
Detecting Technical Debt through Issue Trackers

Ke Dai and Philippe Kruchten

Department of Electrical and Computer Engineering

University of British Columbia

Vancouver, BC, Canada

kedai, pbk@ece.ubc.ca

Abstract—Managing technical debt effectively to prevent it

from accumulating too quickly is of great concern to software

stakeholders. To pay off technical debt regularly, software

developers must be conscious of the existence of technical debt

items. The first step is to make technical debt explicit; that is the

identification of technical debt. Although there exist many kinds

of static source code analysis tools to identify code-level technical

debt, identifying non-code-level technical debt is very challenging

and needs deep exploration. This paper proposed an approach to

identifying non-code-level technical debt through issue tracking

data sets using natural language processing and machine learning

techniques and validated the feasibility and performance of this

approach using an issue tracking data set recorded in Chinese

from a commercial software project. We found that there are

actually some common words that can be used as indicators of

technical debt. Based on these key words, we achieved the

precision of 0.72 and the recall of 0.81 for identifying technical

debt items using machine learning techniques respectively.

Keywords—technical debt; identification; issue tracking data

sets; natural language processing; machine learning

I. INTRODUCTION

Technical debt refers to delayed tasks and immature artifacts
that constitute a “debt” because they incur extra costs in the
future in the form of increased cost of change during evolution
and maintenance [1]. An appropriate amount of technical debt
would accelerate the process of software development; however,
too much of it would impede the progress and even abort the
project [2]. Typically, some startup software companies tend to
incur technical debt strategically to speed up the development at
the early stage of development process for the purpose of
capturing the market. But with the growth of the size and
complexity of the software, it may become increasingly more
difficult to maintain and evolve the product due to intertwined
dependencies between modules or components without paying
off technical debt regularly. As a result, software stakeholders
need to pay off technical debt regularly to prevent it from
accumulating too quickly. Different from bugs or defects
existing in a software system, technical debt is invisible as the
software often works well from users’ perspective and even
developers are often unconscious of the existence of technical
debt. The invisibility of technical debt increases the risks of rigid
software design and huge maintenance cost in the future
significantly. Therefore, it is essentially critical for development
teams to be able to identify technical debt items existing in the
current software system at any point in time as it is the
prerequisite to conduct other management activities of technical
debt including measurement of technical debt, estimation of

effort to be expended, payment of technical debt, risk evaluation,
etc. Once technical debt can be identified systematically,
software development teams would be able to estimate future
budget, prioritize future tasks, allocate limited resources and
evaluate potential risks. They could also make informed
decisions about when technical debt should be paid off to
maximize their profits.

Due to the importance of identification of technical debt, a
number of studies empirically explored various approaches to
detecting technical debt. Some of these researches focused on
employing source code analysis techniques to detect technical
debt. Code smells and automatic static analysis (ASA) are two
most-used source code analysis techniques for the identification
of technical debt. Code smells was first introduced by Fowler et
al. to describe the violation of object-oriented design principles
(e.g., abstract, encapsulation and inheritance) [3], whereas ASA
techniques aim at identifying violations of recommended
programming practices that might degrade some of software
quality attributes (e.g., maintainability, efficiency).

Other studies aimed to identify technical debt of large
granularity that’s undetectable by source code analysis
techniques, such as architecture and requirement technical debt
[10] [11] [12] [13]. Compared to code-level technical debt, the
identification of non-code-level technical debt is not studied
sufficiently and the approaches are limited. To our knowledge,
none of existing approaches can identify all types of technical
debt.

As a complement to existing approaches, we try to identify
non-code-level technical debt through issue trackers. We hope
to acquire developers’ points of view on technical debt and
understand how they communicate technical debt in issue
trackers since they use issue trackers to record, track, prioritize
various kinds of issues in software projects. Further, developers’
standpoints of technical debt will in turn help refine our
understanding of technical debt and should be taken into
consideration for an improved definition of technical debt.

However, it is difficult and impractical to identify technical
debt manually through issue trackers due to substantial effort
involved, especially when a large project comprises a large
number of issues. In this context, we exploited natural language
processing (NLP) and machine learning techniques to automate
the process. NLP techniques were applied to extract features
from unstructured text data and machine learning techniques
were used to decide whether a certain issue is an instance of
technical debt or not. We performed an exploratory study on a
commercial software project to validate the efficacy of our

Partially sponsored by a Canada NSERC grant, a MITACS grant and the

Institute for Computing, Information and Cognitive System (ICICS) at UBC

5th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2017)

Copyright © 2017 for this paper by its authors. 59

approach to the identification of technical debt through issue
trackers. Experimental results demonstrate that our approach is
effective in identifying non-code-level technical debt, especially
requirement debt, design debt, and UI debt, which cannot be
detected by source code analysis techniques.

We address the following questions through this research:

• RQ1: How do software practitioners communicate
technical debt issues in issue trackers?

• RQ2: Are there text patterns that are an indication that
technical debt exist which can be used to identify potential
technical debt using NLP and machine learning techniques
automatically?

The rest of this paper is organized as follows: Section II
discusses related work. Section III describes our approach.
Section IV reports and analyzes experimental results of our
exploratory study. Section V presents the threats to validity.
Finally, we conclude our research and envision future work in
Section VI.

II. RELATED WORK

A. Identification of Technical Debt

Many researches have been done to identify code-level
technical debt. This kind of technical debt can be detected using
static program analysis tools based on the measurement of
various source code metrics. Marinescu proposed metric-based
detection strategies to help engineers directly localize classes or
methods affected by the violation of object-oriented design
principles and validated the approach on multiple large
industrial case studies [4]. Munro et al. refined Marinescu’s
detection strategies by introducing some new metrics and
justification for choosing the metrics and evaluated the
performance of the approach in identifying two kinds of code
smells (lazy class and temporary field) in two case studies [5].
Olbrich et al. investigated the relationship between two kinds of
code smells (god class and shotgun surgery) and maintenance
cost by analyzing the historical data of two major open source
projects, Apache Lucene and Apache Xerces 2 J [6]. Wong et al.
proposed a strategy to detect modularity violations and
evaluated the approach using Hadoop and Eclipse [7]. Besides,
some researchers explored identifying technical debt through
comments in source code [8] [9].

Other researches aimed at exploring approaches to
identifying other types of technical debt such as architecture
technical debt. Brondum et al. proposed a modelling approach
to visualizing architecture technical debt based on analysis of the
structural code [10]. Li et al. proposed to use two modularity
metrics, Index of Package Changing Impact(ICPI) and Index of
Package Goal Focus(IPGF), as indicators of architecture
technical debt [11]. Further they proposed an architecture
technical debt identification approach based on architecture
decisions and change scenarios [12]. The work closest to ours is
the work by Bellomo et al., where manual examination was
conducted on 1,264 issues in four issue trackers from open
source and government projects and 109 examples of technical
debt were identified using a categorization method they
developed [13]. The major difference is that we partially
automated the process of identification while they identified

technical debt items manually. To our knowledge, our study is
the first one that applies NLP and machine learning techniques
to detect technical debt through issue trackers.

B. Mining Issue Tracking Databases

Issue tracking systems are widely used in open source
projects as well as in software industry to record, triage and track
different kinds of issues occurred during the lifecycle of
software: bugs finding, defects fixing, adding new features,
future tasks, requirements updating, etc. They play an important
role in facilitating software development teams to manage
development and maintenance activities and thus promoting the
success of software projects. Some researches have focused on
mining issue tracking databases to retrieve valuable information
for improved definition, development management, quality
evaluation, predictive models, etc.

Antoniol et al. applied NLP and machine learning techniques
(alternating decision trees, naïve Bayes classifier, and logistic
regression) to automate the process of distinguishing bugs from
other kinds of issues, compared the performance of this
approach with that of using regular expression matching and
concluded machine learning techniques outperforms regular
expression matching in terms of predictive accuracy [14].

Runeson et al. developed a prototype tool which detects
duplicate defect reports in issue tracking systems using NLP
techniques, evaluated the identification capabilities of this
approach in a case study and concluded that about 2/3 of the
duplicates can possibly be found using this approach [15]. Wang
et al., Jalbert and Weimer, Sun et al., Sureka and Jalote
performed similar research to address the same problem [16]
[17] [18] [19].

Other work focused on concerned aspects of software quality
attributes, say security. Cois et al. proposed an approach to
detecting security-related text snippets in issue tracking systems
using NLP and machine learning techniques [20].

III. METHOD

For this research, we cooperated with a local software
company to access the issue data set of a commercial software
product which have been in development for more than two
years rather than just using issue data sets from open source
software projects in order to make the classifier we developed
more adaptable to the style of issue data from commercial
software products. The issues are recorded mainly in Mandarin
with a few English words as the developers of this product are
Chinese.

A. Phase 0: Exporting issue data

We first exported the issue data set and saved it in a
spreadsheet which makes it easier for researchers to read the
issues and to process the data. The fields or variables of the data
set we used are id, type, priority, state, summary, description and
label. We also tuned the character coding format so that Chinese
characters can be displayed normally and removed issues with
messy code to render the data set clean and tidy. Finally, we got
8,149 issues in total. Figure 1 shows an overview of our
approach.

5th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2017)

Copyright © 2017 for this paper by its authors. 60

Fig. 1. Approach Overview

B. Phase 1: Tagging issues manually

We tagged each issue or task in the issue data set as technical
debt or not technical debt manually by reading the summary and
description based on the following classification criteria:

1. Is it a request for requirement change from the client?

If yes, we definitely tag this issue as not technical debt.

2. Is it a task to add new functions or introduce new features
to the product?

If yes, we also definitely tag this issue as not technical debt.

3. The description of the issue is too short or insufficient to
decide whether the issue is a technical debt item.

In this case, we tag this issue as not technical debt.

4. Is it a defect that important and critical functions or
features are not implemented correctly?

If yes, we tag this issue as not technical debt.

5. Is it a defect that is not critical from the client’s
perspective but weakens the performance and capabilities of the
system and will be fixed in the future?

If yes, we tag this issue as defect debt.

6. Is it a task to redesign some function or feature as current
design does not meet or meet the requirement partially?

If yes, we tag this issue as requirement debt.

7. Is it a limitation of design that may pose a threat to the
performance of the system or to the evolution and maintenance
of the system?

If yes, we tag this issue as design debt.

8. Is it an issue related to bad coding practices such as dead
code and no proper comments?

If yes, we tag this issue as code debt.

9. Is it a UI related issue such as inconsistent UI style or
ugly UI elements that degrades user experience?

If yes, we tag this issue as UI debt.

10. Is it a limitation of design in architecture level that may
exert a negative impact on the performance of the system or on
the evolution and maintenance of the system such as the
violation of modularity?

If yes, we tag this issue as architecture debt.

The 10 cases listed above are the typical cases we
encountered when tagging the issues but do not cover all the

Label Subtype Description

Not Technical

Debt

Requirement Change The request for requirement change from the client

New Features Tasks to add new functions or introduce new features

Insufficient Description The description is insufficient to make a decision

Critical Defects Critical functions or features are not implemented correctly

Technical Debt

Defect Debt Temporarily tolerable defects that will be fixed in the future

Requirement Debt Requirements are not implemented accurately or implemented partially

Design Debt The violation of good object-oriented design principles such as god class and long method

Code Debt Bad coding practices such as dead code or no proper comments

UI Debt UI related issues such as inconsistent UI style or ugly UI elements

Architecture Debt Design limitation in architecture level such as the violation of modularity

Issue

Tracking

Database

Export Issue

Data

Manual

Analysis and

Tagging

Extract Key

Words

Naïve Bayes

Classification
Extract

Features

TABLE I. THE CLASSIFICATION CRITERIA OF ISSUES

TABLE I.

5th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2017)

Copyright © 2017 for this paper by its authors. 61

types of issues existing in the issue tracker. Actually, some
issues can be tagged as either technical debt or not technical
debt, which, to a large extent, depends on your personal
understanding of technical debt. Typically, there exist wide
discrepancies regarding whether defects should be viewed as a
type of technical debt among researchers and developers. In this
study, we divided defects into two categories: 1. critical defects
that may cause fatal errors occurring when using the software;
2. tolerable defects that may exert a marginal negative impact on
the use of the software and are not fixed immediately after being
detected. We tagged the first type of defects as not technical debt
and the second type of defects as technical debt.

After we finished tagging all the issues, we asked a known
expert in software engineering and technical debt external to our
research team to validate the results of our manual classification.
The expert classified a random subset of the issues
independently. With respect to discrepancies in the
classification of some issues, we exchanged our respective
points of view about why we classified a certain issue as the
category to solve our discrepancies. If we did not achieve
agreements in the classification of a certain issue, we discussed
the issue with developers to gain insight into the issue itself and
their opinions on the classification.

Finally, we found 331 technical debt issues in total whose
distribution is shown in Table II. Requirement debt and design
debt are the main technical debt types, including 105 and 141
instances respectively.

TABLE II. THE NUMBER OF DIFFERENT TYPES OF TECHNICAL DEBT

ISSUES

Technical Debt Type Number

Requirement Debt 105

Architecture Debt 6

Design Debt 141

Defect Debt 15

UI Debt 35

Code Debt 20

other 9

C. Phase 2: Extracting key words and phrases

Different from English, Chinese is written without spaces
between words. So before extracting key words from the
Chinese texts, we have to convert each text to a word sequence
using a Chinese text segmentation tool. For this research, we
used Jieba (https://github.com/fxsjy/jieba/) [21], a popular open
source Chinese text segmentation tool, to split Chinese texts into
a sequence of words.

After conducting Chinese text segmentation, we extracted
key words using Jieba. Jieba integrated two key word extraction
algorithms: TF-IDF and TextRank. We used both of them to
extract key words for detecting technical debt. We took the
union of two sets of key words extracted using these two
different algorithms, removed the key words referring to domain
knowledge from the union set, and finally added some key

words based on our intuition. To make this paper more readable,
we only list the meaning of key words instead of original
Chinese characters in the below:

“at present”, “now”, “current”, “previously”, “in the past”,
“in the future”, “time”, “actually”, “in reality”, “users”,
“clients”, “strengthen”, “change”, “modify”, “replace”,
“update”, “delete”, “cancel”, “suggest”, “optimize”, “simplify”,
“perfect”, “improve”, “refactor”, “decouple”, “again”, “re-”,
“replant”, “tidy”, “integrate”, “merge”, “adjust”, “extend”,
“expect”, “plan”, “management”, “maintenance”, “function”,
“requirement”, “design”, “rule”, “theory”, “strategy”,
“mechanism”, “algorithm”, “data structure”, “logic”, “code”,
“structure”, “architecture”, “style”, “format”, “performance”,
“efficiency”, “sufficiency”, “security”, “compatibility”,
“scalability”, “maintainability”, “stability”, “generality”,
“usability”, “readability”, “real-time”, “limitation”, “more
friendly”, “more specialized”, “more accurate”, “problem”,
“configuration”, “priority”, “inconsistent”, “unreasonable”,
“inconvenient”, “convenient”, “not clear”, “inaccurate”, 'not
intuitive', “not pretty”, “incongruous”, “not smooth”,
“inconformity”, “incomplete”, “abnormity”, “defect”, “impact”,
“experience”, “habit”, “operation”, “difficulty”, “delay”, “UI”,
“risk”, “optimize”, “refactor”, “SonarQube”

There are 114 key words in total, among which 104 words
are Chinese words and 10 words are English words. As some
words express the similar or same meaning, we merged these
words. All these words to some extent indicate or imply the
concept of technical debt from different perspectives. To be
specific,

• “at present”, “now”, “current”, “previously”, “in the
past”, “in the future”, “time”

These words indicating time concept may imply
accumulation.

• “strengthen”, “change”, “modify”, “replace”, “update”,
“delete”, “cancel”, “optimize”, “simplify”, “perfect”,
“improve”, “refactor”, “decouple”, “again”, “re-”,
“replant”, “tidy”, “integrate”, “merge”, “adjust”,
“extend”

These words indicate the modification of code, design or
architecture, or the enhancement of functionality, capability,
performance, efficiency, etc.

• “security”, “compatibility”, “scalability”,
“maintainability”, “stability”, “generality”, “usability”,
“readability”, “real-time”, “limitation”

These words indicate concerned aspects of software quality
attributes.

• “inconsistent”, “unreasonable”, “inconvenient”,
“convenient”, “unclear”, “inaccurate”, 'not intuitive',
“not pretty”, “incongruous”, “not smooth”,
“inconformity”, “incomplete”, “abnormity”, “defect”,
“limit”, “impact”, “experience”, “habit”, “operation”,
“difficulty”, “delay”

These words indicate defects or design limitation such as
inconsistent UI style, unreasonable design, etc.

5th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2017)

Copyright © 2017 for this paper by its authors. 62

https://github.com/fxsjy/jieba/)

D. Phase 3: Extracting features

Once key words were extracted from the issue data set,
features for text classification can be derived by checking the
presence or absence of each key word in each issue text. Given
the set of key words is [“users”, “change”, “modify”, “improve”,
“refactor”, “decouple”, “priority”, “button”, “architecture”,
“deploy”, “rules”], consider this issue description: “design
change: to keep a consistent design with different pages, we are
moving the clear-all-rules button to the front of the deploy rules
table. (Consistent with event page)”. First, we tokenized the text
into a sequence of words and removed stop words (words that
are too common to indicate any semantic meaning for our
classification). Thus, the text is converted to a string list:
[“design”, “change”, “keep”, “consistent”, “design”, “different”,
“pages”, “moving”, “clear-all-rules”, “button”, “front”,
“deploy”, “rules”, “table”]. Then we could check whether this
string list contains each of key words, i.e. [contain(“users”),
contain(“change”), contain(“modify”), contain(“improve”),
contain(“refactor”), contain(“decouple”), contain(“priority”),
contain(“button”), contain(“architecture”), contain(“deploy”),
contain(“rules”)]. This vector checking the presence or absence
of each key word is called feature space. The dimension of
feature space depends on the size of the set of key words. Finally,
we got the feature vector of the issue sample based on the feature
space: [false, true, false, false, false, false, false, true, false, true,
true].

The feature space actually not only includes unigram
features that are a single word like “design”, “decouple”, but
also has bigram and trigram features which comprised adjacent
word pair and triplet respectively, such as “design change” and
“improve unit test”; that is to say, the feature space in the
previous example can be extended to [contain(“users”),
contain(“change”), contain(“modify”), contain(“improve”),
contain(“refactor”), contain(“decouple”), contain(“priority”),
contain(“button”), contain(“architecture”), contain(“deploy”),
contain(“rules”), contain(“design change”), contain(“improve
unit test”)]. Then the feature vector is turned into [false, true,
false, false, false, false, false, true, false, true, true, true, false].
Figure 2 shows the process of feature extraction.

E. Phase 4: Creating a binary Naïve Bayes classifier

Naïve Bayes is a simple classification algorithm that is based
on an assumption that the features are conditionally independent
of each other given the category. It determines the category of a
given sample with n-dimensional features (𝑥1, … , 𝑥𝑛) by
calculating the probability that the sample belongs to each
category and then assigning the most probable category c to it,
which can be described as:

𝑐 = arg max
𝑘∈{1,…,K}

𝑝(𝑐𝑘 | 𝑥1, … , 𝑥𝑛),

where 𝑐𝑘 is the kth category, and K is the size of the set of
categories. Using Bayes’ theorem, the conditional probability
𝑝(𝑐𝑘 | 𝑥1, … , 𝑥𝑛) can be decomposed as:

𝑝(𝑐𝑘 | 𝑥1, … , 𝑥𝑛) =
𝑝(𝑥1,…,𝑥𝑛 | 𝑐𝑘)

∑ 𝑝(𝑥1,…,𝑥𝑛 | 𝑐ℎ)𝐾
ℎ=1

 𝑝(𝑐𝑘).

With the conditional independence assumptions, the conditional
probability 𝑝(𝑐𝑘 | 𝑥1, … , 𝑥𝑛) can be transformed into:

𝑝(𝑐𝑘 | 𝑥1, … , 𝑥𝑛) =
∏ 𝑝(𝑥𝑗|𝑐𝑘)𝑛

𝑗=1

∑ ∏ 𝑝(𝑥𝑗|𝑐ℎ)𝑝(𝑐ℎ)𝑛
𝑗=1

𝐾
ℎ=1

 𝑝(𝑐𝑘).

To perform our experiments, we used a popular natural
language toolkit for building Python programs to process human
language data (NLTK http://www.nltk.org) [22]. We employed
the implementations by NLTK instead of creating a binary
Naïve Bayes classifier from scratch.

Fig. 2. Feature Extraction

IV. EXPERIMENTAL RESULTS AND ANALYSIS

Repeated random sub-sampling validation was performed to
validate our approach to the identification of technical debt by
repeatedly splitting the full data set into 80/20% randomly
distributed partitions, training and testing the classifier for each
split, and recording performance results.

RQ1: How do software practitioners communicate

technical debt issues in issue trackers?

We searched for the term “technical debt” and the
corresponding Chinese term in the issue data set and found no
positive results. All the technical debt instances in this issue
tracker were implicitly expressed using other technical debt
related words such as redesign, design change, refactor, cleanup,
decouple, etc. By means of communication with developers of
this product, we learned that they did not have strong awareness
of technical debt. Some of them had even never heard about the
concept of technical debt although they recognized that they had
much experience in incurring technical debt when we explained
what is technical debt. To track, prioritize and pay off technical
debt effectively, we suggested they take technical debt as an
issue type in the issue tracker to communicate technical debt
explicitly.

Feature Extraction from Text Data

text = “design change: to keep a consistent design with different

pages, we are moving the clear-all-rules button to the front of the

deploy rules table. (Consistent with event page)”

t = tokenize(text) = [“design”, “change”, “keep”, “consistent”,

“design”, “different”, “pages”, “moving”, “clear-all-rules”, “button”,

“front”, “deploy”, “rules”, “table”]

Feature Vector of t

 V(t) = [

 false,
 true,

 false,

 …

 true,

 true,

 false

]

 Feature Space

S = [

 contain(“users”),
 contain(“change”),

 contain(“modify”),

…

 contain(“rules”),

 contain(“design change”),

 contain(“improve unit

test”)

]

5th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2017)

Copyright © 2017 for this paper by its authors. 63

http://www.nltk.org)/

TABLE III. 20 MOST INFORMATIVE FEATURES FOR DETECTING

TECHNICAL DEBT

20 Most Informative Features for Detecting Technical Debt

Features

Likelihood Ratio

(Technical Debt : not Technical

Debt)

协议识别优化(protocol

identification optimization) = 1
155.2 : 1.0

增强 (strengthen) = 1 128.2 : 1.0

不方便 (inconvenient) = 1 128.2 : 1.0

提高 (improve) = 1 117.4 : 1.0

优化 (optimize) = 1 90.8 : 1.0

整改 (change or modify) = 1 87.7 : 1.0

风格 (style) = 1 65.2 : 1.0

体验 (experience) = 1 64.4 : 1.0

改进 (improve) = 1 60.7 : 1.0

不容易 (not easy) = 1 47.2 : 1.0

改善 (improve) = 1 44.5 : 1.0

效率 (efficiency) = 1 44.5 : 1.0

简化(simplify) = 1 38.2 : 1.0

解决方案(strategy) = 1 35.8 : 1.0

困难(difficulty) = 1 33.7 : 1.0

前期(previously) = 1 33.7 : 1.0

不美观(not pretty) = 1 33.7 : 1.0

risk = 1 33.7 : 1.0

算法(algorithm) = 1 31.8 : 1.0

习惯(habit) = 1 31.8 : 1.0

TABLE IV. THE RESULT FOR REPEATED RANDOM SUB-SAMPLING

VALIDATION

Category
Average

Precision

Average

Recall

Average F1-

score

Technical Debt 0.72 0.81 0.76

RQ2: Are there text patterns that are an indication that

technical debt exist which can be used to identify potential

technical debt using NLP and machine learning techniques

automatically?

The experimental results demonstrate that text patterns
indicating technical debt indeed exist and can be used to identify
technical debt. In general, technical debt issues are characterized
by two aspects of properties including rework whether it is code
refactoring or feature redesign and accumulation which is
implied by some words indicating time such as previously, at
present, and in the future. 20 most informative features that are
strongly correlated to technical debt are shown in Table III. Each
of these features may contribute differently to the identification

of different types of technical debt. Intuitively, the presence of
“style” and “experience” may indicate UI debt while “simplify”
and “efficiency” are more likely to be indicators of design debt.

To evaluate the performance of our classifier, the average
precision and recall were calculated for 10 repeated random sub-
sampling validations. Precision measures the fraction of
technical debt instances identified by our classifier that were
proved to be correct classification. Recall measures the fraction
of correctly classified technical debt items out of the total
number of technical debt issues. In our experiments, the average
precision and recall were 72% and 81% respectively for 10
repeated random sub-sampling validations shown in Table IV.

V. THREATS TO VALIDITY

There are two main threats to the validity of our study:
threats to internal validity and threats to external validity.
Threats to internal validity can be caused by the level of
subjectivity in manual analysis and classification of issues as we
definitely have personal bias in the understanding of issue
description. To counter the threats, we had an expert external to
our research team classify random samplings of the issues and
solved our discrepancies by discussion. We also had discussions
with the developers of the product to gain insight into the issues
that we were not sure we classified correctly. Threats to external
validity concern the generalization of our findings. We
performed a case study on an issue data set from a commercial
software project. The data set of issues we used may not be
representative; that is to say, we cannot guarantee the same
results will be obtained when our approach is applied to other
commercial software projects. In particular, our approach may
not be applicable to those projects for which issue trackers are
not used to record issues.

VI. CONCLUSION AND FUTURE WORK

This paper presents an exploratory study of applying NLP
and machine learning techniques to identify technical debt
issues through issue trackers. We have demonstrated that we can
automate the process of detecting technical debt issues through
issue trackers and achieve an acceptable performance using NLP
and machine learning techniques. We found that some common
words in software engineering are directly or indirectly related
to technical debt and these words can be used as features to
decide whether a certain issue is technical debt or not. We
believe the performance of our classifier will improve further
when more sophisticated feature extraction and classification
techniques are applied.

This exploratory study was based on a rather limited data set
of 8,149 issues. Our approach needs to be validated with issue
data sets from a wider range of software projects. Furthermore,
we will improve the performance of our classifier by exploring
more sophisticated feature extraction techniques such as
mapping phrases with regular expressions and extracting
semantically meaningful information based on the context and
applying other classification techniques such as random forest,
SVM, and deep learning. In addition, we will also develop a
multi-classifier to identify technical debt of a specific type.

5th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2017)

Copyright © 2017 for this paper by its authors. 64

ACKNOWLEDGMENT

We would like to acknowledge the support of Jean Su,
Steven Zhu, Billy Liu for this research. We also thank Robert
Nord, Rob Fuller, Randy Hsu for their valuable review
comments. This research was partially supported by a Canada
NSERC grant, a MITACS grant and the Institute for Computing,
Information and Cognitive System (ICICS) at UBC.

REFERENCES

[1] Avgeriou, P., et al. Managing Technical Debt in Software Engineering
(Dagstuhl Seminar 16162). in Dagstuhl Reports. 2016. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

[2] Cunningham, W., The WyCash portfolio management system. SIGPLAN
OOPS Mess., 1992. 4(2): p. 29-30.

[3] Fowler, M. and K. Beck, Refactoring: improving the design of existing
code. 1999: Addison-Wesley Professional.

[4] Marinescu, R. Detection strategies: Metrics-based rules for detecting
design flaws. in Software Maintenance, 2004. Proceedings. 20th IEEE
International Conference on. 2004. IEEE.

[5] Munro, M.J. Product metrics for automatic identification of" bad smell"
design problems in java source-code. in Software Metrics, 2005. 11th
IEEE International Symposium. 2005. IEEE.

[6] Olbrich, S., et al. The evolution and impact of code smells: A case study
of two open source systems. in Proceedings of the 2009 3rd international
symposium on empirical software engineering and measurement. 2009.
IEEE Computer Society.

[7] Wong, S., et al. Detecting software modularity violations. in Proceedings
of the 33rd International Conference on Software Engineering. 2011.
ACM.

[8] de Freitas Farias, M.A., et al. A Contextualized Vocabulary Model for
identifying technical debt on code comments. in Managing Technical
Debt (MTD), 2015 IEEE 7th International Workshop on. 2015. IEEE.

[9] Maldonado, E., E. Shihab, and N. Tsantalis, Using natural language
processing to automatically detect self-admitted technical debt. IEEE
Transactions on Software Engineering, 2017.

[10] Brondum, J. and L. Zhu, Visualising architectural dependencies, in
Proceedings of the Third International Workshop on Managing Technical
Debt. 2012, IEEE Press: Zurich, Switzerland. p. 7-14.

[11] Li, Z., et al., An empirical investigation of modularity metrics for
indicating architectural technical debt, in Proceedings of the 10th
international ACM Sigsoft conference on Quality of software
architectures. 2014, ACM: Marcq-en-Bareul, France. p. 119-128.

[12] Li, Z., P. Liang, and P. Avgeriou. Architectural technical debt
identification based on architecture decisions and change scenarios. in
Software Architecture (WICSA), 2015 12th Working IEEE/IFIP
Conference on. 2015. IEEE.

[13] Bellomo, S., et al. Got technical debt? Surfacing elusive technical debt in
issue trackers. in Mining Software Repositories (MSR), 2016 IEEE/ACM
13th Working Conference on. 2016. IEEE.

[14] Antoniol, G., et al. Is it a bug or an enhancement?: a text-based approach
to classify change requests. in Proceedings of the 2008 conference of the
center for advanced studies on collaborative research: meeting of minds.
2008. ACM.

[15] Runeson, P., M. Alexandersson, and O. Nyholm. Detection of duplicate
defect reports using natural language processing. in Proceedings of the
29th international conference on Software Engineering. 2007. IEEE
Computer Society.

[16] Wang, X., et al. An approach to detecting duplicate bug reports using
natural language and execution information. in Software Engineering,
2008. ICSE'08. ACM/IEEE 30th International Conference on. 2008.
IEEE.

[17] Jalbert, N. and W. Weimer. Automated duplicate detection for bug
tracking systems. in Dependable Systems and Networks With FTCS and
DCC, 2008. DSN 2008. IEEE International Conference on. 2008. IEEE.

[18] Sun, C., et al. A discriminative model approach for accurate duplicate bug
report retrieval. in Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering-Volume 1. 2010. ACM.

[19] Sureka, A. and P. Jalote. Detecting duplicate bug report using character
n-gram-based features. in Software Engineering Conference (APSEC),
2010 17th Asia Pacific. 2010. IEEE.

[20] Cois, C.A. and R. Kazman. Natural Language Processing to Quantify
Security Effort in the Software Development Lifecycle. in SEKE. 2015.

[21] Sun, J., ‘Jieba’Chinese word segmentation tool. 2012.

[22] Bird, S. NLTK: the natural language toolkit. in Proceedings of the
COLING/ACL on Interactive presentation sessions. 2006. Association for
Computational Linguistics.

5th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2017)

Copyright © 2017 for this paper by its authors. 65

