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Abstract. Many information systems nowadays record data about the
process instances executed at the organization in the form of traces in an
event log. In this paper we present a framework able to convert actions
found in the traces into higher level concepts, on the basis of domain
knowledge. Abstracted traces are then provided as an input to semantic
process mining.

The approach has been tested in the medical domain of stroke care,
where we show how the abstraction mechanism allows the user to mine
process models that are easier to interpret, since unnecessary details are
hidden, but key behaviors are clearly visible.

1 Introduction

Most commercial information systems, including those adopted by many health
care organizations, record information about the executed process instances in
the form of an event log [15]. The event log stores the sequences (traces [9]
henceforth) of actions that have been executed at the organization, typically
together with key execution parameters, such as times, cost and resources. Event
logs can be provided in input to process mining [15, 10] algorithms, a family
of a-posteriori analysis techniques able to extract non-trivial knowledge from
these historic data; within process mining, process model discovery algorithms,
in particular, take as input the log traces and build a process model, focusing
on its control flow constructs. Classical process mining algorithms, however,
provide a purely syntactical analysis, where actions in the traces are processed
only referring to their names. Action names are strings without any semantics,
so that identical actions, labeled by synonyms, will be considered as different,
or actions that are special cases of other actions will be processed as unrelated.

On the other hand, the capability of relating semantic structures such as
ontologies to actions in the log can enable trace comparison and process mining
techniques to work at different levels of abstraction (i.e., at the level of instances

98



and/or concepts) and, therefore, to mask irrelevant details, to promote reuse,
and, in general, to make process analysis much more flexible and reliable.

In fact, it has been observed that human readers are limited in their cognitive
capabilities to make sense of large and complex process models [1, 25], while it
would be often sufficient to gain a quick overview of the process, in order to
familiarize with it in a short amount of time.

Interestingly, semantic process mining, defined as the integration of se-
mantic processing capabilities into classical process mining techniques, has been
recently proposed in the literature (see Section 5). However, while more work
has been done in the field of semantic conformance checking (another branch
of process mining) [8, 11], to the best of our knowledge semantic process model
discovery needs to be further investigated.

In this paper, we present a knowledge-based abstraction mechanism
(see Section 2), able to operate on event log traces. In our approach:

– actions in the log are mapped to the ground terms of an ontology;
– a rule base is exploited, in order to identify which of the multiple ancestors

of an action should be considered for abstracting the action itself. Medical
knowledge and contextual information are resorted to in this step;

– when a set of consecutive actions on the trace abstract as the same ances-
tor, they are merged into the same abstracted macro-action, labeled as the
common ancestor at hand. This step requires a proper treatment of delays
and/or actions in-between that descend from a different ancestor.

Our abstraction mechanism is then provided as an input to semantic pro-
cess mining (see Section 3). In particular, we rely on classical process model
discovery algorithms embedded in the open source framework ProM [24], made
semantic by the exploitation of domain knowledge in the abstraction phase.

We also describe our experimental work (see Section 4) in the field of stroke
care, where the application of the abstraction mechanism on log traces has al-
lowed us to mine simpler and more understandable process models.

2 Knowledge-based trace abstraction

In our framework, trace abstraction has been realized as a multi-step mechanism.
The following subsections describe the various steps.

2.1 Ontology mapping

As a first step, every action in the trace to be abstracted is mapped to a ground
term of an ontology, formalized resorting to domain knowledge.

In our current implementation, we have defined an ontology related to the
field of stroke management, where ground terms are patient management actions,
while abstracted terms represent medical goals. Figure 1 shows an excerpt of the
stroke domain ontology, formalized resorting to the Protègè editor.
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Legend

• CAT is			Computer	Assisted	Tomography
• MRI is			Magnetic	Resonance	Imaging
• MRI_with_CE				is Contrast	Enhanced	Magnetic	Resonance	Imaging
• MRI_with_DWI	is				Diffusion-weighted	Magnetic	Resonance	Imaging
• TPA	is Tissue	Plasminogen	Activator

Fig. 1. An excerpt from the stroke domain ontology
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In particular, a set of classes, representing the main goals in stroke manage-
ment, have been identified, namely: “Administrative Actions”, “Brain Damage
Reduction”,“Causes Identification”, “Pathogenetic Mechanism Identification”,
“Prevention”, and “Other”. These main goals can be further specialized into
subclasses, according to more specific goals (e.g., “Parenchima Examination”
is a subgoal of “Pathogenetic Mechanism Identification”, while “Early Relapse
Prevention” is a subgoal of “Prevention”), down to the ground actions, that will
implement the goal itself.

Some actions in the ontology can be performed to implement different goals.
For instance, a Computer Assisted Tomography (CAT) can be used to check
therapy efficacy in “Early Relapse Prevention”, or to perform “Parenchima Ex-
amination” (see figure 1).

The proper goal to be used in the abstraction phase will be selected on the
basis of the context of execution, as formalized in the rule base, described in the
following subsection.

2.2 Rule-based reasoning for ancestor selection

As a second step in the trace abstraction mechanism, a rule base is exploited
to identify which of the multiple ancestors of an action in the ontology should
be considered for abstracting the action itself. The rule base encodes medical
knowledge. Contextual information (i.e., the actions that have been already exe-
cuted on the patient at hand, and/or her/his specific clinical conditions) is used
to activate the correct rules. The rule base has been formalized in Drools [17].

As an example, referring to the CAT action mentioned in the previous sub-
section, the following rule states that, if intra-venous (ev tPA) or intra-arterial
(ia tPA) anti-thrombotic therapies have been administered, then CAT imple-
ments the “Early Relapse Prevention” goal.

rule "CAT"

when

(groundActionIsBefore("ev_tPA") ||

groundActionIsBefore("ia_tPA"))

then

macroAction.setAncestorName("Early_Relapse_Prevention");

end

where “groundActionIsBefore” is a function that, given the name of a ground
action, returns true if this action precedes CAT in the trace, false otherwise.

On the contrary, if the context is different (i.e., anti-thrombotic therapy
was not administered), CAT has to be intended as a means for “Parenchima
Examination” (see figure 1).

More complex situations, where it is necessary to activate a chain of multiple
rules - not described here due to space constraints - can also be managed by our
system.
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2.3 Trace abstraction

Once the correct ancestor of every action has been identified, trace abstraction
can be completed.

In this last step, when a set of consecutive actions on the trace abstract as the
same ancestor, they have to be merged into the same abstracted macro-action,
labeled as the common ancestor at hand. This procedure requires a proper treat-
ment of delays, and of actions in-between that descend from a different ancestor
(interleaved actions henceforth).

Trace abstraction has been realized by means of the procedure described in
Algorithm 1 below.

The function abstraction takes in input an event log trace, the domain ontol-
ogy onto, and the level in the ontology chosen for the abstraction (e.g., level = 1
corresponds to the choice of abstracting the actions up to the sons of the on-
tology root). It also takes in input three thresholds (delay th, n inter th and
inter th). These threshold values have to be set by the domain expert in order
to limit the total admissible delay time within a macro-action, the total number
of interleaved actions, and the total duration of interleaved actions, respectively.
In fact, it would be hard to justify that two ground actions share the same goal
(and can thus be abstracted to the same macro-action), if they are separated
by very long delays, or if they are interleaved by many/long different ground
actions, meant to fulfill different goals.

The function outputs an abstracted trace.
For every action i in trace, an iteration is executed (lines 3-27). First, a

macro-action mi, initially containing just i, and sharing its starting and ending
times, is created. mi is labeled referring to the ancestor of i (the one identified
by the rule based reasoning procedure) at the abstraction level provided as
an input. Accumulators for this macro-action (total-delay, num-inter and total-
inter, commented below) are initialized to 0 (lines 4-10). Then, a nested cycle
is executed (lines 11-25): it considers every element j following i in the trace,
where a trace element can be an action, or a delay between a pair of consecutive
actions. Different scenarios can occur:

– if j is a delay, total − delay is updated by summing the length of j (lines
12-14).

– if j is an action, and j shares the same ancestor of i at the input abstraction
level, then j is incorporated into the macro-action mi. This operation is
always performed, provided that total − delay, number − inter and total −
inter do not exceed the threshold passed as an input (lines 15-19). j is then
removed from the actions in trace that could start a new macro-action, since
it has already been incorporated into an existing one (line 18). This kind of
situation is described in Figure 2 (a).

– if j is an action, but does not share the same ancestor of i, then it is treated
as an interleaved action. In this case, num − inter is increased by 1, and
total − inter is updated by summing the length of j (lines 20-23). This
situation, in the end, may generate different types of temporal constraints
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Algorithm 1: Multi-level abstraction algorithm

1 abs trace = abs algorithm(trace, onto, level, delay th, n inter th, inter th);
2 abs trace = ∅;
3 for every i ∈ activities in trace do
4 if (i.startF lag = yes) then
5 create : mi as ancestor(i, level);
6 mi.start = i.start;
7 mi.end = i.end;
8 total delay = 0;
9 num inter = 0;

10 total inter = 0;
11 for (every j ∈ elements in trace) do
12 if (j is a delay) then
13 total delay = total delay + j.length;
14 else
15 if (ancestor(j, level)=ancestor(i, level)) then
16 if (total delay < delay th ∧ num inter <

n inter th ∧ total inter < inter th) then
17 mi.end = max(mi.end, j.end);
18 j.startFlag = no;

19 end

20 else
21 num inter = num inter + 1;
22 total inter = total inter + j.length;

23 end

24 end

25 end

26 append mi to abs trace;

27 end
28 return abs trace;
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between macro-actions, as the ones described in Figure 2 (b) (Allen’s during
[2]) and Figure 2 (c) (Allen’s overlaps [2]).

Fig. 2. Different trace abstraction situations: (a) two actions are abstracted to a single
macro-action macro1, with a delay in between; (b) two actions are abstracted to a
macro-action macro1, with an interleaved action in between, resulting in a different
macro-action macro2 during macro1; (c) two actions are abstracted to a macro-action
macro1, with an interleaved action in between, which is later aggregated to a fourth
action, resulting in a macro-action macro2 overlapping macro1.

Finally, the macro-action mi is appended to abs trace, that, in the end, will
contain the list of all the macro-actions that have been created by the procedure
(line 26).
Complexity. The cost of abstracting a trace is O(actions ∗ elements), where
actions is the number of actions in the input trace, and elements is the number
of elements (i.e., actions + delay intervals) in the input trace.

3 Semantic process mining

In our approach, process mining, made semantic by the exploitation of the ab-
straction mechanism illustrated above, is implemented resorting to the well-
known process mining tool ProM, extensively described in [24]. ProM (and specif-
ically its newest version ProM 6) is a platform-independent open source frame-
work that supports a wide variety of process mining and data mining techniques,
and can be extended by adding new functionalities in the form of plug-ins.

For the work described in this paper, we have exploited ProM’s Heuristic
Miner [26]. Heuristic Miner is a plug-in for process model discovery, able to
mine process models from event logs. It receives in input the log, and considers
the order of the actions within every single trace. It can mine the presence of
short-distance and long-distance dependencies (i.e., direct or indirect sequence
of actions), and information about parallelism, with a certain degree of relia-
bility. The output of the mining process is provided as a graph, known as the

104



“dependency graph”, where nodes represent actions, and edges represent control
flow information. The output can be converted into other formalisms as well.

Currently, we have chosen to rely on Heuristics Miner, because it is known
to be tolerant to noise, a problem that may affect medical event logs (e.g.,
sometimes the logging may be incomplete). Anyway, testing of other mining
algorithms available in ProM 6 is foreseen in our future work.

4 Experimental results

In this section, we describe the experimental work we have conducted, in the
application domain of stroke care.

The available event log is composed of more than 15000 traces, collected
at the 40 Stroke Unit Network (SUN) collaborating centers of the Lombardia
region, Italy. Traces are composed of 13 actions on average. The 40 Stroke Units
(SUs) are not all equipped with the same human and instrumental resources: in
particular, according to resource availability, they can be divided into 3 classes.
Class-3 SUs are top class centers, able to deal with particularly complex stroke
cases; class-1 SUs, on the contrary, are the more generalist centers, where only
standard cases can be managed.

We have tested whether our capability to abstract the event log traces on the
basis of their semantic goals allowed to obtained process models where unnec-
essary details are hidden, but key behaviors are clear. Indeed, if this hypothesis
holds, in our application domain it becomes easier to compare process models of
different SUs, highlighting the presence/absence of common paths, regardless of
minor action changes (e.g., different ground actions that share the same goal) or
irrelevant different action ordering or interleaving (e.g., sets of ground actions,
all sharing a common goal, that could be executed in any order).

Figure 3 compares the process models of two different SUs (SU-A and SU-
B), mined by resorting to Heuristic Miner, operating on ground traces. Figure
4, on the other hand, compares the process models of the same SUs as figure 3,
again mined by resorting to Heuristic Miner, but operating on traces abstracted
according to the goals of the ontology in figure 1. In particular, abstraction was
conducted up to level 2 in the ontology (where level 0 is the root, i.e.. “Goal”).

Generally speaking, a visual inspection of the two graphs in figure 3 is very
difficult. Indeed, these two ground processes are “spaghetti-like” [9], and the ex-
tremely large number of nodes and edges makes it hard to identify commonalities
in the two models.

The abstract models in figure 4, on the other hand, are much more compact,
and it is possible for a medical expert to analyze them.

In particular, the two graphs in figure 4 are not identical, but in both of them
it is easy to a identify the macro-actions which corresponds to the treatment of
a typical stroke patient.

However, the model for SU-A at the top of figure 4 exhibits a more complex
control flow (with the presence of loops), and shows three additional macro-
actions with respect to the model of SU-B, namely “Extracranial Vessel Inspec-
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Fig. 3. Comparison between two process models, mined by resorting to Heuristic Miner,
operating on ground traces. The figure is not intended to be readable, but only to give
an idea of how complex the models can be
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tion”, “Intracranial Vessel Inspection” and “Recanalization”. This finding can be
explained, since SU-A is a class-2 SU, where different kinds of patients, includ-
ing some atypical/more critical ones, can be managed, thanks to the availability
of different skills and instrumental resources. These patients may require the
additional macro-actions reported in the model, and/or the repetition of some
procedures, in order to better characterize and manage the patient’s situation.

On the other hand, SU-B is a class-1 SU, i.e., a more generalist one, where
very specific human knowledge or technical resources are missing. As a conse-
quence, the overall model control flow is simpler, and some activities are not
executed at all.

Interestingly, our abstraction mechanism, while hiding irrelevant details, al-
lows to still appreciate these differences.

5 Related works

The use of semantics in business process management, with the aim of operat-
ing at different levels of abstractions in process discovery and/or analysis, is a
relatively young area of research, where much is still unexplored.

One of the first contributions in this field was proposed in [5], which intro-
duces a process data warehouse, where taxonomies are exploited to add seman-
tics to process execution data, in order to provide more intelligent reports. The
work in [12] extends the one in [5], presenting a complete architecture that al-
lows business analysts to perform multidimensional analysis and classify process
instances, according to flat taxonomies (i.e., taxonomies without subsumption
relations between concepts).

Hepp et al. [13] propose a framework able to merge semantic web, seman-
tic web services, and business process management techniques to build semantic
business process management, and use ontologies to provide machine-processable
semantics in business processes [14]. The work in [21] develops in a similar con-
text, and extends OLAP tools with semantics (exploiting ontologies rather than
(flat) taxonomies).

The topic was studied in the SUPER project [20], within which several on-
tologies were created, such as the process mining ontology and the event ontology
[19]; these ontologies define core terminologies of business process management,
usable by machines for task automation. However, the authors did not present
any concrete implementations of semantic process mining or analysis.

Ontologies, references from elements in logs to concepts in ontologies, and
ontology reasoners (able to derive, e.g., concept equivalence), are described as
the three essential building blocks for semantic process mining in [8]. This paper
also shows how to use these building blocks to extend ProM’s LTL Checker [23]
to perform semantic auditing of logs.

The work in [6] focuses on the use of semantics in business process monitor-
ing, an activity that allows to detect or predict process deviations and special
situations, to diagnose their causes, and possibly to resolve problems by applying
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Fig. 4. Comparison between the two process models of the same SUs as figure 3, mined
on abstracted traces. Additional macro-actions executed at SU-A are highlighted in
bold
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corrective actions. Detection, diagnosis and resolution present interesting chal-
lenges that, on the authors’ opinion, can strongly benefit from knowledge-based
techniques.

In [6, 7] the idea to explicitly relate (or annotate) elements in the event log
with the concepts they represent, linking these elements to concepts in ontologies,
is addressed.

In [7] an example of process discovery at different levels of abstractions is pre-
sented. It is however a very simple example, where a couple of ground actions
are abstracted according to their common ancestor. However, the management
of interleaved actions or delays is not addressed, and multiple inheritance is not
considered. A more recent work [16] introduces a methodology that combines do-
main and company-specific ontologies and databases to obtain multiple levels of
abstraction for process mining. In this paper data in databases become instances
of concepts at the bottom level of a taxonomy tree structure. If consecutive tasks
in the discovered model abstract as the same concepts, those tasks are aggre-
gated. However, also in this work we could find neither a clear description of the
abstraction algorithm, nor the management of interleaved actions or delays.

Other interesting contributions can be found in [4, 3, 22].

However, most of the papers cited above (including [8, 7]) present theoret-
ical frameworks, and not yet a detailed technical architecture nor a concrete
implementation of all their ideas.

Referring to medical applications, the work in [11] proposes an approach,
based on semantic process mining, to verify the compliance of a Computer Inter-
pretable Guideline with medical recommendations. In this case, semantic process
mining refers to conformance checking rather than to process discovery (as it is
also the case in [8]). These works are thus only loosely related to our contribution.

In conclusion, in the current research panorama, our work appears to be very
innovative, for several reasons:

– many approaches, illustrating very interesting and sometimes ambitious ideas,
just provide pure theoretical frameworks, which can be very important to
inspire more engineering-style work. However, concrete implementations of
algorithms and complete architectures of systems are often missing, leaving
open research opportunities for contributions like the one we have presented;

– in semantic process mining, more work has been done in the field of confor-
mance checking (also in medical applications), while process discovery still
deserves attention (also because many approaches are still at the theoretical
level, as commented above);

– as regards trace abstraction, it is often proposed as a very powerful means
to obtain better process discovery and analysis results, but technical details
of the abstraction mechanism are usually not provided, or are illustrated
through very simple examples, where the issues related to the management
of interleaved actions or delays do not emerge.
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6 Concluding remarks and future work

In this paper, we have presented a framework for knowledge-based abstraction of
event log traces. In our approach, abstracted traces are then provided as an input
to semantic process mining. Semantic process mining relies on ProM algorithms;
indeed, the overall integration of our approach within ProM is foreseen in our
future work.

The first experimental results in the field of stroke management suggest that
the capability of abstracting the event log traces on the basis of their semantic
goal may allow to mine clearer process models, where unnecessary details are
hidden, but key behaviors are clear.

In the future, we plan to conduct a validation study, by quantitatively com-
paring different process models (of different SUs) obtained from abstracted
traces. Comparison will resort to knowledge-intensive process similarity metrics,
such as the one we described in [18]. We will also extensively test the approach
in different application domains.

Finally, an abstraction mechanism directly operating on process models (i.e.,
on the graph, instead of the event log), may be considered, and abstraction
results will be compared to the ones currently enabled by our framework.
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