Mixing Music as Linked Data: SPARQL-based
MIDI Mashups

Rick Meerwaldt!, Albert Merofio-Pefiuela', and Stefan Schlobach®

Department of Computer Science, Vrije Universiteit Amsterdam, NL
rickmeerwaldt@hotmail.com, {albert.merono,k.s.schlobach}@vu.nl

Abstract. A large number of datasets about music are available today
in the Linked Open Data cloud, but most of them only describe music
metadata. Datasets representing music notation (i.e. fine-grained musical
transcriptions) are scarce, and hence musicians do not have the possibil-
ity to exploit Web technologies to their full potential. In particular, this
situation hampers the musician’s process of creating mashups, new mu-
sical compositions produced by remixing existing tracks. Recently, the
MIDI Linked Data cloud has interlinked and published more than 300K
MIDI songs as Linked Data. In this paper, we investigate the use of Se-
mantic Web technology to produce musical mashups, and we present a
framework to generate them systematically. We evaluate our approach
with SPARQL-DJ, a prototype implementation that can be used to find,
match, select and synchronize existing MIDI Linked Data, mix them,
and create new musical content.

Keywords: MIDI, mashups, SPARQL, MIDI Linked Data

1 Introduction

Linked Data provides a way of ‘publishing and connecting structured data on
the Web’ [5], effectively allowing to gain insight and value from data by enabling
connections between data sets [§]. The four principles of Linked Data emphasize
the use of the Resource Description Framework (RDF) to link data on the Web
[3]. Following these principles, the Linked Open Data cloud has emerged on
the Web as a vast amount of data of more than 100 billion RDF statements
[2]. SPARQL, the RDF query language [11], is commonly used to retrieve and
manipulate these data.

Music plays an important role in the Linked Open Data cloud, with large
connected musical databases such as MusicBrainz, BBC Music and MySpace.
However, most of these linked datasets only deal with music metadata: bands,
musicians, song titles, albums, dates, firms, and so on. Recently though, there
have been efforts to represent music itself as Linked Data. Music itself can be
defined as music represented in a data structure in which information about the
notes, rhythm, volume, instruments, etc. are stored. By representing music as
Linked Data, it may be possible to gain a better understanding of music and

88 A. Adamou, E. Daga and L. Isaksen (eds.)

gain more insight in the semantics of music [9]. A possible way of representing
music as Linked Data is by converting digital music in MIDI format to RDF,
using the MIDI2RDF suite of converters [9]. MIDI (Musical Instrument Digi-
tal Interface) is a protocol for the interchange of musical information between
musical instruments. It contains information about the music itself, and it can
be compared to music scores. When MIDI files are converted to RDF they can
be shared on the Web as Linked Data, and queried at a fine-grained level using
SPARQL. The development of MIDI2RDF has lead to the conversion and linkage
of large collections of MIDI music, giving birth to the MIDI Linked Data Cloud*
[10]. The MIDI Linked Data Cloud connects 308,443 MIDI songs by representing
their tracks, events, and notes as 10,215,557,355 RDF triples.

However, musicians, who are the key stakeholders in music as its genuine
creators, can hardly take any advantage of this wealth of linked musical infor-
mation. Concretely, many stages of the creative process that deal with remixing
eristing music to make new, genuine compositions could take advantage of this
structured and interoperable representation. To narrow down the extensive pos-
sibilities within music creativity, we focus on mashups, a particular kind of music
composition created by blending two or more pre-recorded songs. In this paper,
we propose a framework and an implementation that supports the creation pro-
cess of MIDI mashups within the Linked Data ecosystem, just by using RDF
and SPARQL. We feed our pipeline with Linked Data coming from the MIDI
Linked Data cloud, and we use these to create new mashups by combining ex-
isting songs, tracks and notes as Linked Data that can be played as MIDI. The
lack of scientific research on the subject of composing digital music mashups is
an added challenge in this process. To the best of our knowledge, no previous
attempt has been made to compose digital music mashups by using only data
and methods from the Semantic Web. Concretely, our contributions are:

— A framework for the creative process of composing digital music mashups,
fitting both MIDI and Linked Data best practices (Section ;

— A set of SPARQL query templates and queries to systematically find, filter,
and select existing MIDI music represented as Linked Data, and blend them
together as realistic mashups (Section ;

— SPARQL-DJ, an implementation that uses these SPARQL queries to auto-
mate the process of creating MIDI mashups using MIDI Linked Data (Section
[.1);

— A discussion on key features that make these mashups work in terms of
metric and harmony; and on future extensions (Sections 5] and [6).

2 Related Work

There have been various attempts in the domain of mashup automation. Au-
toMashUpper, for example, is described as an ‘interactive system for creating
music mashups by automatically selecting and mixing multiple songs together’

Uhttps://midi-1d.github.io

https://midi-ld.github.io

2nd Workshop on Humanities in the Semantic Web (WHiSe 2017)

[6]. AutoMashUpper determines the mashability of certain songs. Mashability
is defined as how suitable multiple songs are to be a mashup together based on
harmonic similarity. Mashh! is an online tool where people can find songs and
loops and where they can mix their own mashups [I6]. It is stated that mashups
have gained popularity because music is ubiquitous on the Internet. It seeks for
an answer to the question if a new form of music can be proposed.

A formal way of dealing with information about music on the Semantic Web
is introduced by the Music Ontology [13]. Types of information described by
this ontology are for example editorial, cultural and acoustic information of mu-
sic. It is discussed that an improvement of the Music Ontology could be to
create a score ontology. This score ontology could grant the possibility to deal
with symbolic music notation or abstract composition rules. Furthermore, the
timeline ontology represents a ‘coherent backbone for addressing temporal infor-
mation’. Whereas the chord ontology is proposed as a highly structured textual
representation of chords [7]. It is stated, within the music information retrieval
community, that much effort is spent on automatically describing the content of
MIDI. Nevertheless, there is no standard methodology for chord annotation.

To be able to derive insight in music itself, music should be represented in
a meaningful way. MusicNet is a large labeled dataset containing music [15].
It could be a source for research of machine learning methods for research in
music. The prediction of nodes in recordings of music is described by means of
a classification task on this dataset. By using these predictions, it is possible to
transfer music to music scores.

MIDI is used as standard for the musical notation in this paper [I4]. In the
basis, a song in MIDI is called a pattern. A pattern consists of one or more
tracks. A track can be most easily compared to a sheet of nodes that can be
played by an instrument. These nodes are called events. However, these events
describe more than only what nodes are played. A various number of different
events exist to specify when a node is being played, when it is stopped being
played, what the tempo of an event is and when the track has reached its end.

Besides MIDI there are various different solutions to musical notations. Some
examples of this are MusicXML [I], the Notation Interchange File Format?
(NIFF) and the Music Encoding Initiative® (MEI). MusicXML and NIFF rep-
resent musical notations, whereas MEI is a formal system for the encoding of
musical documents.

There has been an ongoing effort in linking databases containing audio, meta-
data and musical notation in the form of music scores or MIDI. The linking of
those databases could lead to a better music integration and retrieval. The Lakh
MIDI dataset [12] is a dataset containing 176,581 unique MIDI files. 45,129 of
these MIDI files have been matched to entries in the Million Song Dataset [4].
The Million Song Dataset is a dataset that contains metadata and audio features
for a million songs. The goal of the Lakh MIDI dataset is to facilitate large-scale
music information retrieval.

2http://www.music—notation.info/en/formats/NIFF.html
3http://music-encoding.org/

89

http://www.music-notation.info/en/formats/NIFF.html
http://music-encoding.org/

90 A. Adamou, E. Daga and L. Isaksen (eds.)

The possibilities of representing MIDI as Linked Data have been recently in-
vestigated [9]. Consequently, the MIDI2RDF suite of tools? has been developed,
which allows for the lossless conversion of digital music in MIDI format to RDF
and back. Also, the MIDI Linked Data cloud is being introduced [I0]. More than
300,000 interconnected MIDI files in the form of Linked Data are included in
this dataset. There is also an introduction of some applications in the domain of
musicology and music information retrieval. An interesting example of this is the
Linked-Data DJ. A potential usage of the MIDI Linked Data Cloud could be to
use queries as a means for mixing music, providing possibly for a new approach
of mixing and composing music. It is also stated that SPARQL can be used to
filter on musical properties, with examples as keys, harmony and tempo.

3 A Framework for Making MIDI Linked Data Mashups

3.1 The Mashup Process

In the standard definition of a mashup, the requirements are limited. On Mu-
sicBrainz® a mashup is defined as a mix in which two or more songs are playing
simultaneously. According to Wikipedia® a mashup is a song created out of pieces
of two or more songs. However, just adding two songs to each other will generally
not result in a mashup that sounds good. To create a genuine mashup, we iden-
tify the steps shown in Table [1] after consulting a number of sources”. According
to Spin Academy, an online DJ school, the key skills to be mastered in order to
make a mashup are beatmatching and mizing in key (harmonic mixing). Beat-
matching is a technique for matching the beats per minute (BPM) of different
tracks to synchronize them, by adjusting the tempos of the individual tracks.
Harmonic mixing is the process of getting two tracks in the same or relative
keys, so there are no dissonant tones between the tracks when they are mixed.

Process In scope
1 Make an intro No
2 Import songs Yes
3 Find the BPM and synchronize the songs (beatmatching) Yes
4 Get the songs into key (harmonic mizing) No
5 Mix instrumentals Yes
6 Mix vocals No
7 Add effects No
8 Make an outro No

Table 1. The identified steps in the mashup generation process

4https://github.com/midi—ld/midindf/

5https://wiki.musicbrainz.org/Terminology

6https://en.wikipedia.org/wiki/Mashup,(music)

"See http://spin-academy.com/how- to-make-a-mashup/}, https://www.youtube.com/watch?
v=nbRauP- xyLM&t=2s, and |https://www.reddit.com/r/mashups

https://github.com/midi-ld/midi2rdf/
https://wiki.musicbrainz.org/Terminology
https://en.wikipedia.org/wiki/Mashup_(music)
http://spin-academy.com/how-to-make-a-mashup/
https://www.youtube.com/watch?v=nbRauP-xyLM&t=2s
https://www.youtube.com/watch?v=nbRauP-xyLM&t=2s
https://www.reddit.com/r/mashups

2nd Workshop on Humanities in the Semantic Web (WHiSe 2017)

10. Evaluate
4‘ resull H 11. Mashup

9. Convert

6. Evaluate
result

5. Convert
RDF to MIDI

RDF to MIDI

A

3. Search for 8. Combine
1. Search for tze'rr?ezr\c/';hflzrs song 2 with 4. Combine 7;5::::':&“ songs, use
song 1 (Q1) oF sopng 1(Q2) same tempo songs (Q4) of a song (Q5) desired

values (Q3) tracks (Q6)

Fig. 1. The mashup creation framework

We focus on making mashups with a synchronized beat (step 3 of Table .
This is done by using SPARQL queries on MIDI Linked Data. Before this can
be done, we need the following queries: one for constructing a graph that can
be converted to a MIDI file; on for adding multiple songs together (step 2 of
Table |1} importing songs); some for filtering certain tracks of songs (mixing of
instrumentals, step 5 of Table [1)). Beat synchronization in this research is done
by querying for two songs that have the same tempo. All these are covered in the
remaining of Section [} and in Section [We leave steps 1, 6, 7 and 8 of Table
[to future work, since they are not considered central to distinguish a mashup
from something that is not.

3.2 The Framework

After conducting research on how to make a mashup using SPARQL queries,
a framework was constructed. The framework can be used as guidance in the
generation of a mashup. It comes in the form of a diagram which shows a step-
by-step use case to generate a mashup (see Figure . The framework refers
to several steps where queries need to be used (Q1-Q6). For these steps the
SPARQL endpoint for the MIDI Linked Data cloud® need to be used.

The queries that are referred to are used to get values for certain variables
that are necessary to make a beat-synchronous mashup. Values have to be found
for patterns, tempo values and the desired tracks of multiple songs. All the re-
quired queries can be found on the SPARQLmashup GitHub page®. This GitHub
page contains everything there is to the framework. It contains the framework
itself, as well as the corresponding queries. Furthermore, it contains a detailed
explanation of how the queries can be used in the form of an example of the
creation of a MIDI Linked Data mashup. Some mashups that were created in
the process can also be found on the GitHub page.

In step 1 of the framework the first pattern is found. After finding the first
pattern, the user searches for its tempo values (step 2). Using the tempo values
of the first pattern, the user can search for the second pattern (step 3). After

8http://virtuoso-midi.amp.ops.labs.vu.nl/sparql
9See https://github.com/rickmeerwaldt/SPARQLmashup and https://github.com/
rickmeerwaldt/SPARQLmashup/raw/master/example/example.pdf

91

http://virtuoso-midi.amp.ops.labs.vu.nl/sparql
https://github.com/rickmeerwaldt/SPARQLmashup
https://github.com/rickmeerwaldt/SPARQLmashup/raw/master/example/example.pdf
https://github.com/rickmeerwaldt/SPARQLmashup/raw/master/example/example.pdf

92 A. Adamou, E. Daga and L. Isaksen (eds.)

two patterns are found, they are combined in step 4. The result of the query in
step 4 can be converted to MIDI, using the MIDI2RDF suite of tools (step 5).
The result is evaluated in step 6.

Even though it is certain that the two songs are beat-synchronous, it is still
possible that the two songs are not in harmony with each other or that the
songs just don’t match. Consequently, it is possible to search for a different
second pattern (step 3). It is also possible to search for the tracks of the songs
(step 7) and combine the songs using only certain tracks (step 8). Filtering out
certain tracks that cause the dissonant tones can circumvent the problem of the
songs not being harmonious. Filtering tracks can also cause for a better mix of
instrumentals.

After combining the songs using only the desired tracks, the result of the
query in step 8 can be converted to MIDI (step 9). The result is evaluated in
step 10. If the songs (still) don’t match, it is possible to filter even more tracks
in or out or to choose for a different second track. However, if the result is the
desired result, a beat-synchronous mashup has been created, using Semantic
Web technologies (step 11).

The combination of two patterns in a convertible query is analogous to the
importing of songs (step 2 of Table , since the combination causes that the
songs can be converted and played. The search for the second song, using the
tempo values of the first song, is analogous to the synchronization of two songs
(step 3 of Table , since the second song is filtered on having the same tempo
values as the first song. Due to this, the songs will be beat-synchronous with each
other. The filtering of tracks can be compared to the mixing of instrumentals
(step 5 of Table[I]), since it allows for different combinations of instruments in
the mashup. This can result in a better mix of instrumentals.

4 Implementation

As discussed before, an RDF file should have a certain structure so that it can
be converted to MIDI. Therefore, we propose a general query template. This
template can be used on the SPARQL endpoint to generate a result that can be
converted to a working MIDI file. We achieved this template by inspecting RDF
conversions of multiple MIDI files, and studying their structure. This results in
the general SPARQL query template for the generation of a MIDI file shown
in Listing [[.I] which we use as basis for the generation of correct MIDI files.
We use the MIDI2RDF suite of tools [9], and the rdf2midi script, to convert the
RDF generated by this query template to a MIDI file; by playing this MIDI file
we can evaluate the results.

To make a query for the generation of a mashup, we extend the query in
Listing [[.I] Additionally, several queries are necessary to get values of certain
variables of this query. The rationale behind the queries of the framework will
be discussed in this section. The values that need to be found for the mashup
generation query are the values for the following variables:

— The pattern of the first song

0N oUW N

O S T S S
S L XN LA WN~O O

2nd Workshop on Humanities in the Semantic Web (WHiSe 2017)

PREFIX prov: <http://www.w3.org/ns/prov#>
PREFIX mid: <http://purl.org/midi-ld/midi#>

CONSTRUCT {
<patternl> a mid:Pattern ;
mid:hasTrack ?track .
<patternl> mid:format ?format .
<patternl> mid:resolution ?resolution .
?track mid:hasEvent ?event .
?track a mid:Track .
?event a ?type .
?event ?property ?value .

} WHERE {
<patternl> mid:hasTrack ?track .
<patternl> mid:format ?format .
<patternl> mid:resolution ?resolution .
?track mid:hasEvent ?event .
?event a ?type .
?event ?property ?value .

Listing 1.1. The structure of a SPARQL query for the generation of a MIDI file

— The pattern of the second song
— The tracks of the first pattern
— The tracks of the second pattern

The first pattern can be found by filtering on the name of the song or the
artist. As discussed before, the synchronization of two songs is done by querying
on two patterns that have the same beat. When the first pattern has been found,
the search for the second pattern can start. The tempo values of the first pattern
can be found by using a certain query. After this, the second pattern can be
found by filtering on the tempo values of the first pattern. Additionally, one can
filter on the name of the song or the artist, to get a more specific result. The
tempo values that are being filtered on are resolution, numerator, denominator,
metronome, and thirtyseconds.

Timing in MIDI files is centered around ticks and beats. A beat is the same
as a quarter note. Beats are divided into ticks, the smallest unit of time in
MIDI. Each message in a MIDI file has a delta time, which tells how many ticks
have passed since the last message. The length of a tick is defined in resolution
and typically ranges from 96 to 480. The numerator and denominator are two
numbers specified in the time signature, a notational convention used in Western
musical notation to specify how many beats (pulses) are to be contained in each
bar and which note value is to be given one beat. For example, in the time
signature 3/4, the numerator is 3, the denominator is 4, and these mean that
in each measure (bar) of the notation there are three (numerator) quarter-notes
or crotchets (denominator). The value for metronome is the number of MIDI
clocks per metronome tick. Thirtyseconds specifies the number of 1/32 notes per
24 MIDI clocks (8 is standard).

These values together comprise the tempo of a pattern in MIDI. If these
values are the same for both songs, they will automatically be beat-synchronous.
It can also be discussed that the beats per minute (BPM) and the microseconds

93

94 A. Adamou, E. Daga and L. Isaksen (eds.)

per quaternote (MPQN) should be set the same. However, when a MIDI file is
played it automatically has a single BPM and MPQN. Therefore, synchronizing
the BPM and MPQN does not have to be addressed.

After two patterns with the same beat are found, it is already possible to make
a mashup by using all the tracks of the two patterns. This can be a good point to
do an evaluation of the mashup so far. A problem that can arise is that there are
a lot of dissonant tones between the two songs. If this is the case, there are two
options. It is either possible to not use all tracks of both songs and to filter only
on certain tracks. However, if this does not work it is still possible to choose for
a different second pattern. Experience after making several mashups has proven
that if two songs sound relatively harmonious together, a track filtering still can
be used in order to let the mashup sound not too noisy or busy. Using a simple
query, the tracks of each pattern can be found. Consequently, with an extra filter
on both patterns in the mashup generation query, several tracks can be left out.

4.1 SPARQL-DJ

In order to evaluate our framework, and save users the tedious process of writ-
ing SPARQL queries, manipulating variable values, and manually executing the
MIDI2RDF programs, we implement the whole process in the SPARQL-DJ'C.
SPARQL-DJ is a web-based user-interface based on the presented framework. In
this prototype, users can easily search for songs and make mashups from them.
Users don’t see the queries at all, and only need to fill in some forms. The result-
ing MIDI mashups can be directly played in the browser, or be downloaded as
either MIDI or Turtle. Figure [2 shows the abstract interaction with the interface
elements, and Figure |3 shows an actual screenshot of SPARQL-DJ.

First, the user specifies the ’song title / author’, and he can press a submit
button to receive a list of songs matching the input. The user can look at the
title or listen to the songs before deciding which one to choose. After he knows
what song he wants, he presses select. A box pops up, showing the tempo values
of this song. Also, the box to search for the second song pops up. In this box
the user can again specify the ’song title / author’. Then, he can press whether
he wants the second song to have the same tempo values as the first song. If he
does not want the same tempo values for the second song, he presses ‘no’. After
this, a box pops up in which he can specify the tempo values himself. If the user
wants the same tempo values for the second song, he presses ‘yes’. After pressing
the submit button or the ‘yes’ button a list of songs is received, matching the
tempo values. When the both songs are selected, a box for the mashup appears.
In this box the user can select or deselect certain tracks. The selection can be
based on the names of instruments of certain tracks, or the user can listen to
certain tracks. The user can also change the resolution of the song, using the
resolution slide bar. A higher resolution will result in a faster mashup. The big
‘PLAY THE MASHUPY!’ button can be pressed in order to play the mashup.

10http://spar“ql-dj .amp.ops.labs.vu.nl

http://sparql-dj.amp.ops.labs.vu.nl

2nd Workshop on Humanities in the Semantic Web (WHiSe 2017)

Search for your first midi Tempo values song 1
song title / author Submitl Resolution valuel
Denominator value2
<patternl> title Play Stop Select
<pattern2> title Play Stop Select Metronome value3
Numerator value4
Search for your second midi Same tempo values?|
Thirtyseconds value5
song title / author Yes | No \
<patternl> title Play Stop Select Specify tempo values for song 2
<pattern2> title Play Stop Select
Resolution valuel
Select the tracks you want to have in the mashup Denarin ey value2
Resolution slide bar Metronome value3
<track00> instrument Play Stop
l<track01> instrument Play Stop Numerator value4
[<track02> instrument Play Stop
Thirtyseconds value5
<track00> instrument Play Stop
[<track01> instrument Play Stop Submit2
PLAY THE MASHUP! | Stop |

Fig. 2. Interaction model followed by the interface of the SPARQL-DJ

When the first song is found, the user can search for the second song by
just searching for a title or artist. If this is done, the songs that are shown are
automatically time synchronous with the first song, so the user does not have to
look at the tempo variables of the songs. It is also possible to uncheck the ‘same
tempo values’ box. Consequently, a set of new boxes appear in which the user
can specify the tempo values (see Fig. . After selecting the second song, the
tracks of both songs are displayed. Also, a check box per track is shown so the
user can specify which tracks he wants in the mashup.

Note that the first track (track00) of a certain pattern is a track containing
tempo values and tempo changes. Sometimes a certain pattern is selected that
contains numerous tempo changes, for example a song that is twice as fast after
a while. If this is the case, the first track can be deleted from a that pattern in
the mashup in order to ignore those tempo changes. However, the first track of
one of the songs should be preserved, since otherwise the tempo of the mashup
is lost and the mashup will be of an undefined tempo.

After the desired tracks are selected, the user can play the MIDI Linked Data
mashup directly in the browser. The user can also choose to alter the selected
tracks even more or to download the mashup as a MIDI or Turtle file.

95

96 A. Adamou, E. Daga and L. Isaksen (eds.)

Search for your first MIDI

stir_it_up Search

http://purl.org/midi-ld/pattern/0682a67a20c1944a9b00b083b9fdd25a Play Stop Select

http://Qurl.org/midi—ld/gattern/@m8fac206d749f0b21 2960820609b8 Play Stop Select

130000_Pop_Rock_Classical_Videogame_EDM_
Search for your second MIDI MIDI_Archive[6_19_15]/B/B/bob_marley-
stir_it_up.mid
suite for lute | Same tempo values =~ Search

http://purl.org/midi-Id/pattern/bf91f4e5b0207a8cac46b7a2f6a9ac0d Play Stop Select

Select tracks

http://purl.org/midi-Id/pattern/b3e18fac206d749f0b212960820609b8/track00
http://purl.org/midi-ld/pattern/b3e18fac206d749f0b212960820609b8/track01
http://purl.org/midi-Id/pattern/b3e18fac206d749f0b212960820609b8/track02
http://purl.org/midi-Id/pattern/b3e18fac206d749f0b212960820609b8/track03
http://purl.org/midi-ld/pattern/b3e18fac206d749f0b212960820609b8/track04
) http://purl.org/midi-ld/pattern/b3e18fac206d749f0b212960820609b8/track05
http://purl.org/midi-Id/pattern/b3e18fac206d749f0b212960820609b8/track06
http://purl.org/midi-ld/pattern/bf91f4e5b0207a8cac46b7a2f6a9ac0d/track00
http://purl.org/midi-ld/pattern/bf91f4e5b0207a8cac46b7a2f6a9ac0d/track01
http://purl.org/midi-Id/pattern/bf91f4e5b0207a8cac46b7a2f6a9ac0d/track02
http://purl.org/midi-ld/pattern/bf91f4e5b0207a8cac46b7a2f6a9ac0d/track03
http://purl.org/midi-ld/pattern/bf91f4e5b0207a8cac46b7a2f6a9ac0d/track04
http://purl.org/midi-Id/pattern/bf91f4e5b0207a8cac46b7a2f6a9ac0d/track05
http://purl.org/midi-ld/pattern/bf91f4e5b0207a8cac46b7a2f6a9ac0d/track06
http://purl.org/midi-ld/pattern/bf91f4e5b0207a8cac46b7a2f6a9ac0d/track07
http://purl.org/midi-Id/pattern/bf91f4e5b0207a8cac46b7a2f6a9ac0d/track08
http://purl.org/midi-Id/pattern/bf91f4e5b0207a8cac46b7a2f6a9ac0d/track09

A< NN NN NN N<]

Play = Stop Download

Fig. 3. A screenshot of the SPARQL-DJ tool

5 Discussion

The framework presented in this paper can be used for the automation of the
mashup process. SPARQL-DJ is an example of this. It automatically performs
the process of beatmatching by searching for songs with the same beat. However,
the framework and the prototype do not provide for an automation of harmonic
mixing. This could be addressed in the future. The framework and prototype are
also limited in the number of mashups that can be made, since they do not allow
for the manipulation of the tempo values to make two songs beat-synchronous.
We found that the manipulation of these tempo values caused that the estimated
execution time was too high, due to the optimization settings of the SPARQL
endpoint. Hence, some of these queries are yet too expensive to be performed.
We plan on letting users know when an operation will be costly, by adding visual
aids in the interface.

It can be discussed that the mashups we produce are not genuine mashups,
since not all requirements from Table[I]are met. However, these requirements are

2nd Workshop on Humanities in the Semantic Web (WHiSe 2017)

Search for your second MIDI

g. 'Black Sabbath' c ar Pigs Same tempo values | Search

Specify tempo values for the second MIDI (leave empty for any)
Resolution E.g. 4 Metronome
Numerator E.g Denominator E.g

Thirtyseconds E.g. 8

Fig. 4. A screenshot of the option to specify different tempo values

not strict requirements. In this paper we introduce the possibility to generate
beat-synchronous mashups using the Semantic Web technology stack, and we
have every reason to be optimistic about covering the remaining requirements.

6 Conclusion

This paper addresses limitations of musicians at using Semantic Web technolo-
gies in the mashup creation process. To address this, we propose a framework
that enables the generation of mashups from existing MIDI data represented as
Linked Data by using RDF and SPARQL. To prove its adequacy, we propose a
set of SPARQL queries that match existing MIDI events following certain crite-
ria and mixes them up as a mashup. Finally, we present the SPARQL-DJ, which
implements our previous contributions and facilitates finding, selecting, playing,
mixing, and generating beat-synchronous mashups by strictly using SPARQL
over existing MIDI Linked Data. This covers the core requirements of the over-
all mashup creation process.

We plan on extending this work in several ways. First, we will propose ways
to automatically manipulate the tempo values of two songs that are not beat-
synchronous in order to synchronize them; a widely-used process in the domain of
digital audio workstations. Second, we will extend our framework and implemen-
tation to also cover harmonic matching in MIDI, since at the moment only beat
matching is performed and, consequently, dissonant mashups might occur. This
can be done analogously to beat-matching: by either restricting search results
to MIDIs that have the same key; or by allowing to manipulate and transpose
MIDIs that have different keys in order to make them harmonically compatible.
Third, we will improve the quality of mashups by adding an intro, and outro,
and the remaining phases of mashup creation that are out of the scope of this
paper. Fourth, we will research ways of leveraging links of the MIDI Linked Data
Cloud to other musical databases (DBpedia, MusicBrainz, AccousticBrainz, etc.)
to improve the mashup creation process; for example, by mixing MIDIs of the
same/different genre. Fifth, we will investigate patters for selecting fragments of
tracks, instead of whole tracks, increasing the mixing granularity level. Finally,
we will investigate ways of improving the performance of SPARQL at mixing
MIDI Linked Data.

97

98 A. Adamou, E. Daga and L. Isaksen (eds.)
References
1. MusicXML 3.0 Specification. Tech. rep., MakeMusic, Inc. (2015), http://www.

10.

11.

12.

13.

14.

15.

16.

musicxml.com/

Abele, A., McCrae, J.P., Buitelaar, P., Jentzsch, A., Cyganiak, R.: Linking Open
Data cloud diagram. |http://lod-cloud.net/| (2017)

Berners-Lee, T.: Linked Data - Design Issues. https://www.w3.0rg/DesignIssues/
LinkedData.html| (2006)

Bertin-Mahieux, T., Ellis, D.P., Whitman, B., Lamere, P.: The Million Song
Dataset. In: Proceedings of the 11th International Conference on Music Infor-
mation Retrieval (ISMIR) (2011)

Bizer, C., Heat, T., Berners-Lee, T.: Linked data-the story so far. In: Semantic
services, interoperability and web applications: emerging concepts, pp. 205-227
(2009)

Davies, M.E.P., Hamel, P., Yoshii, K., Goto, M.: AutoMashUpper: An Automatic
Multi-Song Mashup System. In: International Conference on Music Information
Retrieval (ISMIR). pp. 575-580 (2013)

Harte, C., Sandler, M., Abdallah, S., Gémez, E.: Symbolic representation of musical
chords: A proposed syntax for text annotations. In: Proceedings of the International
Conference on Music Information Retrieval (ISMIR). pp. 66-71 (2005)

Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space. In:
Synthesis lectures on the semantic web: theory and technology, pp. 1-136. Morgan
and Claypool, 1 edn. (2011)

Meronio-Penuela, A., Hoekstra, R.: The Song Remains the Same: Lossless Conver-
sion and Streaming of MIDI to RDF and Back. In: 13th Extended Semantic Web
Conference (2016)

Merono-Penuela, A., Hoekstra, R., Gangemi, A., Bloem, P., de Valk, R., Stringer,
B., Janssen, B., de Boer, V., Allik, A., Schlobach, S., Page, K.: The MIDI Linked
Data Cloud. In: 16th International Semantic Web Conference (ISWC 2017) (2017)
Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF - W3C
Recommendation. http://www.w3.0rg/TR/rdf-sparql-query/| (2008)

Raffel, C.: Learning-Based Methods for Comparing Sequences, with Applications
to Audio-to-MIDI Alignment and Matching. Columbia University (2016)
Raimond, Y., Abdallah, S., Sandler, M., Giasson, F.: The Music Ontology. In:
International Conference on Music Information Retrieval (ISMIR). vol. 422 (2007)
The MIDI Manufacturers Association: The Complete MIDI 1.0 Detailed Specifi-
cation. Tech. rep., The MIDI Manufacturers Association, Los Angeles, CA (1996-
2014), https://www.midi.org/specifications/item/the-midi-1-0-specification
Thickstun, J., Harchaoui, Z., Kakade, S.M.: Learning Features of Music from
Scratch. In: International Conference on Learning Representations (ICLR) (2017)
Tokui, N.: Massh!: a web-based collective music mashup system. In: Proceedings
of the 3rd international conference on Digital Interactive Media in Entertainment
and Arts. pp. 526-527. ACM (2008)

http://www.musicxml.com/
http://www.musicxml.com/
http://lod-cloud.net/
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/TR/rdf-sparql-query/
https://www.midi.org/specifications/item/the-midi-1-0-specification

	Mixing Music as Linked Data: SPARQL-based MIDI Mashups

