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In this talk I give an overview of the work on algorithmic approaches to corre-
spondence and canonicity for non-classical logics in which I have been involved
over the past decade, and which has evolved into the research programme now
being called ‘unified correspondence’. In the first part I will discuss work that
was a collaboration with Valentin Goranko and Dimiter Vakarelov, while the
second part details work with Alessandra Palmigiano and a number of other
collaborators.

Sahlqvist Theory. As is well known, every modal formula defines a second-
order property of Kripke frames. Sahlqvist’s famous theorem [31] gives a syn-
tactic definition of a class of modal formulas, the Sahlqvist formulas, each of
which defines an first-order class of frames and is canonical. Over the years,
many extensions, variations and analogues of this result have appeared, includ-
ing alternative proofs in e.g. [32], generalizations to arbitrary modal signatures
[30], variations of the correspondence language [28, 1], Sahlqvist-type results for
hybrid logics [4], various substructural logics [26, 18, 21], mu-calculus [2], and en-
largements of the Sahlqvist class to e.g. the inductive formulas of [24], to mention
but a few. Another natural approach to the modal correspondence problem is to
apply second-order quantifier elimination algorithms to the frame-translations of
modal formulas. It has been shown, for example, that the algorithms SCAN [20]
and DLS [17] both succeed in computing first-order equivalents for all Sahqvist
formulas [23, 5].

SQEMA. SQEMA is an acronym for Second-Order Quantifier elimination in
Modal logic using Ackernann’s Lemma. As this would suggest, SQEMA is related
to DLS in its use of the Ackermann lemma as the engine for eliminating predicate
variables and of equivalence preserving rewrite-rules to prepare formulas for
the application of the former. A major difference, however, is that SQEMA is
specifically targeted at propositional modal logics which it does not translate into
second-order logic, but manipulates directly. However, modal logic itself cannot
express the required equivalences, formulated as rewrite rules, so an enriched
hybrid language with inverse (temporal) modalities is required. SQEMA is strong
enough to compute first-order correspondents for at least all inductive formulas.
Perhaps more surprisingly, it is possible to extract a proof of canonicity (in
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the form of d-persistence) for every formula on which SQEMA succeeds [11].
Schmidt has introduced another algorithm based on Ackermann’s Lemma which
is optimized for implementation purposes [33].

Extensions of SQEMA. SQEMA extends in an unproblematic way to polyadic
(purely) modal languages and hybrid languages [12]. Extensions using a recur-
sive version of the Ackermann lemma enable SQEMA to find correspondents in
first-order logic with least fixed points for some non-elementary modal formulas
like the Löb formula [10]. Relaxing the syntactic requirement of positivity in the
Ackermann rule to monotonicity, yields a more general ‘semantic’ algorithm [9].
Including various substitution rules results in an extension of SQEMA [13] that
can handle all Vakaralov’s complex formulas [34].

ALBA. SQEMA and its variations are applicable to (extensions of) modal log-
ics based on classical propositional logic. The distributive modal logic of Gehrke,
Nagahashi and Venema [22] is similar to intuitionistic modal logic but lacks the
implication, and has four unary modalities, which can be though of as ‘possi-
bly’, ‘necessarily’, ‘possibly not’ and ‘necessarily not’. Distributive lattices with
operators provide the algebraic semantics for this logic which a discrete duality
links to Kripke frames enriched with partial ordering relations. The ALBA algo-
rithm [14] (an acronym for Ackermann Lemma Based Algorithm) is a successor
of SQEMA which is adapted to this setting. The loss of classical negation has
far reaching consequences requiring major changes and making ALBA a dis-
tinctively different algorithm from SQEMA. Simultaneously, the move to this
more general environment helps to clarify the essentially order-theoretic and al-
gebraic nature of the properties underlying Salhqvist’s theorem and algorithms
like SQEMA and ALBA.

Unified Correspondence. These insights are explored and developed in [8]
as a framework for unifying disparate correspondence and canonicity results in
the literature and as a methodology for formulating and proving new ones in a
wide range of logics. One of the most general instances of this is a Sahlqvist-style
result for logics with algebraic semantics based on possibly non-distributive lat-
tices with operators exhibiting a wide range of order-theoretic behaviours [15].
Giving up distributivity results in the original ALAB algorithm’s strategy be-
coming unsound in significant aspects. This calls for a new approach where
formulas are no longer decomposed connective-by-connective, but where their
order-theoretic properties (as term functions on algebras) determine the appli-
cability of rules which extract subformulas directly. This framework covers many
well known logics including the Full Lambek and Lambek calculus, (co- and bi-)
intuitionistic multi-modal logic, Prior’s MIPC and Dunn’s Positive Modal Logic.
Furthermore, normality of modal operators is by no means a prerequisite for the
unified correspondence approach to work, as is shown in [29].
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Extensions of ALBA. Although the results for possibly non-distributive log-
ics outlined in the previous paragraph are very general, the particular features of
many logics require special treatment and therefore customised versions of ALBA
and bespoke realizations of the unified correspondence paradigm. These include
mu-calculi, already studied from a Sahlqvist-theoretic perspective in [2], where
the presence of fixed-point binders significantly complicates the order theoretic
considerations and requires special rules [6, 7]. Hybrid logics pose no problem as
far as correspondence is concerned, since nominals and the other typical syn-
tactic machinery do not introduce second-order quantification, but canonicity
and completeness results require innovative treatment [16]. Correspondence for
many-valued modal logic is easy to obtain once ALBA is seen to be applicable
via an appropriate algebraic duality [3].

Other Applications of Unified Correspondence. Although the original
purpose of SQEMA and ALBA is to eliminate second-order quantifiers, the fact
that they both also guarantee canonicity already indicates that their usefulness
goes beyond this. Other such applications include the dual characterizations of
classes of finite lattices [19], the identification of the syntactic shape of axioms
which can be translated into structural rules of a proper display calculus [25]
and of internal Gentzen calculi for the logics of strict implication [27].
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