i as indivisible units, move universal
quantifiers outwards that occur in different conjuncts (and merge them while
doing so), pull first-order existential quantifiers outwards (without merging them),
and rename the variables that are bound by the moved quantifiers. Moreover, we
reorder the conjunctions in the scope of the quantifier blocks ∃ū and ∃v̄.

θ(z̄) ∧ ∃P.
(
∀x.

(∧

k1

χ∗k1
[
x∗k1/x

])

︸ ︷︷ ︸
=: χ∗1(x,z̄)

∨P (x)
)

∧
(
∀x.

(∧

k2

χ∗k2
[
x∗k2/x

])

︸ ︷︷ ︸
=: χ∗2(x,z̄)

∨¬P (x)
)

∧
(
∃ū.

(∧

i1

η∗i1
[
y∗i1/ui1

])

︸ ︷︷ ︸
=: η∗1 (ū,z̄)

∧
∧

i1

P (ui1)
)

∧
(
∃v̄.

(∧

i2

η∗i2
[
y∗i2/vi2

])

︸ ︷︷ ︸
=: η∗2 (v̄,z̄)

∧
∧

i2

¬P (vi2)
)

∧
(∧

`1

P (z∗`1) ∧
∧

`2

¬P (z∗`2)
)
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In what follows we treat the χ∗1, χ
∗
2 and η∗1 , η

∗
2 as indivisible units. One more step

remains to establish a kind of “Eliminationshauptform”. We move the quantifier
blocks ∃ū and ∃v̄ outwards over the ∃P , reorder the conjuncts within the scope of
∃P , and narrow the scope of ∃P such that it does not contain the η∗1 , η

∗
2 anymore.

Moreover, we make use of Lemma 2 and turn the literals P (ui1) into subformulas
∀x. x = ui1 → P (x). We proceed analogously with the literals ¬P (vi2), P (z∗`1),
and ¬P (z∗`2).

θ(z̄) ∧ ∃ūv̄. η∗1(ū, z̄) ∧ η∗2(v̄, z̄)

∧ ∃P.
(
∀x. χ∗1(x, z̄) ∨ P (x)

)
∧
(
∀x. χ∗2(x, z̄) ∨ ¬P (x)

)

∧
(
∀x.

∧

i1

(
x = ui1 → P (x)

))
∧
(
∀x.

∧

i2

(
x = vi2 → ¬P (x)

))

∧
(
∀x.

∧

`1

(
x = z∗`1 → P (x)

))
∧
(
∀x.

∧

`2

(
x = z∗`2 → ¬P (x)

))

At this point, the subformula staring with ∃P is in “Eliminationshauptform”.
After converting the implications into disjunctions and factoring out the [¬]P (x),
we arrive at a formula from which the second-order quantifier ∃P can be eliminated
immediately via the basic elimination lemma.

θ(z̄) ∧ ∃ūv̄. η∗1(ū, z̄) ∧ η∗2(v̄, z̄)

∧ ∃P.
(
∀x.

(
χ∗1(x, z̄) ∧

∧

i1

x 6= ui1 ∧
∧

`1

x 6= z∗`1
)
∨ P (x)

)

∧
(
∀x.

(
χ∗2(x, z̄) ∧

∧

i2

x 6= vi2 ∧
∧

`2

x 6= z∗`2
)
∨ ¬P (x)

)

Using Lemma 7, we eliminate the quantifier ∃P and obtain the following result.

θ(z̄) ∧ ∃ūv̄. η∗1(ū, z̄) ∧ η∗2(v̄, z̄)

∧ ∀x.
((
χ∗1(x, z̄) ∧

∧

i1

x 6= ui1 ∧
∧

`1

x 6= z∗`1
)

∨
(
χ∗2(x, z̄) ∧

∧

i2

x 6= vi2 ∧
∧

`2

x 6= z∗`2
))

In order to convert this result into a somewhat nicer form, we proceed as described
in the proof of Lemma 19 in [11]. In particular, we remove the disequations x 6= y,
where x is a universally quantified variable. To this end, we first distribute
disjunction over conjunction within the scope of the quantifier ∀x.

θ(z̄) ∧ ∃ūv̄. η∗1(ū, z̄) ∧ η∗2(v̄, z̄)

∧ ∀x.
(
χ∗1(x, z̄) ∨ χ∗2(x, z̄)

)

∧
((∧

i2

x 6= vi2 ∧
∧

`2

x 6= z∗`2
)
∨ χ∗1(x, z̄)

)
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∧
((∧

i1

x 6= ui1 ∧
∧

`1

x 6= z∗`1
)
∨ χ∗2(x, z̄)

)

∧
((∧

i1

x 6= ui1 ∧
∧

`1

x 6= z∗`1
)
∨
(∧

i2

x 6= vi2 ∧
∧

`2

x 6= z∗`2
))

Next, we factor the subformulas χ∗1, χ∗2, and
∧
i2
x 6= vi2 ∧

∧
`2
x 6= z∗`2 into the

conjunctions with which they are disjunctively connected. Moreover, we turn the
resulting disjunctions into implications.

θ(z̄) ∧ ∃ūv̄. η∗1(ū, z̄) ∧ η∗2(v̄, z̄)

∧ ∀x.
(
χ∗1(x, z̄) ∨ χ∗2(x, z̄)

)

∧
(∧

i2

(
x = vi2 → χ∗1(x, z̄)

)
∧
∧

`2

(
x = z∗`2 → χ∗1(x, z̄)

))

∧
(∧

i1

(
x = ui1 → χ∗2(x, z̄)

)
∧
∧

`1

(
x = z∗`1 → χ∗2(x, z̄)

))

∧
(∧

i1

(
x 6= ui1 →

(∧

i2

x 6= vi2 ∧
∧

`2

x 6= z∗`2
)))

∧
(∧

`1

(
x 6= z∗`1 →

(∧

i2

x 6= vi2 ∧
∧

`2

x 6= z∗`2
)))

Finally, we apply Lemma 2 in a reverse fashion to remove the universal variable
x from some of the subformulas.

θ(z̄) ∧
(
∀x. χ∗1(x, z̄) ∨ χ∗2(x, z̄)

)

∧ ∃ūv̄. η∗1(ū, z̄) ∧ η∗2(v̄, z̄)

∧
∧

i2

χ∗1(vi2 , z̄) ∧
∧

`2

χ∗1(z∗`2 , z̄) ∧
∧

i1

χ∗2(ui1 , z̄) ∧
∧

`1

χ∗2(z∗`1 , z̄)

∧
∧

i1

∧

i2

ui1 6= vi2 ∧
∧

i1

∧

`2

ui1 6= z∗`2 ∧
∧

`1

∧

i2

z∗`1 6= vi2 ∧
∧

`1

∧

`2

z∗`1 6= z∗`2

Consequently, we get the following result.

Theorem 8. Let ϕ := ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ(x̄, ȳ, z̄) be a relational first-order
formula in which ψ is quantifier free and the sets x̄ := x̄1 ∪ . . . ∪ x̄n and
ȳ := ȳ1 ∪ . . . ∪ ȳn are separated. We assume that every variable occurring in the
quantifier prefix and in z̄ also occurs in the matrix ψ.

Let x̃1, . . . , x̃m1 ⊆ x̄ and ỹ1, . . . , ỹm2 ⊆ ȳ be partitions of the sets x̄ and
ȳ, respectively, such that the x̃1, . . . , x̃m1 , ỹ1, . . . , ỹm2 are nonempty, pairwise
disjoint, and pairwise separated in ϕ. Let P be a unary predicate symbol satisfying
the following conditions:

(1) For every set x̃i, 1 ≤ i ≤ m1, there is at most one variable x∗i ∈ x̃i for which
ϕ contains atoms P (x∗i ).
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(2) For every set ỹi, 1 ≤ i ≤ m2, there is at most one variable y∗i ∈ ỹi for which
ϕ contains atoms P (y∗i ).

Then ∃P.ϕ is equivalent to some first-order formula ϕ′ that is a finite dis-
junction of formulas of the form

θ(z̄) ∧
(
∀x. χ∗1(x, z̄) ∨ χ∗2(x, z̄)

)

∧ ∃ūv̄. η∗1(ū, z̄) ∧ η∗2(v̄, z̄)

∧
∧

i2

χ∗1(vi2 , z̄) ∧
∧

`2

χ∗1(z∗`2 , z̄) ∧
∧

i1

χ∗2(ui1 , z̄) ∧
∧

`1

χ∗2(z∗`1 , z̄)

∧
∧

i1

∧

i2

ui1 6= vi2 ∧
∧

i1

∧

`2

ui1 6= z∗`2 ∧
∧

`1

∧

i2

z∗`1 6= vi2 ∧
∧

`1

∧

`2

z∗`1 6= z∗`2

where all free predicate symbols and all free first-order variables also occur freely
in ∃P.ϕ. Moreover, all the ui1 are variables from ū, the vi2 are from v̄, and the
z∗`1 and z∗`2 are certain free variables from z̄.

Example 9. Consider the sentence ϕ := ∃P.∀x1∃y∀x2. R(x1, x2) ↔ P (y). We
transform it into the equivalent sentence

∃P.
(
∀x1x2x3. R(x1, x2) ∨ ¬R(x1, x3)

)

∧
((
∀x1x2. R(x1, x2)

)
∨
(
∃y.¬P (y)

))

∧
((
∀x1x2.¬R(x1, x2)

)
∨
(
∃y. P (y)

))
.

For the sake of simplicity, we narrow the scope of ∃P so that it only stretches
over the last two conjuncts, which we thereafter transform into a disjunction of
conjunctions. This yields

(
∀x1x2x3. R(x1, x2) ∨ ¬R(x1, x3)

)

∧
(
∃P.

((
∀x1x2. R(x1, x2)

)
∧
(
∃y. P (y)

))

∨
((
∀x1x2.¬R(x1, x2)

)
∧
(
∃y.¬P (y)

))

∨
((
∃y. P (y)

)
∧
(
∃y.¬P (y)

)))
.

Since we can distribute the quantifier ∃P over disjunction, it is enough to eliminate
∃P in the following three formulas:

(1) ∃P.∃y. P (y)
|=| ∃y.∃P.∀x.

(
x 6= y ∨ P (x)

)
∧
(
true ∨ ¬P (x)

)

|=| ∃y∀x. x 6= y ∨ true
|=| true

(2) ∃P.∃y.¬P (y)
|=| ∃y.∃P.∀x.

(
x 6= y ∨ ¬P (x)

)
∧
(
true ∨ P (x)

)

|=| ∃y∀x. x 6= y ∨ true
|=| true
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(3) ∃P.
(
∃y. P (x)

)
∧
(
∃y.¬P (x)

)

|=| ∃y1y2.∃P.
(
∀x. x 6= y1 ∨ P (x)

)
∧
(
∀x. x 6= y2 ∨ ¬P (x)

)

|=| ∃y1y2∀x. x 6= y1 ∨ x 6= y2

|=| ∃y1y2. y1 6= y2

Hence, ϕ is semantically equivalent to

(
∀x1x2x3. R(x1, x2) ∨ ¬R(x1, x3)

)

∧
((
∀x1x2. R(x1, x2)

)
∨
(
∀x1x2.¬R(x1, x2)

)
∨
(
∃y1y2. y1 6= y2

))
.

Several remarks regrading the shape of the resulting formulas in Theorem 8
are in order. (a) Although the elimination of ∃P potentially introduces new
(dis)equations, these only involve existentially quantified and free variables. This
means, the separation conditions are not violated by these newly introduced
equations. Hence, the introduction of these atoms in one elimination step does not
pose an obstacle to the iterated elimination of multiple existential second-order
quantifiers. (b) As the subformulas χ∗1(vi2 , z̄) may contain universal quantifiers
∀w and atoms R(. . . w . . . vi2 . . .), the separateness condition regarding universally
and existentially quantified variables might be violated when introducing the
subformulas χ∗1(vi2 , z̄) and, similarly, the subformulas χ∗2(ui1 , z̄). (c) Perhaps more
severely, the introduction of atoms R(. . . w . . . vi2 . . .) may create a connection
between sets x̃k and ỹi, if w ∈ x̃k and vi2 ∈ ỹi. Then, the sets x̃k and ỹi are not
separated anymore in formulas that contain the new atom. Similar effects might
affect pairs x̃k, x̃k′ and ỹi, ỹi′ . Hence, if we were to predict whether elimination of
both second-order quantifiers in a formula ∃Q∃P.ϕ is possible using the methods
outlined above, we would need to predict which sets of variables will be separated
in the formula that results from eliminating ∃P .

The above observations seem to make it hard to formulate a version of The-
orem 8 that clearly facilitates iterative elimination of multiple quantifiers. On
the other hand, it might be worthwhile to base the theorem on a generalization
of the separated fragment that still has a decidable satisfiability problem. The
generalized Bernays–Schönfinkel–Ramsey fragment (GBSR) is described in [9].
In GBSR sentences universally and existentially quantified variables may occur
together in atoms under certain restrictions. Roughly speaking, if the existential
variable is quantified outside the scope of the quantifier binding the universal
variable, the two may occur jointly in atoms. Every GBSR sentence can be trans-
formed into an equivalent sentence that is a finite disjunction of formulas of the
form ∃ȳ.∧i ∀x̄i.

∨
j Lij(ȳ, x̄i) where the Lij are literals. Hence, Observation (b)

might cause fewer troubles in the GBSR setting.
Another interesting aspect is that the symmetry regarding the two Condi-

tions (1) and (2) in Theorem 8 is perhaps more restrictive than necessary. It
seems that Condition (2) is obsolete, as the resulting formula in Lemma 6 could
be generalized in such a way that the restriction imposed by (2) is not satisfied
but second-order quantifiers can still be eliminated.

Altogether, it is subject to future investigations whether Theorem 8 can be
enhanced to facilitate iterative elimination of multiple quantifiers.
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5 Discussion

We have developed a preliminary result regarding the elimination of second-order
quantifiers in a logic fragment that extends the monadic first-order fragment
without equality and the Bernays–Schönfinkel–Ramsey fragment.

Notice that the elimination of ∃P from a formula ∃P.ϕ, where ϕ is a monadic
first-order formula without equality, constitutes a special case of the method
shown in the present note. The reason is that, if every atom contains at most one
variable, then variables cannot occur jointly in atoms. Hence, given a monadic
first-order formula ϕ without equality, any two singleton sets {x}, {y} of variables
are separated in ϕ. Consequently, any formula ∃P.ϕ with monadic ϕ satisfies the
prerequisites of Theorem 8, if we choose the sets x̃k and ỹi to be singleton sets
covering all the variables that occur bound in ϕ.

The presented result can only be a first step towards the formulation of a
novel fragment of second-order logic that (a) extends the monadic second-order
fragment, (b) is based on the concept of separateness of certain variables at the
atomic level, (c) admits elimination of second-order quantifiers, also in an iterated
fashion. The discussion following Theorem 8 already makes clear that a lot remains
to be done, in order to achieve this goal. Furthermore, there seems to be no good
reason to confine ourselves to the elimination of quantifiers over unary predicates,
but aim for higher arities as well. Moreover, (b) can be weakened by taking boolean
structure into account instead of only concentrating on the atoms in a given
formula. For example, the formula ∃P.∀xy. P (x)∧

(
P (y)∨R(x, y)

)
does not satisfy

the prerequisites of Theorem 8, as {x} and {y} are not separated and the set
{x, y} contains two variables that occur as arguments of P . However, the theorem
can be applied to the equivalent formula ∃P.∀x1x2y. P (x1) ∧

(
P (y) ∨R(x2, y)

)
,

as the sets {x1} and {x2, y} are separated and x2 does not occur as argument of
P . As a third possible improvement, equations between universal and existential
variables should be allowed in a less restrictive way than they are in the present
note. To this end, some of the methods that are used to handle equations during
quantifier elimination in the monadic second-order fragment might be applicable
in the more general setting as well.

In the present note we concentrate on transforming the input formulas syntac-
tically until the basic elimination lemma (Lemma 7) is applicable. In future work,
it is of course advisable to also try other known approaches, such as the ones
described in [4], e.g. the SCAN algorithm, the DLS* algorithm, hierarchical theo-
rem proving, or variations thereof. The unmodifed DLS algorithm, as presented
in [4], fails on the logic fragment described in Theorem 8 in the present note.
In particular, the preprocessing phase is not always able to transform the input
into the required form, although this is possible in principle. This is already true
for monadic sentences such as ϕ := ∃P.∀x∃y.

(
¬P (x) ∨ P (y)

)
∧
(
P (x) ∨ ¬P (y)

)
,

which is equivalent to ∃P.∀x∃y. P (x) ↔ P (y). Conradie gave a necessary and
sufficient condition on the syntax of formulas in which DLS can successfully elim-
inate an existential second-order quantifier [3]. It turns out that the occurrences
of P in ϕ violate Conradie’s condition in many ways. (Every occurrence of P is
in malignant conjunctions and disjunctions and inside a ∀∃-scope.) Nonetheless,
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it is not hard to see that there is a first-order formula that is equivalent to ϕ,
namely true. A slight modification of the DLS preprocessing step in the spirit of
Claim I, used in the proof of Lemma 4, might already solve this particular issue.
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