
Automatically Identifying Dead Fields in Test Code
by Resolving Method Call and Field Dependency

Abdus Satter∗, Nadia Nahar† and Kazi Sakib‡
Institute of Information Technology, University of Dhaka, Dhaka, Bangladesh

Email: ∗bit0401@iit.du.ac.bd, ‡nadia@iit.du.ac.bd, §sakib@iit.du.ac.bd

Abstract—Dead fields are the unused setup fields in the test
code which reduce the comprehensibility and maintainability
of a software system. A test class contains dead fields when
developers initialize setup fields without analyzing the usage
of fields properly. Manually identifying dead fields to remove
from the code is a time consuming and error-prone task. In
this paper, a technique named Dead Field Detector (DFD) has
been proposed to detect dead fields automatically. The technique
constructs Call Graph (CG) and Data Dependence Graph (DDG)
from test code to find method invocation and field dependency
relationships, respectively. It identifies the fields initialized in the
setup method and its invoked methods from CG. It finds setup
fields by collecting the initialized fields and their dependent fields
from DG. To determine the usage of the setup fields, it checks the
bodies of the test methods and their invoked methods obtained
from CG. All the unused setup fields are separated from the
used fields and considered as dead fields. In order to evaluate
DFD, an open source project named eGit was used. The result
analysis shows that DFD has identified 14.03% more setup fields
and 60.98% more dead fields than an existing technique named
TestHound for eGit.

Index Terms—Test Smell, Software Maintenance, Dead Field

I. INTRODUCTION

A dead field is an initialized setup field in the test code
which has never been used by any test method [1]. A test
class may contain one or more dead fields when developers
declare and initialize setup fields without considering their
usages in the test methods. A dead field is not a programming
error or bug, and it is considered as a test smell. Like
other smells, it reduces the test code maintainability and
comprehensibility. It adds unnecessary code in the test class
and creates misunderstanding among the developers. When a
new developer starts working in a test class, she has to go
through the whole code to understand the purpose of each
declared field. Since dead fields have no usage, analyzing these
fields induces unnecessary time and effort. Dead field also adds
unnecessary code to the production class because production
code is written from the test code in Test Driven Development
(TDD) approach [2].

Manually scrutinizing the test code to find dead fields is
a time consuming and error-prone task. However, several
challenges are associated to the automatic detection of dead
fields. The first challenge is to find initialized setup fields,
because a setup field may be initialized by a setup method
directly or indirectly through invoking other methods. The
second challenge is to find the usage of setup fields since
a test method may directly use a setup field, or invoke a non-

test method that uses the field. For instance, a test method, m1

invokes a method, m2, and m2 invokes another method m3.
A setup field, f may not be used by m1. However, f may be
used by m3. The third challenge is to resolve field dependency
to find the usage of a field. A field, fx may not be used by any
test method directly or indirectly. It may be used to initialize
another setup field used by another test method.

Martin Fowler first introduced the term - code smell and
showed how code smells affect software maintainability [3].
Later, van Deursen introduced the concept of test smell in test
code [4]. Bavota conducted an empirical study on the impact
and distribution of test smells in test code maintenance [5]. The
study showed that test smells occurred quite frequently in test
code, and these had a negative impact on the software main-
tenance. Greilar et al. proposed five new test smells including
dead field, and developed a tool named TestHound to identify
the smells automatically [1]. However, the tool cannot identify
setup fields correctly due to not resolving field dependency
among the fields and method call dependency in a test class.
Stefan et al. proposed a rule-based tool named TestLint to
find test smells automatically [6]. The tool cannot detect dead
field because no rule was defined for the identification. van
Rompaey proposed a metric-based approach to identify eager
test smell, but the author did not provide any metric to detect
dead field automatically [7], [8].

In this paper, a technique named Dead Field Detector (DFD)
has been proposed to find dead fields in the test code. Usually,
a setup field may be initialized by the setup method or its
invoked methods. So, DFD constructs a call graph to define the
caller-calling relationships among the methods and identifies
all the methods invoked by the setup method. A setup field
may depend on other fields for its initialization. To identify
those fields and resolve field dependency, a data dependency
graph is generated. In order to identify setup fields, DFD
parses the test code and finds the setup method. Later, it
obtains all the methods invoked by the setup method from the
call graph and parses their bodies to detect initialized fields.
The data dependency graph is traversed to find the fields on
which the identified setup fields are dependent. Since header
fields are those fields that are initialized directly without
invoking the setup method, these fields are also marked as
setup fields. To identify the usage of the setup fields, the
technique parses all test methods. A test method may invoke
another method, so all the invoked methods of the test methods
are also obtained from the call graph. Next, the body of each

5th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2017)

Copyright © 2017 for this paper by its authors. 51



identified method is checked to find which setup fields are used
by that method. Those fields along with their dependent fields
obtained from the data dependence graph are marked as used
setup fields. At last, all the unused fields are separated from
the setup field list and those are considered as dead fields.

In order to check the accuracy of DFD, an experimental
analysis was performed on an open source project named
eGit. For the experimentation, DFD was implemented in Java,
and an existing technique named TestHound [1] was used.
Later, both techniques were run on the test beds and Manual
Inspection (MI) was also performed on these projects. The
comparative result analysis shows that DFD has detected
14.03% more setup fields and 60.98% more dead fields than
TestHound in eGit due to identifying all the setup fields and
header fields in the super classes, resolving field dependency
among setup fields, and analyzing method call dependency.
All the results found by DFD have been compared to MI and
both techniques have provided the same setup fields and dead
fields.

II. MOTIVATIONAL EXAMPLE

There are several problems associated to the presence of
dead fields in test code such as increasing size of the project
by adding unnecessary code, introducing code smells, making
code hard to adapt any change in the code, creating misap-
prehension while refactoring production code and so on [9].
All these problems are responsible to reduce maintainability
of the code. An example case is described in Fig. 1 which
demonstrates how dead fields affect code maintainability.

Fig. 1: Code Snippet Depicting the Impact of Dead Field on
Software Maintenance

In Fig. 1, there are three production classes which are
Account, GoogleAccount and FacebookAccount. A test class
named AccountTest is also depicted in the sample code.
AccountTest class just uses the account object but other
two fields named googleAccount and facebookAccount are
initialized in the setup method but these are not used in
any test method. So, these fields are dead fields. Now, if it
is required to remove GoogleAccount and FacebookAccount
from the production, it is essential to remove googleAccount
and facebookAccount fields from the AccountTest class. While
performing this change, if this issue is not considered, the test
class will not run as two unnecessary fields are initialized in
the class. However, if these two dead fields are removed from
the test class, there will be no problem to make this change
because AccountTest class only depends on Account class.

Another case is described in Fig. 2 and Fig. 3 where
dead fields decrease code maintainability by increasing the
size of production code. In this case, the sample code is
written following Test Driven Development (TDD) approach.
In Fig. 2, there is a test class named ProductServiceTest which
contains five fields - dummyProduct, dbConnector, dbContext,
productRepo and productService. All the fields are initialized
in the setup method, so these fields are setup fields. There
are two test methods in the class, and these test methods use
two fields which are productService and dummyProduct. So,
dbConnector, dbContext and productRepo are dead fields in
this scenario.

Fig. 2: Sample Test Code Containing Dead Fields

Now, in TDD, the test class, ProductServiceTest is written
first and production code are derived from that class. If the
dead fields are not removed from the test class, five classes
will be generated which are Product, DatabaseConnector,
DatabaseContext, ProductRepository and ProductService. A
sample code illustrating these classes is shown in Fig. 3.

Fig. 3: Production Code Written from Fig. 2

Since in ProductServiceTest, test methods - testAddProduct
and testRemoveProduct invoke two methods of productService
object (as shown in Fig. 2), according to TDD, ProductService
class holds two methods - addProduct and removeProduct. In
the setup method, two fields dbConnector and dbContext are
used for the instantiation of productRepo (as shown in Fig. 2).
So, the constructor of ProductRepository class will take two
parameters of type DatabaseConnector and DatabaseContext
(as depicted in Fig. 3).

The important observation is that many additional produc-
tion codes have been generated from the test class Product-
ServiceTest. However, if the dead fields have been removed,
only two classes will be derived from the test class instead of
five, and these are Product and ProductService. The production
code will then become more maintainable and comprehensible.

III. RELATED WORK

Dead field is one of the common test smells which reduces
the quality of test code. Its presence indicates the incomplete

5th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2017)

Copyright © 2017 for this paper by its authors. 52



or poorly written test code that affects software maintenance.
Although the smell has been recently discovered, several
researches have been carried out to understand the impact of
test smells. Few automatic techniques have been proposed to
detect test smells in the test code. Most significant works in
this domain have been explained as follows.

van Deursen et al. coined the term test smell and defined
it as symptoms of poor test code quality [10]. They proposed
eleven different test smells such as Assertion Roulette, Eager
Test, Indirect Testing, Mystery Guest, General Fixture, etc.
They showed how these test smells reduce the maintainability
of test code. To identify and remove these smells, they
discussed the characteristics of the smells and refactoring
technique. However, no automatic technique was provided to
detect dead field because it was not identified that time.

Gabriele et al. conducted an empirical analysis to perceive
the distribution and impact of unit test smells in software
maintenance [5]. Two studies were conducted where one
of these was exploratory study and another was controlled
experiment. Sixteen open source and two industrial projects
were studied in the exploratory study to know the distribution
of test smells. It was found from the study that test smells were
widely spread throughout the projects. Twenty masters student
were asked to understand the smelly projects in the controlled
experiment. The students faced difficulties in understanding
the test code of the projects due to the existence of the
smells. They also found the projects difficult to perform some
maintenance tasks that were used in the controlled experiment.
Although the empirical analysis provides a notion about the
distribution and impact of test smell, the authors did not
provide any technique to automatically detect dead fields in
test code. The reason is that the purpose of the study was only
to gain insight about the impact and distribution of test smells
in open source and industrial projects.

Rompaey et al. proposed a metrics-based approach to find
two different test smells - test fixture and eager test [7]. To
detect test fixture, three metrics were used which were setup
size, fixture size and fixture usage. The authors calculated
setup size by accumulating the number of production type
referred in the test class and the number of methods or
attributes of non test objects. They defined fixture size as
the total number of fixture elements and production types
in test code. To identify eager test smell, they calculated the
number of methods in the production code invoked by a test
case. The proposed technique showed promising results for the
experimental project ArgoUML. However, the metrics used in
the approach are insufficient to detect dead field correctly. The
reason is that the characteristics of dead field are different from
test fixture and eager test. Satter et al. proposed and developed
a static code analysis tool that can detect dead fields in a single
test file which does not inherit any test fixture [11]. In the real
life projects, common test fixtures are often reused and many
indirect dependencies are seen [9]. The tool fails to detect all
the dead fields correctly due to not considering base class test
fixture, initialization of header fields, and indirect usage of
setup fields by non-test methods.

Stefan Reichart et al. integrated static analysis technique in
TestLint to detect several test smells such as Guarded Test,
OverReferencing, Assertionless Test, Long Test, Overcom-
mented Test, etc. [6]. To identify the smells, the technique
parses the test code, constructs Abstract Syntax Tree, finds
patterns, and calculates metrics. The authors used a set of rules
generated from the properties of the test smells [4], [12], [13],
for instance, finding at least one valid assertion statement to
detect Assertionless Test, figuring out conditional branches in
a test case to identify Guarded Test, etc. However, the authors
did not address any rule or metric for dead field.

In order to understand the structural and maintenance prop-
erties of test code, Manuel et al. proposed a tool named
TestQ [8]. A visualization module was plugged into the tool to
quantify test smelliness and explore test suites from different
granular levels. To detect eleven different test smells proposed
by Deursen [7], the authors used a list of metrics. For example,
number of assert statements for Assertionless, number of assert
statements containing insufficient description for Assertion-
Roulette, number of invoked methods in the production code
for EagerTest, and so on. The tool allows the user to customize
the threshold values of the metrics that best fit for detecting
the smells. It can identify the test smells and the level of
smelliness. However, the authors did not provide any metric
for dead field.

Usually, a test fixture defines the system under test [14].
Greiler et al. analyzed the test fixture of test code and proposed
five test smells such as Test Maverick, Obscure In-Line Setup,
Lack of Cohesion of Test Methods, Vague Header Setup, and
Dead Field [1]. They defined dead fields as the initialized
setup fields that have never been used by any test method in
the test code. The authors developed a tool named TestHound
to detect the smells. The tool takes the test code with the
dependencies and calculates several metrics such as number
of declared variables, number of header fields, number of used
header fields, number of test methods, etc. Next, it identifies
test smells in the code based on the metric values. The authors
conducted an experimental analysis and found that the tool
performed well in identifying the smells. However, it could
not detect all the dead fields correctly because it could not
map the initialization and the usage of setup fields properly.

Several studies showed the adverse effect of test smells in
software maintenance. To increase the comprehensibility and
maintainability of test code, studies suggested that test smells
should be identified and removed. Manually detecting test
smells in large software systems is time consuming and error-
prone. Literature contains several techniques to automatically
identify test smells, for example, metric-based technique [6],
[7], static code analysis [1], rule-based approach [6], etc.
However, none of the techniques can identify all the dead
fields correctly due to not analyzing method call dependency
and data dependency in test code.

IV. PROPOSED TECHNIQUE

In this paper, a technique named Dead Field Detector
(DFD) has been proposed to identify dead fields automatically.

5th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2017)

Copyright © 2017 for this paper by its authors. 53



DFD comprises four steps - Call Graph Generation, Data
Dependency Graph Generation, Setup Field Identification, and
Dead Field Detection. Each of the steps is discussed below.

A. Call Graph Generation

A setup method may invoke one or more methods to
initialize a setup field. Again, a test method may call one
or more non-test methods for its execution. The test method
may not have any statement that uses a setup field. However,
its invoked methods may use the setup field. So, it is required
to identify the invocation relationship among the methods. To
find the relationship, Algorithm 1 has been devised.

Algorithm 1 Generating Call Graph and Finding Invoked
Methods
Require: Test code (F ) of a given project for which call graph will be generated
1: procedure CONSTRUCTCALLGRAPH(F )
2: parse F to find all the methods and store into M
3: Map < Method, List < Method >> adj
4: for each m ∈ M do
5: for each st ∈ m.body.statements do
6: if st is a method invocation statement then
7: for each m′ ∈ M do
8: if m == m′ then
9: continue

10: end if
11: if st.name == m.name & st.argumentsTypes ==

m.parametersTypes & st.returnType == m.returnType then
12: adj[m].add(m′)
13: end if
14: end for
15: end if
16: end for
17: end for
18: return adj
19: end procedure
20: procedure FINDINVOKEDMETHODS(m, adj)
21: Y = ∅
22: Queue q = ∅
23: q.push(m)
24: while q 6= ∅ do
25: x = q.pop()
26: Y = Y ∪ x
27: for each x′ ∈ adj[x] do
28: q.push(x′)
29: end for
30: end while
31: return Y
32: end procedure

In order to construct a call graph from the test code of
a given project and find method call dependencies from the
graph, Algorithm 1 has been proposed. Here, a call graph
is a directed graph where each node denotes a method, and
an edge from node a to b (i.e., a −→ b) represents a
invokes b for its execution. In the algorithm, the procedure
ConstructCallGraph takes the test code as input for which
call graph will be generated. The test code is parsed to obtain
all the declared methods and store those into a list, M . A map
named adj is declared in Line 3 of Algorithm 1 to store in-
vocation relationship among the methods. For each method m
in M , all the statements found in the method body are parsed
to get method invocation statements as shown in Algorithm 1
from Line 5 - 10. Method name, argument type and return type
are obtained from each invocation statement to match with the
signature of other methods. If a matching is found for any of
the declared methods, the respective method is stored in adj as

Algorithm 2 Resolving Field Dependency
Require: Test code (F ) of a given project for which data dependency graph will be

generated
1: procedure CONSTRUCTDATADEPENDENCYGRAPH(F )
2: statements = parse F to find all the statements in F
3: fields = parse F to obtain all the fields
4: Map < Field, List < Field >> G
5: for each s ∈ statements do
6: if s is a field declaration or initialization statement then
7: f = fields in s
8: x = declared field in s
9: y = f \ x

10: G[x] = G[x] ∪ y
11: end if
12: end for
13: return G
14: end procedure
15: procedure VISIT(nd, G)
16: Y = ∅
17: Queue q = ∅
18: q.push(nd)
19: while q 6= ∅ do
20: x = q.pop()
21: Y = Y ∪ x
22: for each x′ ∈ G[x] do
23: q.push(x′)
24: end for
25: end while
26: return Y
27: end procedure

an invoked method of m (Algorithm 1, Line 11-12). Next, the
procedure returns adj as shown in Algorithm 1, Line 18. The
second procedure named FindInvokedMethods uses adj to
find all the methods invoked by the given method m. In the
procedure a list named Y is declared to store the invoked
methods. A queue, Q is initialized with m to find all the
methods that are accessible from m using adj. In each iteration
of the while loop, Q is popped to get the unvisited method x
in the call graph (adj). Next, x is added to Y as an invoked
method of m. All the methods called by x are obtained and
added to Q using a for loop in Algorithm 1 Line 27-29. After
finishing the iteration, the procedure returns Y as the list of
methods on which m is dependent.

B. Data Dependency Graph Generation

A setup field, f may depend on another setup field, f ′ for
its initialization. f ′ may not be used by any test method, but
f may be used for the execution of at least one test method
directly or indirectly. In this case, f ′ should be marked as
used setup field. In order to find the dependency relationship
among the setup fields, a data dependency graph is required.
Each node in the graph denotes a field, and an edge from
field x to y (i.e. x −→ y) expresses that x depends on y. To
construct the graph and find all the dependent fields of a given
setup field, Algorithm 2 has been devised.

To construct data dependency graph from the given test code
F , a procedure named ConstructDataDependencyGraph
is shown in Algorithm 2. In the procedure, all the statements
in F are parsed to identify the fields declared in the code.
A map G is declared in Algorithm 2 Line 4 to store which
field is dependent on which other fields. The for loop iterates
on the statements to detect field declaration or initialization
statement (Algorithm 2 Line 5-12). If a declaration statement

5th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2017)

Copyright © 2017 for this paper by its authors. 54



Algorithm 3 Finding Setup Field
Require: Test code FL which contains setup fields and test cases, call graph CG, and

data dependency graph DG
1: procedure IDENTIFYSETUPFIELD(FL, CG, DG)
2: p = parse setup methods from FL
3: M = ∅
4: M = M ∪ p
5: M = M ∪ FindInvokedMethods(p, CG)
6: F = parse all fields
7: H = parse all header fields in FL
8: S = ∅
9: S = S ∪ H

10: for each m ∈ M do
11: for each st ∈ m.body.statements do
12: for each f ∈ F do
13: if st initializes f then
14: S = S ∪ f
15: S = S ∪ visit(f,DG)
16: end if
17: end for
18: end for
19: end for
20: return S
21: end procedure

is found, it is parsed to identify the declared field x and its
dependent fields y (Algorithm 2 Line 7-9). Later, y is stored
into G against the field x as shown in Algorithm 2 Line 10.
At last, the procedure returns the generated data dependence
graph G for F (Algorithm 2 Line 13). Another procedure
named V isit is shown in Algorithm 2 Line 15 to traverse the
data dependence graph G, and find all the fields on which the
given node, nd is dependent. A set, Y is declared to store all
the fields on which nd depends. To traverse G, a queue, q is
declared, and nd is pushed as starting node (Algorithm 2 Line
17 - 18). The while loop iterates until q is empty to find all
the nodes that can be visited from nd (Algorithm 2 Line 19).
In each iteration, q is popped and the corresponding field x
is stored into Y . The for loop iterates on the adjacent nodes
of x and these nodes are pushed to q (Algorithm 2 Line 22
- 24). After traversing all the nodes in G that can be visited
from nd, the procedure returns Y as a set of fields on which
nd is dependent (Algorithm 2 Line 26).

C. Setup Field Detection

Since unused setup fields are recognized as dead fields, all
the setup fields in the test code are required to be identified
for dead field detection. The process of finding setup fields is
shown in Algorithm 3.

To identify setup fields, a procedure named
IdentifySetupF ield is defined in Algorithm 3. The
procedure parses the given test code FL to identify the
setup method as shown in Algorithm 3 Line 2. Next, it calls
FindInvokedMethods of Algorithm 1 to obtain all the
methods invoked by the setup method directly or indirectly.
All these methods are stored in M (Algorithm 3 Line 5).
The procedure parses FL to obtain all the declared fields,
and it stores the fields in F . Since header-fields (fields which
are initialized directly without invoking the setup method)
are also considered as setup fields, these fields are identified
in FL and saved in S (Algorithm 3 Line 7 - 9). For each
method m ∈M , every statement st ∈ m.body.statements is

Algorithm 4 Identifying Dead Field
Require: Test code F containing test cases, call graph CG, data dependency graph

DG, a set of setup fields S
1: procedure IDENTIFYDEADFIELD(F , CG, DG, S)
2: T = parse all test methods in F
3: U = ∅
4: for each t ∈ T do
5: M = t ∪ FindInvokedMethods(t, CG)
6: for each m ∈ M do
7: for each st ∈ m.body.statements do
8: for each f ∈ S do
9: if st uses f then

10: U = U ∪ f ∪ visit(f,DG)
11: end if
12: end for
13: end for
14: end for
15: end for
16: return S\U
17: end procedure

checked to determine whether st initializes any field f ∈ F
(Algorithm 3 Line 10 - 19). If such f is found, the procedure
visit (defined in Algorithm 2) is invoked to identify all
the fields on which f is dependent directly or indirectly
(Algorithm 3 Line 15). These fields are considered as setup
fields because these are required for the initialization of f .
All the fields are stored in S which is returned as a set of
setup fields (Algorithm 3 Line 20).

D. Dead Field Detection

After identifying all the setup fields from the previous step,
usage of these fields are analyzed for dead field detection. A
test method may have a statement in its body that uses a setup
field. Again, it may invoke another non-test method that may
have an usage statement of the field. These cases are checked
for finding the usages of the setup fields. After finding all
the used setup fields, unused setup fields are separated for
recognizing the dead fields. Algorithm 4 has been presented
to deal with these cases.

In Algorithm 4, the procedure IdentifyDeadField takes
the test code F containing test cases, its corresponding call
graph CG, data dependency graph DG, and the identified
setup field set S to detect dead fields in F . It parses all the
test methods (i.e. test cases) from F and stores these in a list,
T to find the usages of the setup fields (Algorithm 4 Line
2). An empty set U is declared to store all the used setup
fields as shown in Algorithm 4 line 3. A nested for loop is
defined where the outer for loop iterates on the test methods
T to determine the used setup fields. For each method t ∈ T ,
M is used to store t and its invoked methods through calling
FindInvokedMethods (defined in Algorithm 1). The reason
is that t may not use a setup field directly but its invoked
methods may use the field. The field should be marked as used
setup field, because t indirectly depends on the field for its
execution. For each method m ∈M , every statement st in m
is checked whether st uses any setup field f ∈ F (Algorithm 4
Line 6 - 9). If such f is found, f and all other fields on which
f is dependent are marked as used setup fields and inserted
into U . This is because a setup field may not be used by any
test method but it may be used for the initialization of another

5th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2017)

Copyright © 2017 for this paper by its authors. 55



setup field which is used by at least one test method. So, the
procedure visit (defined in Algorithm 2) is invoked to identify
the list of setup fields on which f is dependent. After that, it
marks these fields as used setup field (Algorithm 4 Line 10).
After identifying all the used setup fields, unused setup fields
are separated from S and these are considered as dead fields.
The procedure returns the set of dead fields obtained through
set subtraction operation, that is S\U (Algorithm 4 Line 16).

V. IMPLEMENTATION AND RESULT ANALYSIS

This section focuses on the evaluation of DFD in terms
of accuracy in dead field detection. For the evaluation, the
technique was implemented in Java and the source code
is available in https://tinyurl.com/ybk29dss. A popular open
source project named eGit(http://www.eclipse.org/egit/ ) was
used as the experimental dataset. eGit contains 130K lines
of code, 85 test classes and 10 modules. Another tool named
TestHound (TH) [1] was used for the comparative analysis
with DFD. At last, Manual Inspection (MI) was carried out
to make sure the correctness of the results provided by DFD.
For MI, twenty masters students and five professional Java
developers were employed. They scrutinized the dataset to
find the setup fields and dead fields, and cross-checked the
results. Detailed results for each module of eGit along with
the comparative analysis are explained below.

Comparative result analysis for org.eclipse.egit.core.
test.op: According to TABLE I, there are 19 test classes in
this package where 105 setup fields and 14 dead fields have
been identified by DFD. On the other hand, TH has detected
92 setup fields and 5 dead fields in this package. Here, most
of the test classes use the test fixture of GitTestCase but this
class contains a header field named testUtils which has not
been used by any test case of the test classes extending it.
Since DFD has detected all the header fields of super class
and considered these as setup fields, the outcome of DFD is
the same to MI. However, due to not considering header fields
in the super class as setup fields, TH could not detect all the
dead fields in the test code.

Comparative result analysis for org.eclipse.egit.core.test.
rebase: This package contains a single test class named
RebaseInteractivePlanTest that extends another class named
GitTestCase. DFD and TH both have identified all the setup
fields in RebaseInteractivePlanTest as shown in TABLE II.
However, there is a header field named testUtils which has
not been considered as setup field by TH. Thus, TH could not
detect this dead field. Since DFD takes all the header fields
declared in both parent class and child class, it has found
one dead field and 7 setup fields which is equal to the result
obtained by MI.

Comparative result analysis for org.eclipse.egit.core.test.
internal.mapping: There is a single test class in this package
which has a parent class named GitTestCase. In TABLE III,
the number of dead fields identified by DFD and TH is the
same. However, there is a single value difference between the
number of setup fields identified by DFD and TH. The reason

TABLE I: Comparative Result Analysis for
org.eclipse.egit.core.test.op

Class Name No. of Setup fields No. of Dead Fields
TH DFD MI TH DFD MI

AddOperationTest 5 5 5 0 0 0
BranchOperationTest 4 5 5 0 1 1
CloneOperationTest 4 4 4 0 0 0
CommitOperationTest 5 7 7 0 0 0
ConnectProviderOperation
Test

2 3 3 0 1 1

CreatePatchOperationTest 5 6 6 0 1 1
DiscardChangesOperation
Test

7 7 7 1 1 1

EditCommitOperationTest 5 6 6 0 1 1
ListRemoteOperationTest 6 6 6 0 0 0
MergeOperationTest 4 5 5 0 1 1
PushOperationTest 6 6 6 0 0 0
RebaseOperationTest 5 6 6 0 1 1
RemoveFromIndex Oper-
ationTest

6 7 7 2 2 2

ResetOperationTest 4 5 5 0 1 1
RewordCommitsOperation
Test

4 5 5 0 1 1

SquashCommitsOperation
Test

6 7 7 0 1 1

StashCreateOperationTest 4 5 5 0 0 0
TagOperationTest 5 5 5 2 2 2
TrackUntrackOperationTest 5 5 5 0 0 0

TABLE II: Comparative Result Analysis for
org.eclipse.egit.core.test.rebase

Class Name No. of Setup fields No. of Dead Fields
TH DFD MI TH DFD MI

RebaseInteractivePlanTest 6 7 7 0 1 1

is that DFD takes the whole test fixture of the super class
whereas TH ignores initialized header fields in the super class.

TABLE III: Comparative Result Analysis for
org.eclipse.egit.core.test.internal.mapping

Class Name No. of Setup fields No. of Dead Fields
TH DFD MI TH DFD MI

HistoryTest 6 7 7 5 5 5

Comparative result analysis for org.eclipse.egit.core.test:
In TABLE IV, comparative results for 13 test classes of this
package has been depicted where TH has identified 53 setup
fields, and DFD has detected 64 setup fields as well as 9
dead fields. This is because of not considering header fields in
super class as explained earlier. Besides, there are some classes
like EclipseGitProgressTransformerTest, LinkedResourcesTest,
and these classes have not used the super class fixture. DFD,
TH and MI have produced the same results for the test class
EclipseGitProgressTransformerTest. On the other hand, DFD
has identified 4 dead fields for LinkedResourcesTest, but TH
could not find any dead fields. The reason is that DFD has
identified all initialized fields in that class through generating
data dependency graph and resolving field dependency. TH
has ignored the field initialization statements and field depen-
dencies.

5th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2017)

Copyright © 2017 for this paper by its authors. 56



TABLE IV: Comparative Result Analysis for
org.eclipse.egit.core.test

Class Name No. of Setup fields No. of Dead Fields
TH DFD MI TH DFD MI

AdaptableFileTreeIterator
Test

4 5 5 0 1 1

CommitUtilTest 6 7 7 0 1 1
ContainerTreeIterator Re-
sourceFilterTest

3 4 4 0 0 0

EclipseGitProgressTrans
formerTest

2 2 2 0 0 0

FileDeleteHookTest 5 6 6 0 1 1
GitProjectSet
CapabilityTest

3 3 3 0 0 0

GitURITest 1 1 1 0 0 0
LinkedResourcesTest 11 12 12 0 4 4
ProjectReferenceTest 0 4 4 0 1 1
RepositoryCacheTest 5 6 6 0 0 0
RevUtilsTest 4 5 5 0 1 1
SubmoduleAndContainer
TreeIteratorTest

9 9 9 0 0 0

UtilsTest 0 0 0 0 0 0

Comparative result analysis for org.eclipse.egit.core.
synchronize.dto and org.eclipse.egit.core.storage:
Results for org.eclipse.egit.core.synchronize.dto and
org.eclipse.egit.core.storage have been presented in TABLE
V and TABLE VI, respectively. Both packages comprise
a single test class each and these classes extend the same
super class GitTestCase. In GitSynchronizeDataTest, TH has
identified 3 setup fields and no dead field, but actually there
are 4 setup fields. Among these fields, one is dead field which
has been identified by DFD. There is a single dead field in
GitBlobStorageTest and DFD has detected the field. However,
TH could not identify the dead field. The reason is that
TH has not considered the header fields in the parent class.
However, DFD has identified all the header fields and parent
classs setup fields through traversing the data dependence
graph and resolving data dependency.

TABLE V: Comparative Result Analysis for
org.eclipse.egit.core.synchronize.dto

Class Name No. of Setup fields No. of Dead Fields
TH DFD MI TH DFD MI

GitSynchronizeDataTest 3 4 4 0 1 1

TABLE VI: Comparative Result Analysis for
org.eclipse.egit.core.storage

Class Name No. of Setup fields No. of Dead Fields
TH DFD MI TH DFD MI

GitBlobStorageTest 4 4 4 0 1 1

Comparative Result Analysis for org.eclipse.egit.core.
securestorage, org.eclipse.egit.core.internal.indexdiff, and
org.eclipse.egit.core: Comparative results for these packages
have been shown in TABLE VII, TABLE VIII, and TABLE
IX, respectively where setup fields and dead fields detected
by TH, DFD and MI are the same. Each test class in these

packages has its own fixture defined within the class. So, there
is no fixture dependency with any super class. Besides, setup
methods of these classes have not invoked any other method
which indicates that all the setup fields have been initialized
in the setup methods. Since, TH and DFD both can identify
header fields and setup fields that are initialized directly by
setup method, the results provided by these approaches are
the same.

TABLE VII: Comparative Result Analysis for
org.eclipse.egit.core.securestorage

Class Name No. of Setup fields No. of Dead Fields
TH DFD MI TH DFD MI

EGitSecureStoreTest 2 2 2 0 0 0

TABLE VIII: Comparative Result Analysis for
org.eclipse.egit.core.internal.indexdiff

Class Name No. of Setup fields No. of Dead Fields
TH DFD MI TH DFD MI

IndexDiffCacheTest 5 5 5 1 1 1
IndexDiffDataTest 0 0 0 0 0 0

TABLE IX: Comparative Result Analysis for
org.eclipse.egit.core

Class Name No. of Setup fields No. of Dead Fields
TH DFD MI TH DFD MI

GitMoveDeleteHookTest 4 4 4 0 0 0

Comparative result analysis for org.eclipse.egit.core.
synchronize: In TABLE X, it has been seen that there are
three test classes in this package which are GitResourceVari-
antTreeSubscriberTest, GitResourceVariantTreeTest and Three-
WayDiffEntryTest. First two test classes extend GitTestCase,
and the last one inherits LocalDiskRepositoryTestCase. Here
the difference in the number of dead fields and setup fields
identified by DFD and TH is due to not considering super
classs header fields issue as explained earlier. DFD keeps this
issue under consideration and identifies all setup fields and
dead fields by analyzing usage of those fields.

TABLE X: Comparative Result Analysis for
org.eclipse.egit.core.synchronize

Class Name No. of Setup fields No. of Dead Fields
TH DFD MI TH DFD MI

GitResourceVariant
TreeSubscriberTest

7 8 8 0 1 1

GitResourceVariantTreeTest 2 3 3 0 1 1
ThreeWayDiffEntryTest 6 8 8 5 7 7

DFD and TH, both can identify dead fields in the test code.
However, TH cannot detect all the dead fields correctly due
to not handling all the cases properly such as setup fields
initialization in a method invoked by setup method, field
dependency among setup fields, and usage of setup fields

5th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2017)

Copyright © 2017 for this paper by its authors. 57



by test methods indirectly. On the other hand, DFD can
appropriately deal with those and as a result, it detects dead
fields correctly in the test code.

VI. THREATS TO VALIDITY

In this section limitations of the experimental study are
discussed in terms of internal, external and construct validity.

A. Internal Validity

In the experiment, twenty five subjects were employed to
identify dead fields manually in the dataset. Since there is
no control over the skills of the subjects, it may happen that
some dead fields and setup fields may be missed or incorrectly
identified. To decrease the risks of the threat, each subject was
asked to identify the dead fields and setup fields, and verify
the results with other. When any inconsistency was found, they
again scrutized the test code. Cross-validation was carried out
multiple times to ensure the correctness of the results. Besides,
to make sure that all the dead fields were correctly identified,
the subjects were asked to remove the fields manually and
check whether the test code runs and there is no impact on
the functionalities of test cases.

B. External Validity

The dataset used in the experiment may not generalize
the population of open source software. However, eGit is
commonly used to analyze test code and test smells [15]. It
was also used for the evaluation of TestHound [1].

C. Construct Validity

Existing dead code detection techniques may be used to
identify dead fields but dead fields are different from dead
code. A field is marked as dead code if it is declared but not
used or accessed by any other field or method [3]. Since dead
field is accessed (i.e., initialized) in the setup method, it cannot
be considered as dead code.

It has not been shown the number of setup fields and dead
fields incorrectly identified in the result analysis due to the
space limitation. However, the subjects carefully examined
the results of DFD and found no field that was incorrectly
identified as dead field or setup field. The source code of the
developed tool has been open sourced so that other can use it.

VII. CONCLUSION

The presence of a dead field reduces the maintainability
of a software system by creating misapprehension among
the developers and adding unnecessary code. To remove this
test smell, dead fields are required to be located in the test
code. Manually identifying dead fields in a large software
system is time consuming and error-prone. In this paper, an
automatic technique named Dead Field Detector (DFD) has
been proposed to correctly detect dead fields. The technique
was also implemented in the form of a software tool.

DFD parses the test code to identify the declared fields and
setup method. It constructs call graph of the code to find the
methods invoked by the setup method. It identifies all the fields
x initialized by the methods. Fields y on which x depends are

identified by generating and traversing data dependence graph.
x and y are then marked as setup fields. The technique finds
the used setup fields by checking the usage statements in the
test methods and their invoked methods obtained from the call
graph. Finally, the detected unused setup fields are marked as
dead fields.

In order to assess DFD, an experimental analysis was
conducted on an open source project named eGit. An existing
technique named TestHound (TH) was also used in the exper-
iment, and Manual Inspection (MI) was carried out to ensure
correctness of the results. The comparative result analysis
shows that DFD has detected 14.03% more setup fields and
60.98% more dead fields than TH in eGit. The results of DFD
has been compared to MI, and no false positive has been
seen for DFD. In future, the experiment will be conducted
on industrial projects to assess the behavior of DFD.

REFERENCES

[1] Michaela Greiler, Arie van Deursen, and Margaret-Anne Storey. Auto-
mated detection of test fixture strategies and smells. In Proceedings of
the 16th International Conference on Software Testing, Verification and
Validation (ICST), pages 322–331. IEEE, 2013.

[2] Kent Beck. Test-driven development: by example. Addison-Wesley
Professional, 2003.

[3] Martin Fowler. Refactoring: improving the design of existing code.
Pearson Education India, 1999.

[4] Arie van Deursen, Leon Moonen, Alex van den Bergh, and Gerard Kok.
Refactoring test code. CWI, 2001.

[5] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and
David Binkley. An empirical analysis of the distribution of unit test
smells and their impact on software maintenance. In Proceedings of the
28th IEEE International Conference on Software Maintenance (ICSM),
2012, pages 56–65. IEEE, 2012.

[6] Stefan Reichhart, Tudor Gı̂rba, and Stéphane Ducasse. Rule-based
assessment of test quality. Journal of Object Technology, 6(9):231–251,
2007.

[7] Bart Van Rompaey, Bert Du Bois, Serge Demeyer, and Matthias Rieger.
On the detection of test smells: A metrics-based approach for general
fixture and eager test. IEEE Transactions on Software Engineering,
33(12):800–817, 2007.

[8] Manuel Breugelmans and Bart Van Rompaey. Testq: Exploring structural
and maintenance characteristics of unit test suites. In WASDeTT-1: 1st
International Workshop on Advanced Software Development Tools and
Techniques, 2008.

[9] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano
Di Penta, Rocco Oliveto, Andrea De Lucia, and Denys Poshyvanyk.
An empirical investigation into the nature of test smells. In Proceedings
of the 31st IEEE/ACM International Conference on Automated Software
Engineering, pages 4–15. ACM, 2016.

[10] A. van Deursen, L. Moonen, A. van den Bergh, and G. Kok. Refactoring
test code. In Proceedings of the 2nd International Conference on
Extreme Programming and Flexible Processes (XP2001), pages 92–95.
University of Cagliari, 2001.

[11] Abdus Satter, Amit Seal Ami, and Kazi Sakib. A static code search
technique to identify dead fields by analyzing usage of setup fields and
field dependency in test code. In CDUD@ CLA, pages 60–71, 2016.

[12] Gerard Meszaros. xUnit test patterns: Refactoring test code. Pearson
Education, 2007.

[13] Gerard Meszaros, Shaun M Smith, and Jennitta Andrea. The test
automation manifesto. In Extreme Programming and Agile Methods-
XP/Agile Universe 2003, pages 73–81. Springer, 2003.

[14] Lucas Pereira da Silva and Patrı́cia Vilain. Execution and code reuse
between test classes. In Proceedings of the 14th International Confer-
ence on Software Engineering Research, Management and Applications
(SERA), pages 99–106. IEEE, 2016.

[15] Michaela Greiler, Hans-Gerhard Gross, and Arie Van Deursen. Un-
derstanding plug-in test suites from an extensibility perspective. In
Proceedings of the 17th Working Conference on Reverse Engineering
(WCRE), pages 67–76. IEEE, 2010.

5th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2017)

Copyright © 2017 for this paper by its authors. 58




