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Abstract. The problem of constructing the best fitted monotone re-
gression is NP-hard problem and can be formulated in the form of a
convex programming problem with linear constraints. The paper pro-
poses a simple greedy algorithm for finding a sparse monotone regression
using Frank–Wolfe-type approach. A software package for this problem
is developed and implemented in R and C++. The proposed method is
compared with the well-known pool-adjacent-violators algorithm (PAVA)
using simulated data.
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1 Introduction

The recent years have seen an increasing interest in shape-constrained estimation
in statistics [10]. One of such problems is the problem of constructing monotone
regression. The problem is to find best fitted non-decreasing points to a given set
of points on the plane. The survey of results on monotone regression can be found
in the book by Robertson and Dykstra [25]. The papers of Barlow and Brunk [3],
Dykstra [16], Best and Chakravarti [4], Best [5] consider the problem of finding
monotone regression in quadratic and convex programming frameworks.

Using mathematical programming approach the works [1,21,31] have recently
provided some new results on the topic. The papers [7,17] extend the problem to
particular orders defined by the variables of a multiple regression. The paper [8]
investigates a dual active-set algorithm for regularized monotonic regression.

Monotone regression is widely used in mathematical statistics [2, 10]; in
smoothing of empirical data [15]; in shape-preserving approximation [19], [26],
[30], [6], [27], [13]; in shape-preserving dynamic programming [9].

Constructing monotone regression we assume a relationship between a pre-
dictor x = (x1, . . . , xn) and a response y = (y1, . . . , yn). In the general case it is
expected that xi+1 − xi 6= const, xi < xi+1, i = 1, . . . , n− 1.
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A sequence z = (z1, . . . , zn) ∈ Rn is called monotone if

zi − zi−1 ≥ 0, i = 2, . . . , n.

Denote ∆n
1 the set of all vectors from Rn, which are monotone.

The problem of constructing monotone regression can be formulated in the
form of a convex programming problem with linear constraints as follows: it is
necessary to find a vector z ∈ Rn with the lowest mean square error of approxi-
mation to the given vector y ∈ Rn under condition of monotonicity of z:

f(z) =
1

n

n∑
i=1

(zi − yi)2 → min
z∈∆n

1

, (1)

In many situations researchers have no information regarding the math-
ematical specification of the true regression function. Typically, this involves
non-decreasing of yi’s with the ordered xi’s. Such a situation is called isotonic
regression. Isotonic regression (monotone regression) is a special case to the k-
monotone regression [24].

It is well-known that the problem (1) is NP-hard problem [24]. In this paper
we present a simple greedy algorithm which employs Frank–Wolfe-type approach
for finding sparse monotone regression. A software package for this problem is
developed and implemented in R and C++.

For the convenience of solving the problem (1), we move from points zi to its
increments ζi, where ζi = zi+1 − zi, i = 1, . . . , n− 1, ζ0 = z1. Then monotonic-
ity of z corresponds non-negativity of ζi’s (exept ζ0). The proposed method is
compared with the well-known pool-adjacent-violators algorithm (PAVA) using
simulated data.

2 Algorithms for monotone regression

2.1 PAVA

Simple iterative algorithm for solving the problem (1) is called Pool-Adjacent-
Violators Algorithm (PAVA) [11,24]. The work [4] examined the generalization of
this algorithm. The paper [32] studied this problem as the problem of identifying
the active set and proposed a direct algorithm of the same complexity as the
PAVA (the dual algorithm).

PAVA computes a non-decreasing sequence of values z = (zi)
n
i=1 such that

the problem (1) is optimized. In the simple monotone regression case we have
the measurement pairs (xi, yi). Let us assume that these pairs are ordered with
respect to the predictors. The following (Algorithm 1) is a pseudocode of PAVA
for the problem. The generalized pool-adjacent-violators algorithm (GPAVA),
which is a strict generalization of PAVA, was developed in the article [33].

The block values are expanded with respect to the observations i = 1, . . . , n
such that the final result is the vector z of length n with elements z̃i of increasing
order [24].



Algorithm 1: Pool-Adjacent-Violators Algorithm (PAVA)

begin
· Let z(0)j := yi be the start point, l = 0;
· The index for the blocks is r = 1, . . . , B where at step l = 0 we set B := n,
i.e. each observation z(0)r forms a block;

repeat
· (Adjacent pooling) Merge values of z(l) into blocks if z(l)r+1 < z

(l)
r ;

· Solve f(z) for each block r, i.e., compute the update based on the
solver which gives z(l+1)

r := s(z
(l)
r ), the solver s is conditional

(weighted) mean and (weighted) quantities;
· If z(l)r+1 ≤ z

(l)
r then l := l + 1;

until the z-blocks are increasing, i.e. z(l)r+1 ≥ z
(l)
r for all r;

· Return z;
end

2.2 Frank–Wolfe type greedy algorithm

Frank–Wolfe method (or conditional gradient method) solves conditional convex
optimization problems in vector finite-dimensional space. The method was intro-
duced in 1956. The original algorithm did not use a fixed step size, and has the
complexity of the linear programming. Frank–Wolfe method was developed by
Levitin and Polyak in 1966, and V.F. Demianov and A.M. Rubinov generalized
it to the case of arbitrary Banach spaces in 1970 [14]. Recently Frank–Wolfe
type methods have caused an increased interest related to the possibility of ob-
taining sparse solutions, as well as a good scaling [12, 23]. In particular, [22, 34]
researched algorithms for solving problems with penalty functions (instead of
considering the conditional optimization problems). Besides, the paper [34] uses
interlacing boosting with fixed-rank local optimization.

As it was mentioned above, for computational convenience of the problem
(1), we moved from points zi to increments ζi = zi+1 − zi, i = 1, . . . , n − 1,
ζ0 = z1. Then the problem (1) can be rewritten as follows:

g(ζ) :=
1

n

n∑
i=1

(
i−1∑
j=0

ζj − yi

)2

→ min
ζ∈S

, (2)

where S denotes the set of all ζ = (ζ0, ζ1, . . . , ζn−1) ∈ Rn such that ζ0 ∈ R,
(ζ1, . . . , ζn−1) ∈ Rn−1+ and

∑n−1
j=0 ζj ≤ maxi yi.

Let ∇g(ζ) denote the gradient of function g at point ζ.
It should be noted that for larger-scale problems the solution can appear

computationally quite challenging. In this regard, the present study proposes to
use a greedy algorithm of Frank–Wolfe type for solving this problem.

The following (Algorithm 2) is a pseudocode of Frank–Wolfe-type algorithm
for the problem (2).

The rate of convergence is estimated according to the following theorem.



Algorithm 2: Greedy algorithm for sparse monotone regression
begin
· Let N be the number of iteration;
· Our function g(ζ) and the feasible set S were defined above.

Let ∇g(ζ) =
( ∂g
∂ζ0

,
∂g

∂ζ1
, . . . ,

∂g

∂ζn−1

)
be the gradient of function g at

a point ζ,
∂g

∂ζk
=

2

n

n∑
i=k

( i−1∑
j=0

ζj − yi
)
, k = 0, . . . , n− 1;

· Let zero vector ζ0 = (0, . . . , 0) be the start point, and let the counter t = 0;
· while t < N do
· Calculate ∇g(ζt), the gradient of the function g at the point ζt;
· Let ζ̃t be the solution of the linear optimization problem
〈∇g(ζt)T , ζ〉 → min

ζ∈S
, where 〈∇g(ζt)T , ζ〉 is a scalar product of vectors;

· (Update step) Let ζt+1 = ζt+αt(ζ̃
t− ζt), αt = 2

t+2
and than t := t+1;

· Recover the monotone sequence z = (z1, . . . , zn) from the vector of
increments ζN ;

end

Theorem 1. Let {ζt} be generated according to the Frank–Wolfe method (Al-
gorithm 2) using the step-size rule αt = 2

t+2 . Then for all t ≥ 2

g(ζt)− g∗ ≤ 4

√
n(n+ 1)(2n+ 1)

6n2
(maxi yi −mini yi)

2

t+ 2
, (3)

where g∗ is the optimal solution of (2).

Proof. It it is know [18] that for all t ≥ 2:

g(ζt)− g∗ ≤ 2L(Diam(S))2

t+ 2
,

where L is the Lipschitz constant and and Diam(S) is the diameter of S.
Let

∇2g(ζ) :=

(
∂2g

∂ζ20
,
∂2g

∂ζ21
, . . . ,

∂2g

∂ζ2n−1

)
.

It is well-known that if ∇g is differentiable then its Lipschitz constant L satisfies
the inequality

L ≤ sup
ζ
‖∇2g(ζ)‖2.



Then

L ≤ sup
ζ

√√√√n−1∑
k=0

(∂2g
∂ζ2k

)2
=

=
1

n

√√√√ n∑
k=1

(2(n− k + 1))2 =
2

n

√√√√ n∑
k=1

k2 = 2

√
n(n+ 1)(2n+ 1)

6n2
. (4)

It is easy to prove and Diam(S) :=
√
2(maxi yi −mini yi).

The disadvantage of this method is the dependence of the theoretical degree
of convergence on the dimensionality of the problem. The papers [28], [20], [29]
suggest to use the values of duality gap as the stopping criterion for Frank-Wolfe
type algorithms.

3 Empirical Result

The algorithms have been implemented both in R and C++. We compared the
performance of the greedy algorithm (Algorithm 2) with the performance of
PAVA (Algorithm 1) using simulated data sets.

It should also be noted that the PAVA’s speed is significantly higher for
small-scale tasks in R. But if the number of points is greater than at least 2000,
the greedy algorithm spends less time searching for a solution (Fig. 1).

Tables 1, 2 present empirical results for PAVA and greedy algorithms for
a simulated set of points. The simulated points are obtained as the values of
logarithm function with added normally distributed noise: A = {(xi, yi), yi =
ln(x0 + i4x) + ϕi, ϕi ∼ N(0, 1), x0 = 1,4x = 1, i = 1, . . . , 10000. The dimen-
sion of the problem is 10000 points. The tables contain information on errors
1
n

∑n
i=1(zi−yi)2, elapsed time, cardinality and greedy algorithm’s iteration num-

ber.
The results show that error of greedy algorithm are getting closer to the

error of PAVA with increase of number of iterations for greedy algorithm. While
PAVA is better than greedy algorithm in terms of errors, the solutions of greedy
algorithm have a better sparsity. Greedy algorithm’s output solution is more
sparse. It should be noted that the elapsed time for PAVA implemented in C++
is smaller than for greedy algorithm. However, greedy algorithm has a better
rate of convergence if number of iterations is less than 700 for the algorithms
implemented in R,. Both algorithms obtain a sparse solutions, but we can control
the number of nonzero elements (cardinality) in the greedy algorithm as opposed
to PAVA. Generally, the greedy algorithm’s cardinality increases by one at each
iteration. Consequently, we should limit the number of iterations to obtain more
sparse solution.

Figure 2 shows simulated points (N = 100) with logarithm structure and
isotonic regressions, where green line represents the greedy algorithm’s isotonic
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Fig. 1. The dependence of the CPU time on dimension of the problem of the greedy
algorithm (green line, 100 iterations) and PAVA (red line) implemented in R.

Table 1. Comparison of algorithms PAVA and greedy algorithm (Greedy) on an ex-
ample of the simulated data (implementation in language C++): A = {(xi, yi), yi =
ln(x0 + i4x) + ϕi, ϕi ∼ N(0, 1), x0 = 1,4x = 1, i = 1, . . . , 10000

Algorithm (the number of iterations) Error Cardinality Time

PAVA 0.994 82 0.00
Greedy (10) 1.254 7 0.00
Greedy (50) 1.101 31 0.00
Greedy (100) 1.003 43 0.01
Greedy (200) 1.001 55 0.01
Greedy (500) 0.995 74 0.03
Greedy (1000) 0.995 78 0.07
Greedy (2000) 0.994 82 0.09
Greedy (5000) 0.994 82 0.17
Greedy (10000) 0.994 82 0.33

regression and red line presents PAVA’s isotonic regression. Greedy algorithm
gives a solution with 14 jumps, and PAVA with 16 jumps. Since the solutions of
the greedy algorithm are more sparse, the greedy algorithm error (ε) is slightly
higher than the PAVA.

The obtained empirical results for the greedy algorithm show that the degree
of convergence for the considered examples is much higher than its theoretical
estimates obtained in Theorem 1.



Table 2. Comparison of algorithms PAVA and greedy algorithm (Greedy) on an ex-
ample of the simulated data (implementation in language R): A = (xi, yi)

Algorithm (the number of iterations) Error Cardinality Time

PAVA 0.994 82 4.28
Greedy (10) 1.169 6 0.09
Greedy (50) 1.011 30 0.33
Greedy (100) 0.999 41 0.63
Greedy (200) 0.996 57 1.23
Greedy (500) 0.995 76 3.08
Greedy (1000) 0.994 79 6.28
Greedy (2000) 0.994 82 12.67
Greedy (5000) 0.994 82 31.58
Greedy (10000) 0.994 82 60.91
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Fig. 2. Step functions obtained by the greedy algorithm (ε = 0.753) and PAVA (ε =
0.751)

4 Conclusion

Our research proposes an algorithm for solving the problem of constructing the
best fitted monotone regression by using the Frank–Wolfe method. The soft-
ware was implemented in R and C++. We compared the performance of the
greedy algorithm with the performance of PAVA using simulated data sets. While
PAVA gives a slightly smaller errors than greedy algorithm, greedy algorithm ob-
tains significantly sparser solutions. The advantages of greedy algorithm are the
simplicity of implementation, the potential for controlling cardinality and the



elapsed time is lower for the implementation in R in the case of problem with
large dimension.
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