
Report on the 5th International Workshop on
Quantitative Approaches to Software Quality

(QuASoQ 2017)

Horst Lichter
RWTH Aachen University

Germany
lichter@swc.rwth-aachen.de

Thanwadee Sunetnanta
Mahidol University

Thailand
thanwadee.sun@mahidol.ac.th

Toni Anwar
UTM Johor Bahru

Malaysia
tonianwar@utm.my

I. INTRODUCTION
After the successful workshop QuASoQ 2016, which was held
in Hamiltion, New Zealand, the organizers of the 4th workshop
wanted to widen the scope of quantitative approaches to
software quality. Therefore, the call for papers and the list of
topics of the workshop were adjusted in the direction of
quantitative approaches in software testing. The topics of
interest included

• New approaches to measurement, evaluation,
comparison and improvement of software quality

• Metrics and quantitative approaches in agile projects

• Case studies and industrial experience reports on
successful or failed application of quantitative
approaches to software quality

• Tools, infrastructure and environments supporting
quantitative approaches

• Empirical studies, evaluation and comparison of
measurement techniques and models

• Quantitative approaches to test process improvement,
test strategies or testability

• Empirical evaluations or comparisons of testing
techniques in industrial settings

Overall, the workshop aimed at gathering together
researchers and practitioners to discuss experiences in the
application of state of the art approaches to measure, assess and
evaluate the quality of both software systems as well as software
development processes in general and software test processes in
particular.

As software development organizations are always forced to
develop software in the "right" quality, the quality specification
and quality assurance are crucial. Although there are lots of
approaches to deal with quantitative quality aspects, it is still
challenging to choose a suitable set of techniques that best fit to
the specific project and organizational constraints.

Even though approaches, methods, and techniques are
known for quite some time now, little effort has been spent on

the exchange on the real world problems with quantitative
approaches. For example, only limited research has been
devoted to empirically evaluate risks, efficiency or limitations
of different testing techniques in industrial settings.

Hence, one main goal of the workshop was to exchange
experience, present new promising approaches and to discuss
how to set up, organize, and maintain quantitative approaches to
software quality.

II. WORKSHOP FORMAT
Based on our former experience we wanted the workshop to be
highly interactive. In order to have an interesting and interactive
event sharing lots of experience, we organized the workshop
presentations applying the author-discussant model.

Based on this workshop model, papers are presented by one
of the authors. After the presentation a discussant starts the
discussion based on his or her pre-formulated questions.
Therefore the discussant had to prepare a set of questions and
had to know the details of the presented paper. The general
structure of each talk was as follows:

• The author of a paper presented the paper (15 minutes).

• After that, the discussant of the paper opened the
discussion using his or her questions (5 minutes).

• Finally, we moderated the discussion among the whole
audience (10 minutes).

III. INVITED TALK
This year we were happy to have Prof. Hironori Washizaki

as an invited speaker. Hironori Washizaki is the Director and a
Professor with the Global Software Engineering Laboratory,
Waseda University, Japan. He is also a Visiting Professor with
the National Institute of Informatics, and an Outside Director
with the SYSTEM INFORMATION CO., LTD. He was a
Visiting Professor with the Ecole Polytechnique de Montreal, in
2015. He has long-term experience of researching and practicing
software design, reuse, quality assurance, and education.

Prof. Hironori Washizaki presented in his talk entitled
“Pitfalls and Countermeasures in Software Quality
Measurements and Evaluations” important aspects that are

5th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2017)

Copyright © 2017 for this paper by its authors. 1

influencing the application of quality measurements in the
context of software development. He identified a set of pitfalls
and presented respective countermeasures. Essentially,
appropriate goals and strategies have to be defined and linked
together to make a measurement program successful.

IV. WORKSHOP CONTRIBUTIONS
Altogether twelve papers were submitted. Finally, ten papers
were accepted by the program committee for presentation and
publication covering very different topics. We grouped the
papers into three sessions and added a final round-up slot to
present and discuss the major findings of our workshop. In the
following we want to give a short overview of the accepted
papers.

A. Lov Kumar, Santanu Rath and Ashish Sureka: Estimating
Web Service Quality of Service Parameters using Source
Code Metrics and LSSVM

We conduct an empirical analysis to investigate the relationship
between thirty-seven different source code metrics with fifteen
different Web Service QoS (Quality of Service) parameters. The
source code metrics used in our experiments consists of nineteen
Object-Oriented metrics, six Baski and Misra metrics, and
twelve Harry M. Sneed metrics. We apply Principal Component
Analysis (PCA) and Rough Set Analysis for feature extraction
and selection. The different sets of metrics are provided as input
to the predictive model generated using Least Square Support
Vector Machine (LSSVM) with three different types of kernel
functions: RBF, Polynomial, and Linear. Our experimental
results reveal that the prediction model developed using LSSVM
method with RBF kernel function is more effective and accurate
for prediction of QoS parameters than the LSSVM method with
linear and polynomial kernel functions. Furthermore, we also
observe that the predictive model created using object-oriented
metrics achieves better results in comparison to other sets of
source code metrics.

B. Sandhya Tarwani and Ashish Sureka: Investigating the
Effectiveness of Greedy Algorithm on Open Source
Software Systems for Determining Refactoring Sequence

The deeper problem in the source code are the bad smells that
indicates something is wrong and if they are not detected timely,
then they lead towards the complete deterioration of the working
software causing major financial and productivity loss.
Refactoring helps in removing these bad smells by improving
internal quality attributes of the software without affecting its
external behaviour. However refactoring needs to be applied in
a controlled manner. In this study an approach has been propose
for determining an optimal refactoring sequence that will
maximize the source-code maintainability using greedy
algorithm. The proposed approach selects the most optimum
sequence at every step-in hope of finding the global optimum
solution. We conduct an empirical analysis on four open-source
software and select those classes that have bad smells greater
than or equal to four. Further filtration is done by selecting those
classes from the group that have high value of source code lines.
We demonstrate the effectiveness of our approach using
concrete examples of the experimental dataset and presenting
summary results.

C. Jan Thomas, Ana Nicolaescu and Horst Lichter: Static and
Dynamic Architecture Conformance Checking: A
Systematic, Case Study-Based Analysis on Tradeoffs and
Synergies

In order to uncover architectural drift, a plethora of architecture
conformance checking tools has been proposed that mainly
leverage two approaches: they extract architectural knowledge
based on either source code artifacts (static approach) or run-
time behavior (dynamic approach). Although both approaches
have been evaluated separately, no up-to-date analysis of their
relative strengths and weaknesses, nor real-world comparative
case studies of the two were published. In this paper we address
this issue by presenting the results of a direct comparison of both
approaches. We first identify and compare their strengths and
weaknesses on a theoretical level. We then evaluate these results
against our experiences gained in a large-scale industrial case
study. As a result, we argue that the approaches cannot substitute
each other as they differ in many key aspects. Hence, we
crystallize guidelines regarding how to combine these such that
their strengths are emphasized while weaknesses mitigated.

D. Abdus Satter, Nadia Nahar and Kazi Sakib: Automatically
Identifying Dead Fields in Test Code by Resolving Method
Call and Field Dependency

Dead fields are the unused setup fields in the test code which
reduce the comprehensibility and maintainability of a software
system. A test class contains dead fields when developers
initialize setup fields without analyzing the usage of fields
properly. Manually identifying dead fields to remove from the
code is a time consuming and error-prone task. In this paper, a
technique named Dead Field Detector (DFD) has been proposed
to detect dead fields automatically. The technique constructs
Call Graph (CG) and Data Dependence Graph (DDG) from test
code to find method invocation and field dependency
relationships, respectively. It identifies the fields initialized in
the setup method and its invoked methods from CG. It finds
setup fields by collecting the initialized fields and their
dependent fields from DG. To determine the usage of the setup
fields, it checks the bodies of the test methods and their invoked
methods obtained from CG. All the unused setup fields are
separated from the used fields and considered as dead fields. In
order to evaluate DFD, an open source project named eGit was
used. The result analysis shows that DFD has identified 14.03%
more setup fields and 60.98% more dead fields than an existing
technique named TestHound for eGit.

E. Yuichiro Senzaki, Siyuan Liu, Hironori Washizaki,
Yoshiaki Fukazawa, Hiroshi Kobayashi and Masaharu
Adachi: A Web Application to Manage and Improve
Software Development Projects by SEMAT Essence

As part of the rapid advances in software engineering, each year
a vast amount of new knowledge and ideas are proposed.
However, a gap often arises between new ideas and current
methods due to a lack of fundamental theory. To bridge this gap,
SEMAT (Software Engineering Methods and Theory) Essence
has been proposed as the common ground in software
engineering. Using SEMAT Essence, developers can track the
progress and health of a project more efficiently from various
viewpoints. However, SEMAT Essence has some limitations. In
practice, only a few tools implement SEMAT Essence. Most of

5th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2017)

Copyright © 2017 for this paper by its authors. 2

these tools are problematic and do not sufficiently satisfy the
requirements for practical developments. Therefore, we develop
a tool called OCMS (Online Checklist Management System),
which improves existing tools. An experiment where students
manage an ET robot contest project using OCMS confirms its
effectiveness and demonstrates that OCMS can help developers
improve efficiency.

F. Felix Timm, Simon Hacks, Felix Thiede and Daniel
Hintzpeter: Towards a Quality Framework for Enterprise
Architecture Models

While Enterprise Architecture Management is an established
and widely discussed field of interest in the context of
information systems research, we identify a lack of work
regarding quality assessment of enterprise architecture models
in general and frameworks or methods on that account in
particular. By analyzing related work by dint of a literature
review in a design science research setting, we provide twofold
contributions. We (i) suggest an Enterprise Architecture Model
Quality Framework (EAQF) and (ii) apply it to a real world
scenario.

G. Ke Dai and Philippe Kruchten: Detecting Technical Debt
through Issue Trackers

Managing technical debt effectively to prevent it from
accumulating too quickly is of great concern to software
stakeholders. To pay off technical debt regularly, software
developers must be conscious of the existence of technical debt
items. The first step is to make technical debt explicit; that is the
identification of technical debt. Although there exist many kinds
of static source code analysis tools to identify code-level
technical debt, identifying non-code-level technical debt is very
challenging and needs deep exploration. This paper proposed an
approach to identifying non-code-level technical debt through
issue tracking data sets using natural language processing and
machine learning techniques and validated the feasibility and
performance of this approach using an issue tracking data set
recorded in Chinese from a commercial software project. We
found that there are actually some common words that can be
used as indicators of technical debt. Based on these key words,
we achieved the precision of 0.72 and the recall of 0.81 for
identifying technical debt items using machine learning
techniques respectively.

H. Suppasit Roongsangjan, Thanwadee Sunetnanta and
Pattanasak Mongkolwat: Multi-Level Compliance
Measurements for Software Process Appraisal

Software process appraisal is to assess whether an implemented
software process complies with a process reference model. To
conduct the appraisal, the appraisal team will request an
organization to provide objective evidence reflecting practice
implementation. Then such evidence will be examined, verified,
and validated to generate appraisal results. This evidence
collection process is done after a process is implemented. To
better prepare for software process appraisal, we argued that the
compliance of a process can be measured prior to its
implementation. In the light of that, we proposed multi-level
compliance measurements to determine process reference model
compliance, in terms of Process Model Readiness Score,
Process Enactment Score, and Process Implementation
Readiness Score. These measurements help provide an insight

analysis of where the problems of practice implementation lie,
i.e. at process modeling, at process enactment, or at process
implementation.

I. Tachanun Kangwantrakool and Thanaruk Theeramunkong:
Towards the Re-engineering of Readiness Review Process
with R2P2 Lifecycle Model

As a lesson learned, the readiness review process of SCAMPI
appraisal is very complicated and effort and cost consuming for
novice organizations who need to know their status of CMMI
practices classification. In SCAMPI appraisal, the readiness
review process is a single process that runs from start to the end.
During the readiness review process, nobody collected database
to improve the process’s performance. Our research towards the
re-engineering of readiness review process aims to enhance the
process performance and reduce effort/cost of the readiness
review process implementation. We design our R2P2 Lifecycle
Model to provide the benchmark of readiness review process
relative to Capability Maturity Model Integration (CMMI)
practices implementation. The R2P2 Lifecycle Model describes
the requirements, activities, and practices associated with the
readiness review process that composes the model. The total of
49 appraisals data are used to establish, evaluate, and enhance
the performance and efficiency of the R2P2 Lifecycle Model.
This paper presents our conceptual view of the R2P2 Lifecycle
Model and a lesson learned from the preliminary development
of the model. We are at the first stage of the R2P2 Lifecycle
Model development by using 30 historical appraisals cases for
root causes analyzing of the weakness of readiness review
process. Therefore, we will use this lesson learned to enhance
the R2P2 Lifecycle Model in next stage.

V. SUMMARY OF THE DISCUSSIONS
About 25 researchers attended the workshop and participated in
the discussions. The author-discussant model was well received
by the participants and led to intensive discussions among them.

To conclude, in the course of this workshop the participants
proposed and discussed different approaches to measure and
quantify relevant aspects of software development. For
Especially the discussions led to constructive feedback, deeper
insights, and hopefully some take-aways for all participants.

VI. ACKNOWLEDGMENTS
Many people contributed to the success of this workshop. First,
we want to give thanks to our invited speaker and the authors
and presenters of the accepted papers. Furthermore, we want to
express our gratitude to the APSEC 2017 organizers; they did a
perfect job. Finally, we are glad that these people served on the
program committee (some of them for many years) and
supported the workshop by soliciting papers and by writing peer
reviews:

• Matthias Vianden, Aspera GmbH, Aachen, Germany

• Wan M.N. Wan Kadir, UTM Johor Bahru, Malaysia

• Maria Spichkova, RMIT University, Melbourne, Australia

• Taratip Suwannasart, Chulalongkorn Univiversity, Thailand

• Tachanun Kangwantrakool, ISEM, Thailand

5th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2017)

Copyright © 2017 for this paper by its authors. 3

• Jinhua Li, Qingdao University, China

• Apinporn Methawachananont, NECTEC, Thailand

• Nasir Mehmood Minhas, PMAS - AAUR Rawalpindi
Pakistan

• Chayakorn Piyabunditkul, NSTDA, Thailand

• Ashish Sureka, Ashoka University, India

• Sansiri Tanachutiwat, Thai German Graduate School of
Engineering, TGGS, Thailand

• Hironori Washizaki, Waseda University, Japan

• Hongyu Zhang, The University of Newcastle, Australia

5th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2017)

Copyright © 2017 for this paper by its authors. 4

