
Supporting Consensus-based Software Development:
a Vision Paper

Mathieu Lavallée
Independent consultant

math.lavallee@gmail.com

Guillaume Beaulieu
Université du Québec à Montréal

beaulieu.guillaume.2@courrier.uqam.ca

Michalis Famelis
Université de Montréal

famelis@iro.umontreal.ca

Abstract—Traditional, vertical organizational models of soft-
ware development have been challenged by more agile and col-
laborative structures. Recently, this has also been demonstrated
in the emergence of explicitly horizontalist organizational struc-
tures, focused on consensus-based decision making. In this paper,
we describe the principles and processes of these “Consensus-
Based Communities” (CBCs) and outline the main challenges
they face as they try to implement “Consensus-Based Software
Development” (CBSD). We express these as early, high level
requirements for a tool supported methodology. Based on these,
we present and analysis of existing tools that shows that no
single tool provides complete support for consensus-based group
decision making. We thus outline directions for future research,
identifying opportunities for the development and deployement
of model-based techniques in this emergent field.

I. INTRODUCTION

Software development is a team activity [1], [2], in which
internal team dynamics impact the quality of the produced
software. A classic formulation of this is “Conway’s Law”:

Any organization that designs a system (defined
broadly) will produce a design whose structure is a
copy of the organization’s communication structure.
[3]

More recently, Nagappan et al. showed that organizational
structure was a better predictor of fault-proneness than tra-
ditional technical metrics [4]. A defining aspect of a team’s
organization and communication structure is Group Decision
Making (GDM), also known as Multi-Person Decision-Making
(MPDM), [5], [6], [7]. Traditionally, organization structures
are hierarchical and command based. However, the advent of
Agile software development has changed GDM processes, as
it tends to prefer horizontal structures [8]. Characteristically,
the Agile Manifesto declares:

The best architectures, requirements, and designs
emerge from self-organizing teams. [9]

In practice, the degree of self-organization varies widely
across different organizations. We illustrate this diversity in
Figure 1, as a continuum of organizational horizontality in
software development teams. On the one end there is tra-
ditional “command-based” development, where upper levels
of the organizational hierarchy have the final say on what
developers do. Moving from that extreme, some organizations
maintain the use of project managers who have the final say in
decisions while encouraging the building of a team consensus.
Some organizations actively pursue a “flat” model [10] or

Consensus-based
communities (CBCs)

Agile
"Flat" organizations

Holarchies

Traditional
management

More
horizontal

More
vertical

Fig. 1: The continuum from vertical (i.e. hierarchical) to horizontal
(i.e. non-hierarchical) organizations.

an “holarchy” [11], where decisions are delegated to self-
managing teams. Often, organizations using self-managed
teams still maintain a higher authority, simply reducing the
amount of middle management. In Figure 1 we position Agile
teams, that promote self-organized GDM, in the middle of the
continuum, along with flat and holarchic organizations.

In this paper, we put the spotlight on the other end of the
continuum. This is populated by software development orga-
nizations that intentionally adopt explicitly anti-hierarchical
and consensus-based modes of GDM and collaboration. For
example, Koumbit, a web-hosting company based in Mon-
treal, describes its internal processes as “non-hierarchical self-
management” [12]. Loomio is a developer-owned cooperative
based in New Zealand that puts consent at the centre of its
decision making process [13]. Other organizations like Zappos
[14] and Medium.com [15] maintain horizontal principles.
This is also often the case for open source communities,
such as Drupal, which favours a self-managed approach [16].
We call such organizations Consensus-Based Communities
(CBCs).

CBCs face a set of unique challenges when developing
software, mostly based on their philosophical approach to
GDM. The Agile Manifesto already pushed GDM away from
the “Benevolent Dictator” management paradigm.

Agile Software Development has completely dis-
pensed with the formal job title of the project man-
ager. Agile methodologies such as scrum seem to
distribute the erstwhile responsibilities of the project
manager into new roles. [8]

CBCs affirm that team decisions must go a step further, and
ensure consensus building as much as possible, instead of
majority decision-making. The rationale behind striving for
consensus is based on a perceived flaw of democratic decision-
making called “tyranny of the majority”:

The will of the majority may be seen as the will



of the whole group, with the minority expected to
accept and carry out the decision, even if it is against
their deeply held convictions and most basic needs.
It is possible for a voting group to look for solutions
that would suit everybody, but it is more common for
ideas with a majority backing to be pushed through.
[17, p. 9]

This flaw can cause, for example a team with a majority of
non-experts to overrule a minority of experts, leading to poor
decisions. Instead, consensus-building requires team members
to convince all their colleagues, instead of unilaterally impos-
ing their propositions. This means that software developers in
CBCs cannot exploit the process in order to shut down their
colleagues, but must provide facts and data able to persuade
them to change their mind.

CBCs such as the ones mentioned above also operate under
anti-hierarchical principles. Their perception is that software
development has become so complex that not one person can
see the whole picture. Each software developer is therefore
a piece of the puzzle, each with their own expertise, and
decisions should then be made with everyone in mind [7].

Even though CBCs are currently not the norm in software
engineering, studying them can provide interesting insights on
team dynamics, and can help identify beneficial organizational
practices across the continuum of organizational horizontality.
Broadly speaking, the recent move away from traditional
organizational practices can be understood as a concern about
the degree to which they are appropriate for software de-
velopment. Thus, interesting insights can be obtained from
radically different organizational structures [10]. At the same
time, since CBCs are software producing organizations in an
era of software ecosystems [18], understanding the impact of
their practices on software quality (cf. Conway’s Law) may
have ramifications beyond their niche.

In this paper, we focus on CBCs and propose a vision
for a comprehensive, model-based, tool supported method-
ology for Consensus-Based Software Development (CBSD)
that addresses their unique set of challenges. We identify
the specific needs of CBCs and study existing collaboration
tools to find gaps between the two and potential avenues of
research and development. Specifically, we make the following
contributions:

a) We highlight the existence of CBCs and describe their
unique processes and challenges;

b) We describe how consensus-based GDM can be sup-
ported for software development;

c) We analyze the capabilities of existing tools, identify their
limitations, and outline how model-based techniques can
be used to improve the state of CBSD practise.

The rest of the paper is organized as follows: We present
background information on CBCs in Section II, detailing
their typical internal processes In Section III, we explain the
challenges raised by consensus-based GDM and in Section IV
we outline the requirements for a tool framework for support-
ing consensus-based software development. We analyze the
capabilities of existing GDM support tools in Section V and

point out areas for improvement in Section VI. We discuss
related work in Section VII and conclude in Section VIII.

II. BACKGROUND

To better understand the unique challenges in CBSD, we
first outline the main characteristics of CBCs.

Consensus-based decision-making does not mean that ev-
erybody must agree on everything. In practice, consensus
is typically “soft”, which means that certain forms of dis-
agreement are acceptable. According to the Consensus Hand-
book [17, p. 6]:

Instead of simply voting for an item and having
the majority of the group get their way, a consensus
group is committed to finding solutions that every-
one actively supports, or at least can live with.

The aim is to avoid a situation where there are winners and
losers. CBCs claim that this helps everybody feel involved in
the organization, and helps them learn new skills and be better,
more complete software developers [12]. This further increases
the sense of agency and ownership towards decisions, since
each individual actively participates, ensuring that everyone’s
concerns are part of the process. A major benefit of consensus
decision-making is therefore the increased solidarity among
team members in cases where bad decisions are made. Faced
with a negative result, since the whole team was engaged in
the decision together, no single individual or group can be
singled out for blame [19].

In the following, we describe a typical consensus-based
GDM process, in terms of the activities performed and
the roles and responsibilities associated. Consensus-based
decision-making processes are adapted from the different kinds
of democratic practices surrounding them [20]. They are
adapted to the size and ability of the group.

While the exact process varies from one organization to
another, we present here a basic model of typical activities in
consensus-based GDM [17, p. 16]. These are:
Introduction (A1): Introduction of the issue on which a

decision must be made;
Discussion (A2): Discuss the issue and collect ideas;
Concerns (A3): List concerns regarding the proposal;
Proposal (A4): Identify emerging proposals meeting con-

cerns;
Refinement (A5): Discuss, clarify and amend the proposals;
Consensus test (A6): Test for agreement, usually through a

straw poll. If not, return to the previous points;
Implementation (A7): Implement the decision.
We show these activities diagrammatically in Figure 2.

During a test for consensus (activity A6), a typical CBC
uses four types of votes for the straw poll [17, p. 16] with the
following meaning:
Block (V1): The participant thinks the proposal is funda-

mentally wrong and should not be implemented by the
organization.

Stand aside (V2): The participant cannot support the pro-
posal and is not willing to implement it. However they



A1. Introduction

A2. Discussion

A4. Proposal

A5. Refinement

A6. Consensus test

A7. Implementation

Issues
raised

?

Consensus
reached

?

V4. Agreement

V1. Block

V2. Stand aside
V3. Reservation

Acceptable
issues

?

Issues
to adress

?

R1. Facilitator
R4. Participant

R3. Hand takers

R2. Minute takers

F1.
Active listening

F2.
Summarising

F3.
Synthesis

A3. Concerns

Fig. 2: Consensus decision making model.

are willing to let the organization implement it without
them.

Reservation (V3): The participant has some reservations, but
is willing to let the proposal be implemented and to work
for its implementation.

Agreement (V4): The participant supports the proposal and
is willing to implement it.

The responsibilities associated with the good functioning
of the team are traditionally assigned to a team manager.
Instead, in self-managing teams, they must be delegated to
team members. Consensus-based teams recommend to split
responsibilities to different people to avoid a concentration of
powers which would re-create a hierarchical structure [21].
Specific roles include [17], [21]:
Facilitators (R1): A neutral party whose responsibility is to

keep the meeting on topic and assist the decision-making
process. In some cases, no single person is assigned the
role, instead relying on the participants, assuming that
they have internalized it enough to self-discipline.

Minute Takers (R2): Responsible for keeping track of the
decisions and action items.

Hand Takers (R3): Responsible of keeping track of whose
turn it is to speak next and control the time allotted to
each speaker.

Participant (R4): Each team member is responsible for self-
discipline and for the good functioning of the process.

Facilitation is a complex role, which can be broken down
into the following responsibilities [17, p. 31]:
Active listening (F1): To assist speakers in expressing their

ideas and its associated context.
Summarising (F2): To reformulate the intervention of the

speaker in a clear and concise manner in order to confirm
its interpretation.

Synthesis (F3): To merge the ideas in actual proposals po-
tentially acceptable for all participants.

The list of work products of a consensus-based process

includes the minutes of the meeting, along with the decisions
and action items. It is recommended that action items be
tracked independently from the rest in order to avoid losing
track of them and to prevent power concentration into the same
hands [21].

III. CHALLENGES OF CONSENSUS-BASED GDM

Software development teams that adopt a consensus-based
GDM process face a unique set of challenges. These stem from
the need to work and reach consensus. Degenerations of the
process can introduce problems such as false consensus, where
an explicit agreement is reached, but where team members
implicitly disagree. We group such challenges along seven
different dimensions.

One dimension (D1) is related to the heterogeneity of
communication [7]. For example, software engineering teams
include a variety of experts of different fields, depending on
the needs of the project. These different experts can be profi-
cient in different languages and techniques. For example, one
expert can be well-versed with the UML language while the
rest of the team is not. This creates a hurdle for communication
as the expert struggles to explain his point to non-experts.

Another dimension (D2) is related to the need to persuade
others in order to obtain consensus. Ideally, this persuasion is
based on real facts, brought by real experts, but in practice,
emotional factors can enter the equation. For example, “people
are easily persuaded by other people that they like” ([22],
quoted by [23]). Another example, “consistently slandering
someone behind his back” [21, p. 33] is another tactic to
persuade others using unsavory means.

This leads to the third dimension (D3) of how to ade-
quatly generate alternatives for a complex issue. Ideally, GDM
follows a rational decision-making approach. This approach
is akin to a breadth-first approach, where all alternatives
are studied and compared. The opposite is the naturalistic
decision-making approach. This approach is akin of a depth-
first approach, where one easy to find solution is studied in-
depth [24]. For example, a typical software development team
mixes the two approaches, going in-depth with a small number
of alternatives [25]. Generally this is because the complexity of
software development context makes a breadth-first approach
impossible and requires limiting the breadth to what seems
possible at the time [24], [25].

Generating and choosing the proper alternatives can be
difficult, especially with dysfunctional teams (D4). Issues of
“groupthink”, where there is a reluctance of criticizing ideas,
are well documented [26]. Instances of polarized factions
constantly blocking the propositions of the others are also
a symptom of a dysfunctional team [26], [27]. Even before
such problems arise, social stratification due to factors such
as racism, sexism and class, generally makes marginalized
people take less share in the decision-making process. Worse,
that phenomenon is often justified by those who are silencing
themselves as they perceives themselves as less competent
[28]. Creating a context for genuine participation is an ongoing
process that requires patience and dedication.



UC1.
Present the issue

A1.
Introduce the issue

UC2.
Manage the proposals

A2.
Discuss the issue

A4.
Keep track of proposals

A5.
Refine proposals

UC3.
Document the arguments

R3.
Manage speakers

F3.
Synthesize

interventions

R2.
Take the minutes

UC4.
Detect consensus

A6.
Test for consensus

UC5.
Monitor decisions

A7.
Implement the

decision

D5.
Self-monitor

decisions

UC6.
Support whiteboarding

D1.
Manage the difference

of languages
UC7.

Identify expertise

D2.
Evaluate
expertise

helps

and

he
lp

s

and

and

and

helps

and
and and

helps

and

helps

and

andhelps

and

helps

and

Supporting
the CBSD

process

and

A3.
List concerns and

V1.
Record

block votes

V2.
Record stand
aside votes

V3.
Record

reservation votes

V4.
Record

agreement votes

and and and and

Fig. 3: Use-cases to support for the CBSD process, using the i* modeling language.

The fifth dimension is related to the nature of anti-
hierarchical organizations (D5). Without a manager, the de-
velopers themselves must assume responsibility of the task
typically assigned to managers. These include managing con-
flicting priorities between stakeholders, assuring that action
items are actually implemented, and giving more weight to
the intervention of experts [6], [10].

Another challenge is related to documenting the rationale
of the decisions made (D6). As [29] writes:

In the field of software architecture, there has been a
paradigm shift from describing the outcome of archi-
tecting process mostly described by component and
connector (know-what) to documenting architectural
design decisions and their rationale (know-how)
which leads to the production of an architecture. [29]

A GDM support tool should therefore document decision
rationale to ensure that future developers can understand what
arguments supported the decision. Ideally, such a tool would be
able to see how decisions evolve [30]. For example, developers
should know that a decision can be changed if the underlaying
arguments are no longer valid.

But the technical context of the issue is not the only context
to manage. Since CBCs are not the norm, the GDM process
is generally a two-way educational process, first teaching
newcomers about the GDM process, but also teaching ways
to address concerns in a constructive manner. With consensus-
based GDM, communities transition from a discursive space
in which people can be either right or wrong to one where
people are either more or less aware of the issues surrounding
its practices. To make things more complicated, as is the
case for any organization, the typical process is not followed

to the letter, but changes are actually frequent: Since there
are no leader to impose a process, any meeting can result
in a process change. Hence, the bulk of the decision-making
process is centred around educating participants on the current
organizational context. Documentation of such processes is
contextual and reflects a community’s ongoing organizational
dynamics. Therefore, the given organizational context of the
CBC (D7) will have an impact on its GDM, more so than
in a traditional contexts using common GDM practices. The
rationale of the decision (D6) cannot be understood outside
this constantly evolving organizational context of the CBC
(D7).

IV. REQUIREMENTS FOR CBSD SUPPORT TOOLS

We identify the high-level requirements for CBSD tools,
based on the processes, activities, roles, and artifacts involved
in CBSD described in Section II, as well as the challenges
outlined in Section III. We present the requirements in the
form of use-cases, listed below. We also give the requirements
as goal models in Figures 3 and 4 using i*, a language for
modelling early requirements [31], [32].
UC1: During the introduction of an issue, present its context

in a concise yet understandable way (A1).
UC2: Collect the ideas brought during the meeting (A2),

obtain concerns from the participants and keep track of
them (A3). Turn ideas into actionable proposals that ev-
eryone can inspect and amend (A4). Record amendments
to proposals (A5).

UC3: Document the arguments pertaining to each proposal
(A5) and the identity of the person(s) who brought the
argument forward (R3). While it would be difficult to
support active listening (F1) and the reformulation of



UC8.
Evaluate alternatives

D3.
Evaluate the breadth

of the alternatives
studied

UC9.
Detect dysfunctions

helps

and

Supporting
CBSD

introspection

D4.
Identify groupthink and

other dysfunctional
decision processes

UC10.
Understand decisions

D6.
Document
rationale

helps

helps

and

and

D7.
Educate the

organizational
context
and

Fig. 4: Use-cases to support for CBSD introspection, using the i*
modeling language.

participants’ intervention (F2), the tool should assist the
Facilitator’s synthesis responsibility (F3). Each decision
should include the minutes of the relevant meetings in
order to understand better the context of the decision
(R2).

UC4: Detect consensus, through mechanisms like straw polls
(A6). Straw polls should support the four types of votes
(V1-V4). It should be possible to record the rationale of
non-consenting votes (V1-V3).

UC5: Monitor the implementation of decisions after the meet-
ing, to ensure it is carried out as decided (A7, D5).

UC6: Record relevant sketches (e.g., whiteboard photos).
Discussion can often lead to a refined model that can
be understood by all participants (D1).

UC7: Identify and evaluate the expertise relevant to the deci-
sion at hand (D2).

Introspection, reflection and self-improvement is a big part
of the Agile philosophy [9], and the philosophy of CBCs. A
CBSD support tool should also therefore support the following
use cases:

UC8: After implementing a decision, determine if the alter-
natives studied were adequate or if the team should have
spent more time finding alternatives (D3).

UC9: Detect degenerated group decision making problems,
such as groupthink, unresolved conflict, etc. (D4).

UC10: Some decisions can have a long-term impact. Develop-
ers years later might have to deal with the decisions made
today and might want to understand why the specific
decision was made (D6). Understanding the decision
means understanding the organizational context wherein
the decision was made at the time. Participants must
therefore be educated on the organizational context in
order to understand the related decisions (D7).

V. WHAT IS CURRENTLY MISSING IN CBSD SUPPORT
TOOLS?

In this section we describe how existing tools and tech-
nologies fit with the CBSD activities, roles and work products
described in previous sections. Ideally, CBSD support tools
should be compatible with the processes presented earlier, and
address the challenges of consensus-based decision-making.
In practice, while some are covered by existing tools, other
functionalities are still missing. The list of tools analyzed
is a preliminary, non-exhaustive list of tools, based on a
similar list published in the literature [33] as well as our own
investigation.

ArguNet [34] and Carneades [35] are tools for structuring
debates into arguments and logical propositions. They can
record the ideas and arguments presented during a GDM
meeting, using formal logic to encode their structure. They
treat arguments as logically true propositions which can either
support or oppose a proposal. They do not have voting
mechanisms or support for evaluating expertise. ArguNet uses
a directed node graph similar to concept models to link
arguments and logicial propositions. Carneades, on the other
hand, uses a tree modeling langage similar to i* models in
order to structure arguments.

bCisive [36] is a tool for structuring debates. It provides
a richer modelling language (over fifty pictograms) than
ArguNet and Carneades. For example, it allows typing the
sources of arguments, e.g., to differentiate between expert
opinion and hearsay. Like Carneades, bCisive uses a tree
modeling langage similar to i* models.

DebateGraph [37] is a mind-mapping tool offering the ca-
pability to structure data. It can link arguments and proposals,
but its utility remains limited for GDM. Like ArguNet, it
uses a directed node graph similar to concept models to link
documents together.

Loomio [38] is a GDM tool useful for voting when there are
already clearly-defined alternatives. It does not help in finding
and structuring the debate in order to find these alternatives. It
does not directly use a modeling language, but it uses simple
graphs (pie charts, bar charts) to display the level of consensus.

Planning Poker [39] is useful for choosing an appropriate
priority or estimate. Alternatives are clearly stated in the form
of numerical scales. The facilitator can choose among various
scales (such as the Fibonacci sequence, powers of 2, Small-
Medium-Large, etc.) according to what is most appropriate for
a given context. Planning poker uses a pictogrammic modeling
langage based on common playing cards in order to facilitate
understanding.

Reddit [40] and Discourse [41] are discussion tools, where
participants bring arguments based on an introduction state-
ment. Reddit integrates a voting mechanism which ensures
that entries supported by more participants are ranked first.
Discourse is closer to a mailing list and presents arguments in
a temporal sequence. While Reddit does not use a modelling
language, Discourse uses a simple pictogrammic model based
on users’ avatars in order to show the state of a discussion. A



TABLE I: Results of the tool analysis based on the i* models in Figure 3 and 4. Tools are presented in alphabetical order.

Tool Argunet bCisive Carneades DebateGraph Discourse holaSpirit Loomio Planning Poker Reddit
UC1: Present issue A1 Yes Yes No No Yes No Yes Yes Yes

UC2: Manage proposals

A2 Yes Yes Yes Yes Yes No No No Yes
A3 Partial Yes No Partial No No No No No
A4 Yes Yes Yes No No No No No No
A5 Partial Partial No No Partial No No No Partial

UC3: Document
arguments

A5 Yes Yes Yes Yes Yes No No No Yes
R2 No No No No Yes No No No Yes
R3 No No No No Yes No No No Yes
F3 Yes Yes Yes Yes No Yes No Yes No

UC4: Detect consensus A6

V1 No No No No No No Yes Yes Yes
V2 No No No No No No Yes No No
V3 No No No No No No Yes No No
V4 No No No No No No Yes Yes Yes

UC5: Monitor decisions
A7 No No No No No No No Partial No
D5 No No No No No No No Partial No

UC6: Whiteboarding D1 No Yes No Yes Yes No No No Partial
UC7: Identify expertise D2 No Yes No No No Yes No No No

UC8: Evaluate
alternatives

D3 No No No No No No No No No

UC9: Detect
dysfunctions D4 No No No No No Partial No No No

UC10: Understand
decisions

D6 Yes Yes Yes No Yes No No No Yes
D7 No No No No No No No No No

Discourse discussion is modeled with the avatar of the initiator,
and avatars of the last users to reply to the discussion.

holaSpirit [42] is an implementation of the “holacracy” [11]
framework, which focuses on managing responsibilities and
meeting agendas. It includes a way to document tensions
between participants, which can help diagnose some dys-
functionalities. It can help identify expertise, based on the
assignment of responsibilities. The “holacracy” framework
relies on Venn diagrams to show how responsibilities can be
regrouped into roles.

We summarize the results of our analysis in Table I. Note
that the activity “Refinement” (A5) appears in two columns
and does not present the same results. The reason is that one
analysis is taken from the point of view of management pro-
posals (UC2) while the other is based on argument documenta-
tion (UC3). For example, a tool can permit edition of proposals
(A5 from UC2), but does not cover argument documentationm
(A5 from UC3), therefore resulting in different results.

Studying the results presented in Table I, it is possible to
pinpoint incompatibilities between current tool functionalities
and the needs of CBSD. Some requirements are poorly covered
by current tools, while others are not covered at all.

Results also show that many tools focus on one aspect of
GDM exclusively. This is coherent with the current tendency
away from a single tool able to do everything (e.g., Rational
Rose) and toward multiple inter-communicating tools (e.g.,
integrating Slack with JIRA and Bitbucket). It would therefore
theoretically be possible to cover the needs of CBSD using
multiple inter-communicating tools. Unfortunately, most of
these tools cannot do this right now, forcing a manual transfer
of data from one tool to the next. For example, while none
of the tools analyzed provides direct support for decision
monitoring (UC5), it would be possible to support it through a
connection to a project management tool like Microsoft Project
or Atlassian JIRA.

However, one obstacle to this integration is the two widely

different paradigm used by the tools analyzed. About half
the tools studied support a rational decision process (e.g.
ArguNet, bCisive, Carneades), rooted in logical propositions
akin to Bayesian logic. These tools assume that arguments
brought forward are equally true and build the GDM around
argument structures. The other half support a naturalistic
decision process (e.g. Loomio, Reddit, Planning Poker) and
are rooted in fuzzy propositions. These fuzzy propositions are
not assumed to be true, and GDM is therefore built around
participants’ votes.

The importance of both rational and naturalistic approaches
to GDM has been detailed in published literature [24], [25]. On
the one hand, purely rational tools are limited in practice. On
the other hand, while some fuzzy argumentation models exist,
they focus on artificial intelligence and are not supported by
any GDM tools [43]. This implies that a fuzzy argumentation
modelling support tool might be useful for practical GDM,
and in extension, to CBSD.

Results show only partial coverage of the “Refinement”
activity (A5) from the point of view of proposal management
(UC2). A few tools support the editing of proposals and
arguments, but none keep track of changes. This requirement
is important in practice because it is often necessary to come
back to previous versions of proposals, e.g., when a change
is blocked by participants. It is also important for postmortem
evaluation of the GDM process, especially postmortem alter-
native evaluation (UC8) and team dysfunction identification
(UC9).

Among the uncovered requirements, none of the analyzed
tools support postmortem alternative evaluation (UC8). This is
cause for concern since poorly framed problems are the source
of multiple software catastrophes [44]. It would be interesting
to track changes made to the alternatives throughout the project
in order to detect when poor alternatives were chosen, or where
radical changes to alternatives occurred during development.

No tools support the postmortem evaluation of team dys-



functions (UC9), except holaSpirit, which does it partially
through the manual identification of tensions. With a tool able
to keep track of changes, it would be possible to see how the
decision evolved throughout the project. It would therefore be
possible to perform some reasoning not only on one static
model, but on a serie of evolving models. It seems however
that at this time, no framework exists to study the evolution
of argument models.

Given the importance given to the management of expertise
in the literature [7], [6], [44], it is surprising that more tools
are not taking it into account. Only two tools support it, but
they do not implement voting mechanisms. In other words,
expertise is not factored in any of the vote-based tools. This
limits the capability of stakeholders to assess the relative
merits of alternatives, as all proposals, arguments and votes
are considered equal, which might not be the case in practice.

VI. GOING FORWARD

Given the mismatch between the capabilities of existing
tools and the need of CBCs, we propose a roadmap for
research on model-based techniques for supporting CBSD.
We focus on model-based techniques specifically because the
Model Driven Engineering (MDE) approach allows describing
the various relevant artifacts at a high level of abstraction,
which in turn helps integrate and analyze information from
heterogeneous sources, such as discussions, decisions, design
artifacts, documentation, source code, etc.

A. Main research questions

Research on CBSD should at a minimum address the
following:

a) RQ1. Inter-tool communication:: Developers should
be able to seamlessly use chains of relevant tools. For example,
they could pick one tool for problem statement, a second
for proposals and a third for argument documentation (UC1,
UC2, UC3), and be able to link the decision data to a project
management tool (UC5) of their choice. It is a classic problem
in software engineering and model-driven development. We
propose to use metamodelling and language globalization [45]
to create an infrastructure for interoperability between tools.

b) RQ2. Tool support for fuzzy argumentation:: Existing
tools are primarily oriented toward rational decision-making.
In practice, when facing complex decisions, developers favour
a more naturalistic approach. Tool support, as well as the
modelling languages and techniques used for representing
discussions, should reflect this practical need. The modelling
of discussions is a difficult problem in itself in the field of
computational linguistics where various approaches have been
developed to represent and analyze them (e.g., [46], [47],
[48]). However, combining such approaches with MDE tech-
niques, languages and tools is an open problem. One potential
avenue is to extend peliminary work on creating models of
software design discussions [49], [50] with techniques from
design space modelling and exploration. We are currently
working on a project to model online discussions and provide
online feedback and analytics about them to the participants.

c) RQ3. Evolving decision models:: It is currently possi-
ble to make static argumentation models. It should be possible
to take multiple snapshots of static models in order to reason
on the evolution of the models over time. For reasoning on
design decision rationale, the monitoring and management of
compliance [51] and assurance [52] documentation over time
is relevant. Crucially, decision-making should be informed by
the principled evaluation of alternatives. This can be accom-
plished by integrating into CBSD techniques developed for
design space exploration [53]. Further, a support tool should
integrate these in a metamodelling platform that would allow
comprehensive management [54] and versioning [55].

d) RQ4. Monitoring Team Dynamics:: Current tools pro-
vide limited information on team characteristics, like expertise
(D2) or organizational context (D7). Since these characteristics
vary from time to time, and from decision to decision, it
would be important to keep track of them in order to support
better reasoning. For example, CBCs might accrue “consensus
debt” (akin to technical debt [56]) when provisional short term
decisions need to be made to address urgent contingencies.
This debt should be recorded, monitored and resolved. Keep-
ing track of team dynamics would enable better modelling of
the social network, which would connect to decision models
with specific heuristics to detect degenerations. In this, it
is crucial to integrate into CBSD insights from industrial
psychology [57], taking into account the specific philosoph-
ical concerns of CBCs, especially centred around issues of
intersectionality [58].

B. Epistemological approach

CBCs have their roots in social movements (e.g., Loomio
originates from the Occupy Wall Street movement [38]), and
research in CBSD should take in account its origins and the
particular concerns that lie at its core philosophy. Specifically,
the philosophy behind CBSD evolved from critiques of abuses
of traditional organizational structures. From the viewpoint of
social movements, inequalities extant in society are reproduced
as individual behavior inside organizations unless special care
is given to avoid them.

This includes, from the perspective of CBCs, academic
researchers. This poses a practical and epistemological chal-
lenge for research in CBSD, since traditional post-positivist
and constructivist epistemological stances might be met with
significant resistance and suspicion from CBCs. Instead, we
propose that critical theory is the appropriate epistemological
framework for research in this domain. Easterbrook et al.
describe it as follows [59]:

Critical Theory judges scientific knowledge by its
ability to free people from restrictive systems of
thought [60]. Critical theorists argue that research
is a political act, because knowledge empowers dif-
ferent groups within society, or entrenches existing
power structures

Within a critical-theoretic epistemological framework, re-
searchers prioritize the use of participatory approaches, that



provide them with intimate insights and high levels of famil-
iarity with the teams being studied [61], as well as action
research. Action research is a research methodology, where
researchers acknowledge that they are not objective observers
and instead work together with a community to affect change,
explicitly acknowledging their biases. The focus is on building
relationships of mutual trust and accountability between re-
searchers and the communities they study, and on participatory
theory building in order to address real problems withing the
community, under the principle that research and action are
indivisible [62].

In short, research on CBSD should be conducted in close
collaboration with CBCs themselves, ensuring that their real
needs are addressed in accordance to the specific concerns and
priorities in their social and political milieu.

VII. RELATED WORK

The research questions provide interesting new avenues for
the development of tool support for GDM within generic
CBCs. However, how does this can be mapped to CBSD?
Will the theoretical tool presented herein provide any benefit
for software engineering, at least within CBC contexts?

The work of [6] on Agile software development corrob-
orates some of the CBC challenges. They are critical of
traditional decision theory being too rooted within the rational
decision-making paradigm (RQ2):

Normative decision theory views decision makers
as idealized, rational, extremely intelligent beings
who overcome their inner turmoil, shifting values,
anxieties, post-decision regrets, fear of ambiguity,
inability to perform intricate calculations and limited
attention span to make rational, optimum choices.
[6]

They also see the self-managed nature of Agile software
development as challenging. They mention that traditional
authoritarian structures normally ensure that the voice of the
experts carry more weight than the voice of others (RQ4).
They also mention that in Agile, decision are not always
implemented as discussed during meetings, if at all (UC5).

In practice however, Agile software development is not
as self-managed as theoretically designed. [8], in a survey
of Agile software developers, found that 67% of them still
had a manager above them. These Agile teams come from
traditional authoritarian organizations, or are within mixed
organizations (Agile and non-Agile), and are still beholden
to high management.

The works of [7], while not specific to software, does study
engineering teams. They note the heterogeneity of experts (D1)
within modern engineering teams. For example, a software
development team might include a user interface expert, a
database expert, a security expert, etc. They therefore build
a theoretical model to help engineering team manage this het-
erogeneity of expertise, through a weighting approach (RQ4).
This heterogeneity becomes especially difficult during soft-
ware requirement negotiations, as it includes participants with
varying backgrounds: domain experts, software developers,

non-technical stakeholders, etc. [63]. [7]’s model integrates
a feedback mechanism which recognizes that consensus is a
building, evolving process (RQ3). The objective of their model
is to support this evolving process by providing appropriate
feedback to the participants, based on their expertise. As the
authors write, engineering GDM “is a dynamic and iterative
process, composed of several rounds where the experts ex-
press, discuss, and modify their preferences” [7].

The importance of expertise must however be balanced
with the concern of technocratic autocracy, “where expertise
is the basis of authority” [24]. The works of [24] outlines
the importance of managing concerns (RQ5) to avoid the
case where the decision-making process becomes the domain
of unchallenged experts. Their work also show the lack of
research into naturalistic decision-making in Agile software
development. They write that:

Today’s software systems are becoming more com-
plex because of the need to balance the often
disparate needs of diverse stakeholders, and the
growing complexity of the technology used. This
reality requires more unstructured decision-making.
Second, the principles of agile software development
align with the definition of naturalistic decision-
making. [24]

There is therefore a need, at least within Agile software
development, for naturalistic GDM support tools (RQ2).

In summary, the research questions identified are not generic
needs of CBCs, but can also be applied to software engineer-
ing. A number of these research questions are not only limited
to CBSD, but could also provide benefits for Agile software
development. For Agile contexts, we note especially the need
for naturalistic GDM tool support (RQ2) and the need for
expertise management (RQ4).

VIII. CONCLUSION

We have outlined the group decision-making (GDM) pro-
cess and its associated challenges in the context of Consensus-
Based Software Development (CBSD), based on existing
practices within Consensus-Based Communities (CBCs). We
structured these in high-level requirements for supporting the
CBSD with appropriate tooling and analyzed a preliminary list
of CBSD-related tools to find gaps in the existing functional-
ities. Based on this analysis, we posed outlined a vision for
research in CBSD, identigying four research directions and
outlining the epistemological and methodological challenges
for such research.

REFERENCES

[1] T. Flanagan, C. Eckert, and P. J. Clarkson, “Externalizing tacit
overview knowledge: A model-based approach to supporting design
teams,” Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, vol. 21, no. 3, pp. 227–242, Jun. 2007. [Online].
Available: http://dx.doi.org/10.1017/S089006040700025X

[2] M. J. Turk, “Scaling a code in the human dimension,” in
Proceedings of the Conference on Extreme Science and Engineering
Discovery Environment: Gateway to Discovery, ser. XSEDE ’13.
New York, NY, USA: ACM, 2013, pp. 691–697. [Online]. Available:
http://doi.acm.org/10.1145/2484762.2484782



[3] M. E. Conway, “How do committees invent?” Datamation, vol. 14, no. 4,
pp. 28–31, 1968.

[4] N. Nagappan, B. Murphy, and V. Basili, “The influence of organizational
structure on software quality: An empirical case study,” in Proceedings
of the 30th International Conference on Software Engineering, ser.
ICSE ’08. New York, NY, USA: ACM, 2008, pp. 521–530. [Online].
Available: http://doi.acm.org/10.1145/1368088.1368160

[5] A. Maturo and A. G. S. Ventre, “Models for consensus in multiperson
decision making,” in NAFIPS 2008 - 2008 Annual Meeting of the North
American Fuzzy Information Processing Society, May 2008, pp. 1–4.

[6] M. Drury, K. Conboy, and K. Power, “Decision making in agile
development: A focus group study of decisions and obstacles,” in 2011
Agile Conference, Aug 2011, pp. 39–47.

[7] I. J. Pérez, F. J. Cabrerizo, S. Alonso, and E. Herrera-Viedma, “A
new consensus model for group decision making problems with non-
homogeneous experts,” IEEE Transactions on Systems, Man and Cyber-
netics: Systems, vol. 44, no. 4, pp. 494–498, 2014.

[8] Y. Shastri, R. Hoda, and R. Amor, “Does the ’project manager’ still
exist in agile software development projects?” in 2016 23rd Asia-Pacific
Software Engineering Conference (APSEC), Dec 2016, pp. 57–64.

[9] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern,
B. Marick, R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland, and
D. Thomas. (2001) Principles behind the agile manifesto. [Online].
Available: http://agilemanifesto.org/principles.html

[10] Rishipal, “Analytical comparison of flat and vertical organizational
structure,” European Journal of Business and Management, vol. 6,
no. 36, pp. 56–65, 2014.

[11] B. J. Robertson, “Organization at the leading edge: Introducing ho-
lacracy,” Tech. Rep., 2007.

[12] Koumbit. (2017) About us. [Online]. Available: https://www.koumbit.
org/en/about

[13] Loomio Cooperative Limited. (2016) The loomio co-op handbook.
[Online]. Available: https://www.loomio.coop/

[14] Zappos Insights. (2017) Holacracy - flattening the organization
structure and busting bureaucracy. [Online]. Available: https://www.
zapposinsights.com/about/holacracy

[15] A. Doyle. (2016) Management and organization
at medium. [Online]. Available: https://blog.medium.com/
management-and-organization-at-medium-2228cc9d93e9

[16] Drupal. (2016) Drupal code of conduct. [Online]. Available: https:
//www.drupal.org/dcoc

[17] Seeds for Change, A Consensus Handbook. Footprint Workers’ Co-op,
2013.

[18] D. G. Messerschmitt, C. Szyperski et al., “Software ecosystem: under-
standing an indispensable technology and industry,” MIT Press Books,
vol. 1, 2005.

[19] D. Zwieback, Beyond Blame, Learning from successes and failure.
O’Reilly Media, 2015.

[20] A. Cornell, Oppose and Propose! AK Press, 2011.
[21] D. Vannucci and R. Singer, Come Hell or High Water. AK Press, 2010.
[22] R. Cialdini, “The science of persuasion,” Scientific American, vol. 284,

pp. 76–81, 2001.
[23] F. J. Cabrerizo, F. Chiclana, M. R. Uren̋a, and E. Herrera-Viedma,

“Challenges and open questions in soft consensus models,” in 2013 Joint
IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS),
June 2013, pp. 944–949.

[24] N. B. Moe, A. Aurum, and T. Dybå, “Challenges of shared decision-
making: A multiple case study of agile software development,” Informa-
tion and Software Technology, vol. 54, no. 8, pp. 853–865, 2012, special
Issue: Voice of the Editorial Board.

[25] C. Zannier, M. Chiasson, and F. Maurer, “A model of design decision
making based on empirical results of interviews with software design-
ers,” Information and Software Technology, vol. 49, no. 6, pp. 637–653,
2007.

[26] M. Van Mechelen, M. Gielen, V. vanden Abeele, A. Laenen, and
B. Zaman, “Exploring challenging group dynamics in participatory
design with children,” in Proceedings of the 2014 Conference
on Interaction Design and Children, ser. IDC ’14. New York,
NY, USA: ACM, 2014, pp. 269–272. [Online]. Available: http:
//doi.acm.org/10.1145/2593968.2610469

[27] A. Kalyanasundaram, W. Wei, K. M. Carley, and J. D. Herbsleb,
“An agent-based model of edit wars in wikipedia: How and when
is consensus reached,” in Proceedings of the 2015 Winter Simulation

Conference, ser. WSC ’15. Piscataway, NJ, USA: IEEE Press,
2015, pp. 276–287. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2888619.2888648

[28] P. Bourdieu, Distinction. Harvard University Press, 1984.
[29] M. Shahin, P. Liang, and M. R. Khayyambashi, “Architectural design

decision: Existing models and tools,” in 2009 Joint Working IEEE/IFIP
Conference on Software Architecture European Conference on Software
Architecture, Sept 2009, pp. 293–296.

[30] J. Tyree and A. Akerman, “Architecture decisions: demystifying archi-
tecture,” IEEE Software, vol. 22, no. 2, pp. 19–27, March 2005.

[31] E. S. K. Yu, “Towards modelling and reasoning support for early-
phase requirements engineering,” in Requirements Engineering, 1997.,
Proceedings of the Third IEEE International Symposium on, Jan 1997,
pp. 226–235.

[32] F. Dalpiaz, X. Franch, and J. Horkoff, “iStar 2.0 Language Guide,” Tech.
Rep., 2016.

[33] D. A. L. Garcı́a, T. d. J. Mateo Sanguino, E. C. Ancos, and I. F.
de Viana González, “A debate and decision-making tool for enhanced
learning,” IEEE Transactions on Learning Technologies, vol. 9, no. 3,
pp. 205–216, July 2016.

[34] G. Betz, S. Cacean, and C. Voigt. (2016) Argunet - open-source
argument mapping. [Online]. Available: http://www.argunet.org/editor

[35] T. F. Gordon. (2016) Carneades - tools for argument (re)construction,
evaluation, mapping and interchange. [Online]. Available: http:
//carneades.github.io/

[36] ReasoningLab.com. (2017) bcisive - online decision mapping. [Online].
Available: https://www.bcisiveonline.com/

[37] P. Baldwin and D. Price. (2017) Debategraph. [Online]. Available:
http://debategraph.org/

[38] Loomio Cooperative Limited. (2016) Loomio - better decisions together.
[Online]. Available: https://www.loomio.org/

[39] Mountain Goat Software. (2017) Planningpoker.com - estimates
made easy. sprints made simple. [Online]. Available: https://www.
planningpoker.com/

[40] Reddit. (2017) Reddit. [Online]. Available: https://about.reddit.com/
[41] Civilized Discourse Construction Kit. (2017) What is discourse?

- discourse - civilized discussion. [Online]. Available: http://www.
discourse.org/about

[42] holaSpirit SAS. (2017) holaspirit - application for holacracy and teal
organizations. [Online]. Available: https://www.holaspirit.com/

[43] J. Janssen, M. De Cock, and D. Vermeir, “Fuzzy argumentation net-
works,” Vrije Universiteit Brussel, Tech. Rep., January 2008.

[44] C. Edwards, “Agreeing to fail,” Engineering & Technology, vol. 4,
no. 7, pp. 74–75, 2009. [Online]. Available: https://doi.org/10.1049/et.
2009.0716

[45] B. Combemale, J. Deantoni, B. Baudry, R. B. France, J.-M. Jézéquel,
and J. Gray, “Globalizing modeling languages,” Computer, pp. 10–13,
2014.

[46] D. P. Twitchell, M. Adkins, J. F. Nunamaker, and J. K. Burgoon, “Using
speech act theory to model conversations for automated classification
and retrieval,” in Proceedings of the International Working Conference
Language Action Perspective Communication Modelling (LAP 2004),
2004, pp. 121–130.

[47] S. Joty and E. Hoque, “Speech act modeling of written asynchronous
conversations with task-specific embeddings and conditional structured
models,” in Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics, ACL, 2016, pp. 7–12.

[48] R. P. Fawcett and B. L. Davies, Monologue as a turn in dialogue:
Towards an integration of exchange structure and rhetorical structure
theory, 1992, pp. 151–166.

[49] E. Black, P. McBurney, and S. Zschaler, Towards Agent Dialogue as a
Tool for Capturing Software Design Discussions, 2014, pp. 95–110.

[50] A. S. Mashiyat, M. Famelis, R. Salay, and M. Chechik, “Using devel-
oper conversations to resolve uncertainty in software development: A
position paper,” in Proceedings of the 4th International Workshop on
Recommendation Systems for Software Engineering, 2014, pp. 1–5.

[51] S. Ghanavati, D. Amyot, and L. Peyton, “Towards a framework for
tracking legal compliance in healthcare,” in Advanced Information
Systems Engineering. Springer, 2007, pp. 218–232.

[52] S. Kokaly, R. Salay, V. Cassano, T. Maibaum, and M. Chechik, “A model
management approach for assurance case reuse due to system evolution,”
in Proceedings of the ACM/IEEE 19th International Conference on
Model Driven Engineering Languages and Systems. ACM, 2016, pp.
196–206.



[53] S. A. Busari and E. Letier, “Radar: A lightweight tool for requirements
and architecture decision analysis,” in Proceedings of the 39th
International Conference on Software Engineering, ser. ICSE ’17.
Piscataway, NJ, USA: IEEE Press, 2017, pp. 552–562. [Online].
Available: https://doi.org/10.1109/ICSE.2017.57

[54] G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu, and M. Sa-
betzadeh, “A manifesto for model merging,” in Proceedings of the 2006
international workshop on Global integrated model management. ACM,
2006, pp. 5–12.

[55] P. Brosch, G. Kappel, P. Langer, M. Seidl, K. Wieland, and M. Wimmer,
“An introduction to model versioning,” in Proceedings of the 12th
international conference on Formal Methods for the Design of Computer,
Communication, and Software Systems: formal methods for model-
driven engineering. Springer-Verlag, 2012, pp. 336–398.

[56] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From metaphor
to theory and practice,” Ieee software, vol. 29, no. 6, pp. 18–21, 2012.

[57] K. W. Buffinton, K. W. Jablokow, and K. A. Martin, “Project team dy-
namics and cognitive style,” Engineering Management Journal, vol. 14,
no. 3, pp. 25–33, 2002.

[58] D. Atewologun, R. Sealy, and S. Vinnicombe, “Revealing intersectional
dynamics in organizations: Introducing ’intersectional identity work’,”
Gender, Work & Organization, vol. 23, no. 3, pp. 223–247, 2016.

[59] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting em-
pirical methods for software engineering research,” Guide to advanced
empirical software engineering, pp. 285–311, 2008.

[60] C. Calhoun, Critical social theory: Culture, history, and the challenge
of difference. Wiley-Blackwell, 1995.

[61] T. C. Lethbridge, S. E. Sim, and J. Singer, “Studying software
engineers: Data collection techniques for software field studies,”
Empirical Software Engineering, vol. 10, no. 3, pp. 311–341, 2005.
[Online]. Available: http://dx.doi.org/10.1007/s10664-005-1290-x

[62] P. S. M. Dos Santos, G. H. Travassos, and M. V. Zelkowitz, “Action
research can swing the balance in experimental software engineering,”
Advances in computers, vol. 83, pp. 205–276, 2011.

[63] H. In and S. Roy, “Issues of visualized conflict resolution,” in Proceed-
ings Fifth IEEE International Symposium on Requirements Engineering,
2001, pp. 314–315.


