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Abstract. This paper is devoted to multivariate regime-switching vec-
tor autoregressive models application taking into account a spatial struc-
ture in urban traffic flows. The spatial structure of traffic flows is esti-
mated as statistical relationships between traffic characteristics (includ-
ing lagged) at different road segments. A broad literature review is pro-
vided and complex spatial dependencies at road segments are illustrated.
We execute empirical analyses of out-of-sample forecasting accuracy of
several widely used traffic flow models: autoregressive integrated moving
average model, vector autoregressive model, and Markov-switching vec-
tor autoregressive model. We provided empirical evidence for improving
forecasting accuracy by including regime-dependent spatial dependen-
cies of traffic flows at road segments into vector autoregressive models.
Special attention is paid to selection of time resolution and its effects on
the forecasting results.
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1 Introduction

During the last decades, models of urban traffic flows have become an integral
part of intellectual transportation systems. A wide range of stakeholders use
results of traffic forecasting on an everyday basis: many drivers use navigation
software for routing and efficient determining departure time; public transport
operators schedule bus routes on the base of expected traffic jams; emergency
services use current and expected traffic data for solving vehicle routing prob-
lems; road network planning and maintenance operators try to predict effects
of their road activities. Nowadays an intensive usage of urban traffic models is
typical for large developed cities, but the rapid growth of modern traffic control
technologies and inevitable spreading of autonomous vehicles will lead to the
growing demand for new flexible approaches to traffic flow modelling.
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At this moment the most popular approach to traffic flow forecasting is based
on univariate models like the autoregressive integrated moving average model
(ARIMA). Many scientific articles and practical applications include modelling
of traffic flows at a selected (usually the most critical) road segment without any
links to other parts of the road network. This non-spatial approach has several
advantages, such as satisfactory forecasting accuracy, simplicity of models, lim-
ited data requirements, but ignore a fact of spatial dependencies between space
points (crossroads, road segments, etc.) of traffic flows. As a result, the non-
spatial approach becomes inconsistent in case of real-time changes of the road
network like traffic congestion, accidents, and others. Simultaneous modelling of
traffic flows at multiple space points and incorporation of spatial dependencies
between space points should lead to higher forecasting accuracy. This fact, sup-
ported by high availability of real-time traffic data from multiple data sources
(sensor loops, video recorders, probe cars’ routes), raises attention to develop-
ment of spatiotemporal models and their application to traffic flows.

This paper is our small contribution to the methodology of spatiotemporal
traffic modelling. We applied a regime-switching vector autoregressive model
where spatial dependencies between traffic flows at space points are directly
included into the specification and may vary over the time. The suggested model
is validated for real world traffic data. Our main contributions are the presented
evidences of advantages of spatiotemporal regime-switching vector autoregressive
models over widely used univariate time series models, and also several practical
recommendations for such models applications.

2 Spatial dependencies in traffic flow modelling

Although the majority of previous studies utilized non-spatial forecasting mod-
els, recently several researchers extended the models to spatial settings. Space-
time ARIMA (STARIMA) models seems the most widely used model with an
explicitly included road network spatial structure. STARIMA represents a vec-
tor autoregressive model where dependencies between space points are provided
in a form of a spatial contiguity matrix. The spatial contiguity matrix can be
exogenously defined on the base of road network characteristics or identified us-
ing correlations. Kamarianakis and Prastacos [6] applied STARIMA with a fixed
spatial contiguity matrix, based on inverted distances between space points, for
traffic flow forecasting and demonstrated its advantages over non-spatial models;
Min et al. [12] suggested to use dynamic spatial contiguity matrixes to reflect
changes in road networks; Salamanis et al. [14] introduced a graph-theory-based
technique for managing spatial dependencies in STARIMA models. However, an
assumption about a fixed spatial contiguity matrix is rarely satisfied in practice,
so several recent researches applied correlation analysis to dynamic identifica-
tion of spatial relationships. Cheng et al. [3] executed exploratory space-time
autocorrelation analysis for a road network and discovered the structure to be
dynamic and heterogeneous in both space and time. Min and Wynter [11] utilised
separate correlation-based contiguity matrixes for different time lags. Recently



Schimbinschi [15] suggested a topology-regularized vector autoregressive model,
where potential relationships between space points are limited by distance, but
remain flexible within this distance limit.

A popular least absolute shrinkage and selection operator (LASSO) and im-
proved graphical LASSO (GLASSO) are frequently used for regularization and
dependency selection to limit model complexity and prevent overfitting. Kamar-
ianakis et al. [7] successfully applied the LASSO technique for real-time road
traffic forecasting and later Haworth and Cheng [5] applied graphical LASSO for
local spatiotemporal neighborhood selection. Li et al. [9] used Granger causality
tests and further LASSO regression for similar purposes.

Classical autoregressive models reconstruct a time pattern of the traffic flow
and use this pattern for forecasting. Although accuracy of such models is sat-
isfactory for many practical purposes, it potentially could be improved by the
utilizing the fact of different patterns of the traffic flow, which are switched
over the time. For example, the traffic flow pattern could be different for free,
stabilized or congested road conditions. Thus regime-switching models which al-
low the existence of multiple forms of spatial dependency, became a promising
technique for traffic flow analysis (models are referred to as threshold models if
time points of regime switching are predefined and as Markov-switching models
if regime switching is a Markov process). Recently advanced regime-switching
models have been utilized by several researchers. Yu and Zhang [17] proved
that the Markov-switching ARIMA outperforms regular ARIMA specifications
in terms of in-sample prediction accuracy. Cetin and Comert [1] also found sig-
nificant advantages of threshold models in case of presence time intervals with
different traffic regimes. Kamarianakis et al. [7] found the threshold ARIMA
model useful for discovering spatial dependencies between values of the traffic
flow in different locations. The latter paper, to the best of our knowledge, is the
only research where spatial dependencies and the threshold regime-switching
technique were successfully combined for traffic flow forecasting.

3 Research Methodology

Let define space-time point traffic information at a particular space point i =
1, . . . , N and time point t = 1, . . . , T as a vector X of K traffic flow character-
istics:

Xi,t = (X1,i,t, X2,i,t, . . . , XK,i,t) (1)

Typically, a set of traffic flow characteristics includes traffic volume, average flow
speed, flow density, and road occupancy. A one-step-ahead forecasting model for
the traffic flow can be considered as a relationship between a space-time point
traffic information and observed historical information:

Xi,t+1 = f(Xi,1, . . . , Xi,t) + εi,t+1 (2)

where f is an unknown function, representing relationships between space-time
points, and εi,t+1 is a random component.



A popular vector autoregressive model (VAR) model specification could be
presented as [4]:

Xi,t+1 =

p∑
h=0

AhXi,t−h + εi,t+1 (3)

where p is an order of autoregressive component, and Ah are matrices of unknown
coefficients. The model could be reduced to the set of independent autoregressive
models putting Ah to diagonal matrices: Ah = αhIN . Moving average(MA)
components, included into classical ARIMA models, are omitted in the presented
VAR model specification. VAR models can be found as a good approximation
for VARMA for sufficiency large lags p [10] (similarly to Wold’s theorem), thus
in this research we omitted MA components.

Thanks to the flexibility and ability to fit data, VAR models became an im-
portant forecasting tool in many applied areas. But this flexibility comes from a
large number of model parameters and brings a risk of overfitting data and poor
out-of-sample forecasting accuracy. Bayesian approach to estimation of model
parameters partly helps to overcome the problem of overfitting [8]. In this re-
search we use this approach to estimation and corresponding models will be
referred to as BVAR (Bayesian VAR).

There are several widely used metrics for estimation of model’s forecasting
accuracy, and we use two of them – root-mean-square error (RMSE) and mean
absolute error (MAE):

RMSE =

√√√√ 1

n

n∑
i=1

(xi − x̂i)2 (4)

MAE =
1

n

n∑
i=1

|xi − x̂i| (5)

See Chai and Draxler [2] for an extended discussion about advantages of RMSE
and MAE as forecasting accuracy metrics.

To prevent effects of in-sample overfitting of VAR models, we use the out-
of-sample values of RMSE and MAE for model comparison. In particular, we
implemented a one-step-ahead model validation procedure, where parameters
are estimated for every observation in the testing subsample and the resulting
model is used to forecast one following observation.

One of the main assumptions of this research is presence of dynamical changes
in spatial relationships between space points. An underlying mechanism of this
dynamics is based on drivers’ awareness of road conditions and selection of the
optimal route. Nowadays many drivers use navigation software with real-time
information about current traffic conditions and make their routing decision (or
just follow navigation software instructions, which also based on real-time traffic
information). As a result, traffic flows at two crossroads may be independent in
case of free movement, but become dependent in case of congestion on one or
both of them. We applied a regime-switching version of BVAR to reveal presence



of such regimes in data. We assume the Markovian nature of these regimes, so
transitions between regimes (states) don’t depend on process history.

We consider Markovian hidden states s that represent actual traffic flow
regimes:

P (st|s0, s1, . . . , st−1, Xi,1, . . . , Xi,t) = P (st|st−1) (6)

Each regime has its own estimates of the VAR model parameters, so the Markov-
switching VAR model is formulated as MS-VAR(p):

Xi,t+1|st =

p∑
h=0

Ah(st−h)Xi,t−h + εsi,t+1 (7)

Given the current regime, the model is reduced to the regular BVAR model.
A list of additional techniques, utilized in this research, includes:

– Simple historical averages for separation a long-term pattern and distur-
bances in the traffic flow;

– Augmented Dickey-Fuller test for stationarity;
– Granger causality tests for identification of lagged relationships;
– Näıve forecasts as a base point for models’ forecasting accuracy.

4 Experimental results

4.1 Data description

Similarly to Pavlyuk [13], we utilize data of traffic flows publicly available from
the Minnesota Department of Transportation. Data is collected by two sensors
located before bridges in Minneapolis city center and serving the same direction
(Fig. 1).

Fig. 1. Location of sensor loops

Traffic information includes average traffic flow density values, aggregated
by three time resolutions: 10-minutes, 15-minutes, and 30-minutes time frames.



The research period is from the 1st of March till the 31st of May 2017 (92 days);
the data sets are complete.

Typical daily patterns of analyzed traffic flow densities are presented on Fig. 2
and fairly usual for urban roads – low intensities during night hours, higher
intensities during day hours and several congestion “spikes” in morning/evening
rush hours.

Fig. 2. Typical daily patterns of analyzed traffic flow densities

Traffic flow densities have clear historical profiles (for each time-of-day and
day-of-the-week) which could be predicted by historical average values or sea-
sonal exponential smoothing (with weekly “seasons”). The research period is rel-
atively short and uniform, so the exponential smoothing does not significantly
outperform simple historical averages, thus we continue with the latter option:

Densityt = Densityavg,t +DensityStatt (8)

where Densityavg,t are historical average values for day-of-the-week time-of-day,
and DensityStatt are deviations from the historical averages and the main point
of interest. We analyzed DensityStatt using augmented Dickey–Fuller tests and
found them stationary for both sensors.

4.2 Model specification and estimation

Density levels at both sensors become stationary after subtracting historical
averages, so a direct application of VAR model is allowed. We apply Granger
causality tests for initial identification of spatial relationships between traffic
flow densities in two space points. The tests were implemented for density levels
and for residuals of univariate ARIMA models (Table 1).

Granger tests support our hypothesis about presence of spatial relationships,
but also give us information about potential asymmetry of this relationship:
discovered effects of density at Sensor 2 point on density at Sensor 1 point have
higher significance than in the opposite direction. Note that this conclusion has
a preliminary nature, and VAR models will provide more consistent estimates
of these spatial dependencies.

A stack of considered models includes:



Table 1. Results of Granger’s causality tests for independent ARIMA model residuals

Cause Effect Time resolution F-statistic p-value

Sensor 1 → Sensor 2 10-mins 3.871 0.021
15-mins 10.096 0.000
30-mins 2.417 0.089

Sensor 2 → Sensor 1 10-mins 5.973 0.003
15-mins 16.752 0.000
30-mins 38.246 0.000

– Näıve forecasts as a base point for models’ accuracy comparison.
– ARIMA(p, 0, q) model, where optimal orders of autoregressive lags p and

moving average component q, is selected for every new model on the base of
the Akaike Information Criterion (AIC).

– Spatial BVAR model with 1 and 2 autoregressive lags (models with higher
order of lags also were estimated, but didn’t outperform the presented models
and excluded from this paper for brevity reasons)

– Markov-switching spatial BVAR model (MS-BVAR) with 1 and 2 autore-
gressive lags.

The main goal of this research is testing of forecasting accuracy of differ-
ent models, so we exclude models’ estimation results from this paper and con-
centrate on their out-of-sample forecasts. To estimate out-of-sample forecasting
accuracy we split the data set into training (91 days) and testing (1 day) sub-
samples (in the background we also executed similar procedures for a testing
subsample of 7 days and obtained similar results). For every time point in the
testing subsample (48, 96, and 144 points for 30-mins, 15-mins, and 10-mins
time frames respectively) we estimated all models for previous observations and
made one-step-ahead forecasts. These forecasts were used to estimate models’
out-of-sample forecasting accuracy using RMSE and MAE metrics. Estimation
results are summarized in Table 2.

The obtained results are fairly consistent for RMSE and MAE metrics, so we
arbitrary use MAE for further discussion.

5 Results and discussion

Firstly, we note significant difference in forecasting accuracy of Sensor 1 and
Sensor 2 points (MAE for Sensor 1 forecasts are 2–3 times higher than for Sensor
2 forecasts). This conclusion corresponds to daily density patterns presented on
Fig. 1: Sensor 1 point is more congested in rush hours and has obvious spikes,
which significantly affect forecasting accuracy.

VAR models significantly outperform ARIMA and näıve forecasts for both
space points; Markov-switching BVAR models are preferred for Sensor 1, and
regular BVAR models are preferred for Sensor 2. This observation is consistent
with the studies presented in Section 2: embedding of spatial relationships into



Table 2. Out-of-sample accuracy of models

Time
resolu-
tion

Näıve ARIMA
BVAR
(p = 1)

BVAR
(p = 2)

MS-
BVAR
(p = 1)

MS-
BVAR
(p = 2)

10-mins 6.969 6.722 6.592 6.655 6.370 6.201
15-mins 7.176 6.628 6.663 6.599 6.550 6.231

RMSE 30-mins 9.306 8.492 8.058 8.141 7.935 7.892

10-mins 2.907 2.778 2.691 2.776 2.573 2.447
15-mins 2.970 2.805 2.828 2.737 2.799 2.651

Sensor 1 MAE 30-mins 4.187 3.909 3.620 3.700 3.587 3.589

10-mins 1.699 1.515 1.556 1.513 1.757 1.805
15-mins 1.220 1.165 1.137 1.121 1.311 1.524

RMSE 30-mins 1.374 1.301 1.297 1.307 1.293 1.302

10-mins 1.263 1.136 1.167 1.118 1.247 1.318
15-mins 0.946 0.912 0.846 0.828 0.987 1.059

Sensor 2 MAE 30-mins 1.005 0.936 0.893 0.903 0.910 0.889

traffic flow forecasting models leads to increased forecasting accuracy. An im-
portant observation is related to the preference of the regime-switching model
for Sensor 1 and the regular (one regime) model for Sensor 2. Fig. 3 provides the
clues for this fact.

Fig. 3. Estimated regime probabilities in the MS-BVAR(1) model

Note that the MS-BVAR model identified two regimes: rush hours (Regime
1) and normal traffic flow (Regime 2). On Fig. 1 we observed that Sensor 1 point
is more affected by congested traffic during rush hours, so the regime-switching
model provides more accurate forecasts. Congestion is less typical for Sensor 2
point, so one-regime BVAR model provides better out-of-sample forecasts, while
MS-BVAR model suffers from over-parametrization and in-sample overfitting.
Thus we can make a conclusion that even within a small road segment the best
overall accuracy of forecasts is archived not from one general model, but from



a correct combination of models. The problem of forecasts combining is a hot
topic in research publications on traffic forecasting; see Vlahogianni et al. [16]
for an extended description of scientific challenges in this area.

Another important point of this research lays in effects of time resolution
on models’ forecasting accuracy. Note that forecasting results for different time
frames are not directly comparable due to different forecasting horizons (one-
step-ahead forecasts correspond to 10, 15, and 30 minutes respectively). Nev-
ertheless, we can note that smaller time resolution requires a higher number of
autoregressive lags as it was expected: for 30-mins time frames VAR models with
one lags are preferred, for 15- and 10-mins time frames – VAR models with two
lags (further increasing of the number of lags don’t have significant effects on
the models’ forecasting accuracy for analyzed time resolutions). There is no solid
approach to selection of the optimal time resolution for traffic flow modelling,
and so the preferred time frames are a trade-off between detailed but noisy high
resolution data, and low resolution data where some dependencies are smoothed
by aggregation. An optimal resolution for discovering spatial relationships should
correspond to the time of spatial effects (i.e. what time is required for drivers
and their navigation software to identify a congestion and reroute). Impulse re-
sponse functions, usually estimated with VAR models, could provide evidences
for this spatial time lag, so are suggested as a tool for model identification.

6 Conclusions

This paper contributes to multivariate statistical modelling of traffic flows, where
spatial dependencies and potential regimes are explicitly included. We applied
modern Markov-switching vector autoregressive models for traffic flow forecast-
ing and compared out-of-sample forecasting accuracy for several popular models.
Also, we briefly discussed problems of optimal model and time resolution selec-
tion. Our main conclusions are:

– Vector autoregressive models with spatial dependencies between space points
outperform classical univariate model like ARIMA.

– Spatial relationships between space points should be considered as asym-
metric, i.e. effect of changes in traffic flow in one space point on another is
not invertible.

– Multiparametric models (i.e. Markov-switching vector autoregressive mod-
els) suffer from sample data overfitting, which leads to poor out-of-sample
forecasting accuracy. Selection of an appropriate model is space point-specific,
so a complex forecast for road network with a large number of space points
should be constructed from a set of models and combined forecasts.

– Selection of time resolution (an aggregation level) is an important step of
modelling. Time resolution is a trade-off between detailed but noisy high res-
olution data, and low resolution data, where some dependencies are smoothed
by aggregation. As lags, related to spatial dependencies, depend on road net-
work and drivers’ behavior, the optimal time resolution should be estimated
for every specific data set.
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