Towards Collaborative Modeling Using a Concern-Driven Version Control
System

Omar Alam
Trent University
Peterborough, ON, Canada
omaralam @trentu.ca

Abstract— This paper presents an approach for collaboration
in modeling that builds on ideas of Concern-Oriented Reuse
(CORE). CORE is a novel reuse paradigm that supports
broad-based model reuse. We leverage the ideas of CORE and
version control systems to support collaborative modeling of
reusable concerns. We capture our ideas in a metamodel and
demonstrate our approach by collaboratively modeling a drone
system concern.

I. INTRODUCTION

Nowadays, software developers extensively use version
control systems (VCS), such as the Git [1] repositories,
to collaborate and track development activities throughout
their projects. These systems allow developers to organize
and distribute the development effort among themselves,
keep track of issues and bugs, and schedule the delivery
of releases. In addition, the success of reuse in software
development as exemplified by, e.g., class libraries, services,
and components facilitated collaboration and coordination
during software development activities. A developer now can
reuse the artifacts developed by other developers through
the reuse interfaces of these artifacts. Together with VCS
and repositories, advances in reuse allowed software devel-
opment activities to be more organized and collaborative. For
example, a group of developers can use a Git repository to
collaborate in coding the classes of a software program, and
another developer can reuse these coded classes.

However, despite these advances in the programming
world, application of VCS in model-driven engineering
(MDE) is still in its infancy. For MDE practitioners, a VCS
is mostly used to keep track and collaborate in the develop-
ment of models [2]. However, unlike VCS repositories for
programs, reuse of models in repositories through VCS is
still a challenge in MDE [3]. Enforcing consistent reuse is
necessary to cope with the growing complexity of software
systems. Nevertheless, modelers usually create models from
scratch because modeling languages offer limited support to
reuse existing models and modeling tools in general are not
shipped with a library of reusable models. Lack of support
for reuse limits the potential of VCS in MDE, as checking
out, committing, and updating models that cannot be reused
will not be very useful for collaborative environments.

This paper tackles the aforementioned issues by leveraging
the ideas of Concern-Oriented Reuse (CORE) [4], [5] and
VCS to support collaborative modeling. CORE defines a new

Vasco Sousa and Eugene Syriani
University of Montreal
Montreal, QC, Canada

{dasilvav, syriani}@iro.umontreal.ca

reuse unit, called concern, that enables broad-scale model
reuse. Whereas developers in existing collaborative environ-
ments collaborate to develop classes of a code/model base, in
our approach, modelers collaborate to incrementally model
the features belonging to a CORE concern. We capture our
ideas in a metamodel and demonstrate our approach through
modeling an autonomous drone system collaboratively. We
believe that our reuse-focused, feature-driven, collaborative
and incremental modeling approach allows modelers to better
distribute development effort among themselves, manage
development life-cycle activities, and increase productivity
and time to market.

In the following section, we provide background infor-
mation on CORE and introduces our running example. In
Section III, we present how we support versioning in CORE.
In Section IV, we discuss the lessons learnt in modeling the
drone concern. In Section V, we present related work and
conclude in Section VI.

II. BACKGROUND ON CORE

CORE [4], [6] is a new software development paradigm
inspired by the ideas of multi-dimensional separation of con-
cerns [7]. CORE builds on the disciplines of MDE, software
product lines (SPL) [8], goal modeling [9], and advanced
modularization techniques offered by aspect-orientation [10]
to define flexible software modules that enable broad-scale
model-based software reuse. CORE introduces a modular
unit of reuse called concern which encapsulates a set of
software development artifacts, i.e., models and code, de-
scribing all properties of a domain of interest during software
development in a versatile, generic way [4]. The models
within a concern can span multiple phases of software
development and levels of abstraction (from requirements,
analysis, architecture, and design models to code). Concerns
decompose software into reusable units according to some
points of interest [11], [12] and may have varying scopes,
e.g., encapsulating several authentication choices, commu-
nication protocols, or design patterns. The main premise
of CORE is that recurring development concerns are made
available in a concern library, which eventually should cover
most recurring software development needs. Similar to class
libraries in modern programming languages, this library
should grow as new development concerns emerge, and
existing concerns should continuously evolve as alternative

E System
Behavior

E, E; E E Es
. ; FlyingMinimum .
FlightPath FlyHome BatteryWarning Altitude ForcedLanding
5O B B O
. - Unobstructed
SShapeFlight MinimumBattery Takeoff

Fig. 1.

architectural, algorithmic, and technological solutions be-
come available. Applications are built by reusing existing
concerns from the library whenever possible, following a
well-defined reuse process supported by clear interfaces. The
same idea is applied to the development of concerns as well:
high-level/more specific concerns can reuse low-level/more
generic concerns to realize the functionalities they encap-
sulate. In the end, the architecture of a software developed
with CORE takes the form of a concern hierarchy (directed,
acyclic graph), thus supporting hierarchical modularity [13].

CORE advocates a three-part interface [5] to describe each
concern and enable its reuse: the variation interface for
exposing decisions (using a feature model [14]) and their
impact on system qualities (using an impact model [15]);
the customization interface to adapt the chosen variation to
a specific reuse context (customization is here used with a
different meaning than in the SPL [14] paradigm); and the
usage interface to trigger the functionality encapsulated by
the customized concern. In CORE, models are built for the
root phase and all follow-up phases using the most appro-
priate modeling formalisms to express the properties of the
concern that are relevant during each phase. Consequently, a
concern is typically described by many modeling notations,
(e.g., based on the Unified Modeling Language (UML) [16]),
but can also offer other language mechanisms (e.g., aspect-
oriented features).

A. Running example: drone system

To illustrate the ideas of CORE, we use the example of
developing a drone concern. This concern is part of a larger
surveillance system. It describes the behavior of different
variants of a drone system with surveillance purposes. We
modeled this concern following the ideas of incremental
modeling in CORE. A concern is built by adding small
model increments to some base models. In other words,
instead of creating large monolithic models of a concern for
each variation, the model is decomposed into many small
realization models. The feature model [14] of this concern
is shown in Figure 1 which presents the common and varying
features to make the drone system work properly. This
feature model is part of the concern interface and is modeled
incrementally. The root feature DroneSystemBehavior in

Drone product line feature model

Figure 1 is the starting point of the incremental modeling
effort. After that, we modeled other features incrementally
in a process detailed in the next section. Each feature is
realized by a realization model modeled as a state machine.
When the user of a concern makes a feature selection (i.e.
configures the concern), a customized concern is generated
by composing its realization models [5].

The state machine shown in Figure 2 realizes the root
feature by modeling the basic behavior of a drone system.
This state machine consists of a sequence of states that define
the different stages of a drone’s operation. For example, the
state TakeOff provides the minimum behavior required to
take off, which will be further refined to include additional
behavior. A realization model can extend another realization
model [4] to have a complete excess to the structure and the
behavior of the extended model.

The realization model for the feature FlyHome shown in
Figure 3 refines the base realization model of the root feature
(Figure 2) to define the behavior of the Descend state. When
we specify that FlyHome extends SystemBehavior, FlyHome
will have complete access to the states and transitions defined
in SystemBehavior, hence, there is no need to re-define them
again. Realization models in CORE often extend each other
and produce a complex extension hierarchy [17]. Realization
models in the upper levels of the extension hierarchy often
also designate the concern-partial elements [4] that must be
concretized within the concern. These elements are noted
with a disjoint bar symbol preceding the element name,
such as states Fly and Descend as shown in Figure 3.
Their role is to define generic properties shared by a set
of realization models, but require to be completed with
additional properties in order to function correctly.

Breaking down the concern into small realization models
that are modeled incrementally allows adding the incre-
ment when the knowledge required to model it becomes
available. It also allows multiple modelers to collaborate
when developing the concern, with each modeler being
responsible to model a particular set of increments. Further-
more, incremental modeling in CORE allows the concerns
to continuously evolve by adding features as needed by the
reusing concern/application.

In the next section, we discuss how we leverage the CORE

model SystemBehavior realizes SystemBehavior

Variables: toTakeoff
e
startPos Ve -
Operational A
toTakeoff toFl toLand landed
e: startup() e: startPos = getGPS()
rise()
off
Shutdown
e: shutdown()
Fig. 2. Base drone behavior Statechart

model FlyHome realizes FlyHome extends SystemBehavior

Variables: ~ ¢

(o oo (shurdomn Jo—

dir e: startup() I toTakeoff e: shutdown() off

(Operational)
(" Descend)

Take Off toFly tolLand

e: startPos = getGPS()
rise()

-

@ getGPS() = startPos

e: descend()

e: rotate(1)
dir=1
[isAligned(startPos)]

landed
%ed]

GoForward

e: goForward()
dir *=-1

J

]
toTakeoff

Fig. 3.

concepts to support collaborative modeling. We show how
multiple modelers participate in incrementally modeling an
example drone concern.

III. SUPPORT FOR VERSIONING IN CORE

In this section, we present how we leverage the concepts of
CORE, such as reuse, incremental modeling, interfaces (es-
pecially the variation interface) to support collaborative mod-
eling. We present an approach that allows multiple modelers
to participate in developing a concern through the support of
a concern-driven VCS. In the example discussed later in this
section, each modeler is responsible to model a particular
feature of a concern after discussing with the development
team. The feature tree of the concern is built incrementally
by extending the realization models, and collaboratively by
assigning features to different modelers. The CORE com-
position algorithms, along with the composition/refinement

Realization model of the FlyHome feature

mechanisms of the modeling language are responsible to
derive the common model for a particular feature selection
[17]. Since a concern is designed in a modular way, the
relationships between features and the dependencies between
realization models set the course for collaboration: easing the
process of assigning tasks to collaborators.

A. Extension of CORE metamodel

The concepts of CORE are captured by a metamodel
and supported by a reference implementation [4] that allow
different modeling languages to support concern-orientation.
We extend this metamodel with new concepts to support
versioning and collaborative modeling. Figure 4 presents
a simplified view of the extended CORE metamodel. The
shaded classes depict the new concepts that are added to
CORE to support versioning, while the others are the existing
CORE concepts related to incremental modeling, reuse, and

visibility: COREVisibility Type

L 2
COREModel |5
|

[COREModelElementComposition |<L0MRS o COREModelComposition | {
[| o [}
7 [
mR[0.” [reuse), 1
COREMappin | COREModelExtension | [COREModelReuse | [COREConfiguration | COREReuse
- [| |]
0..*AmE N A1] reuses N0..*
1y from 1yto T mAO- selConf
1y rC
COREModelElement modelElements source r

1.% 1

IM|
L

partiality: COREPartiality Type 0. * models concern —¢
0.. 1_0 3 ¢
realizesV0..* realizedBy |8
* - o}
0." selected—rmmr e ore ffeatures & | COREFeatureModel | 1
- 0.” [|teatureModel
0..* reexposé
{subsets}
<<enumeration>> timeline | 1
COREVisibilityType COREEvent events o COREBranch |branches _| CORETimeline
concern IS \ g <
. id: String o [| . 1]
public -author: String " h
to [1 to|1
[I |
[CORERel | [COREFork __|[CORECommit |[COREMerge |
[-releaseNo: String | |] il |
[

Fig. 4. A simplified CORE metamodel.

composition. As shown in Figure 4, a COREConcern con-
tains a timeline (CORETimeline) which is the development
timeline maintained by the VCS. The timeline has branches
(COREBranch) which contain events (COREEvent). An event
can be a merge (COREMerge), fork (COREFork), commit
(CORECommit), or release (CORERelease). These concepts
are closely related to the concepts of VCS, such as Git [1].

Each versioning event is linked with the set of features of
the concern that the modeler modified or added. COREEvent
has a link to COREFeature to allow the versioning event
to be associated with the concern’s features. This link is
derived from the link between COREEvent and COREModel,
which allows an event can be associated with any kind of
model in CORE (including feature models, impact models,
and models of the CORE-based modeling languages). These
events follow the standard semantics as in common VCS. A
developer can create a release if (1) all generated customized
concerns correctly satisfy the constraints of the feature model
and (2) all concern-partial elements are concretized in at least
one generated customized concern.

As discussed in [4], [17], COREFeatures realize a set of
realization models. The realization models are linked with di-
rected extension dependencies (COREModelExtension). The
association realizedBy/realizes between COREFeature and
COREModel encodes which realization model belongs to
which feature. A CORE-based modeling language will sub-
class from COREModel, and in our case, COREStatechart-
Model (not shown in Figure 4) subclasses COREModel so
that all the fine-grained changes in the statecharts are still in
CORE.

B. Development timeline

The extension to the CORE metamodel allows us to
develop our DroneSystem concern incrementally and retain a
trace of its development. Figure 5 illustrates the development
timeline of the concern that we, the three authors of this
paper, followed. It shows the branches used to organize and
divide the development effort. Figure 5 also includes the
sequence of events we created. The numbers in Figure 1
illustrate the order of the events in which the features were
modeled during the development timeline.

In the beginning, we discussed and collaborated to model
the root feature DroneSystemBehavior (i.e., the base realiza-
tion model shown in Figure 2), which depicts the minimum
behavior of the drone system. After the feature DroneSys-
temBehavior was developed, we did the first commit in the
concern’s timeline at event Ey as shown in Figure 5. After
that, we added features that add details to the behavior of the
root feature. The modelers collaborated in adding an optional
feature FlyingMinimumAltitude, which guarantees that a drone
only operates at a minimum safety altitude. This feature
refines the TakeOff state in DroneSystemBehavior.

At this point, we decided to work separately in different
branches to speed up the development time. Therefore, we
forked two additional branches were created at event Fi,
and the modelers decided to model a separate feature in
each branch. In one branch, the BatteryWarning feature was
modeled, which monitors whether the drone has enough
battery to operate, and issues a warning if it reaches bellow
20% of capacity. In another branch, FlightPath was modeled
as mandatory feature that defines the flight path procedure

FlyHome

System
Behavior

FlyingMinimum

Eo Altitude BatteryWarning

FlightPath

I -Commit @-Release O-Fork V-Merge

Fig. 5.

to cover a particular area. In the third branch, FlyHome was
also modeled as a mandatory feature to specify the behavior
of returning back to the starting coordinates when the drone
is asked to land.

When modeling of these features were completed, they
were merged with each other. First, the FlightPath branch
was merged onto BatteryWarning branch at event F». Then,
the FlightHome branch was merged onto the BatteryWarning
branch at event Ejs. It is important to note that we could
designate one of the three branches as the main branch
and the two other as secondary branches as the way it is
done in Git. In that case the BatteryWarning branch could
be designated as the main branch that other branches merge
onto. After the merge at E'3, the modelers decided that there
the current features of the concern are sufficient to make a
release.

The concern is now released at F, with five features:
DroneSystemBehavior, FlyingMinimumAltitude, FlightHome,
BatteryWarning and FlightPath. After that, we forked
branches again to model three additional features, Unob-
structedTakeOff, MinimumBattery and SShapeFlight. Unob-
structedTakeOff ensures the drone only operates if it can
reach its minimum operation altitude without obstructions.
The MinimumBattery feature ensures the drone only stays
airborne if it has enough battery to operate and return to its
origin point. Finally, SShapeFlight directs the drone to fly
repeatedly in a specific S shape to cover an area.

When we merged the branches that modeled Unobstruct-
edTakeOff with MinimumBattery, we discovered that there is
a conflict that occurred as a result of a particular behavior
(ForcedLanding) in both models. We discuss how we re-
solved this conflict in the next section. After all branches
were merged, we had a feature model that contains all
the features that we intended the drone system to have.
Therefore, we released a second release for this concern at
Es.

IV. DISCUSSION

We discuss some of the benefits and reasons for collabo-
rative modeling using our approach.

A. Reasons for branching

The example in the previous section assigns one modeler
per branch to model one feature. This is not a constraint
in our approach. Depending on the context and the nature
of the concern, any number of modelers can be assigned
to a branch to model any number of features. There are

FlightPathSShapeCoverage

Development timeline

several factors that should be taken into account when
creating a new branch or assigning modelers to a branch.
Usually, a branch is created to distribute the modeling effort
by assigning modelers to branches, hence, speeding up the
development. Furthermore, a new branch can be created to
assign the expert(s) for modeling particular feature(s) to that
branch. Therefore, branches can be used to organize the
development team, i.e., modelers can be assigned according
to their specialization and expertise, and their authorship
of the changes such as commit and merge can be traced
(COREEvent has an author attribute as shown in Fig. 4).

Modelers can also be assigned based on their experience
in the concerns that are going to be reused by features of a
branch. For example, if a feature or group of features should
reuse a security concern, then a branch can be created to
model those features and modelers who are expert in security
can be assigned to that branch.

In addition, branches can be created to partially model
a feature, i.e., a branch can be created to model some
realization models of a feature, but not all of them. This will
be particularly useful for concerns that encapsulate models
created using different modeling notations. For example, in
a concern that encapsulates requirement and design models,
a branch can be created to model the requirements models
of the concern and can be merged with other branches that
are also modeling requirements. Then new branches can
be created to model the design models. In this situation,
branching is helpful for planning the development activities
according to software process that is being followed by the
development team. However, modelers need to careful not to
branch or merge when there are invalid feature or realization
models. Automatic verification and validation methods can
be used verify the consistency and correctness of the models
in a branch [18].

B. Evolution of the feature model

In the previous section, the features of the drone system
are added incrementally through the collaboration of three
modelers. Initially, all three modelers participated in mod-
eling the root feature, which was committed at Ey. Then,
each modeler modeled a separate subfeature of the root in
the branches created at Fy. Since concerns are modeled
incrementally, either by adding realization models or by
reusing other concerns [17], [4], it is not unusual that more
than one modeler participates in adding the increments. In
some cases, all participants can collaborate on modeling a
single feature as in the case of modeling the root feature

model MinimumBattery realizes MinimumBattery, ForcedLanding extends SystemBehavior
Variables: 1
charge on
(ohodonn Jo—
startPos e: startup() ! toTakeoff e: shutdown() off
(Operational)
toLand
N
{ Take Off
e: startPos = getGPS()
rise()
{ SendWarning
e: warning()
[charge>=10%] [charge<10%]/ toLand
Battery
after 15s [charge<20%]
e: charge = getCharge())
) I
toTakeoff

Fig. 6.

as explained in the previous section. By doing so, they are
able to discuss, plan, and set the course for adding additional
features. All participants share a common understanding of
the root feature before adding additional variants. The feature
model grows incrementally by adding features through col-
laboration and branching. Modelers discuss before branching
which features they are going to model and the consistency
of the feature model can be checked during merging.

It is also possible to model the entire feature model only
(without the realization models) before creating any branch
in the timeline, apart from the main branch. In this case,
modelers have the opportunity to collaborate in planning all
the possible variants that they want to model upfront. In the
branches, they model the realization model for the planned
features.

In addition, since a CORE concern groups models of dif-
ferent modeling notations belonging to multiple development
phases, our approach allows to use heterogeneous modeling
languages collaboratively in a single project, allowing for
better development life-cycle management.

In summary, our approach allows for different ways to
plan the feature model, modelers can collaborate in modeling
the feature model before realizing the individual features, or
they can opt for starting with a root feature and branching
to collaboratively add features and realizing them.

Realization model of the MinimumBattery feature. The transition toLand is removed after the merge to resolve a conflict.

C. Conflict management

Similarly to VCS such as Git [1], our approach maintains a
remote copy of the concern and local copies for each branch.
When creating a new branch, a copy of the concern will be
created for local use in that branch. The user can push her
changes to the remote copy and conflicts can be resolved
when they arise during commit or merge, similarly to how
systems such as Git do. However, in our approach, only
features that are changed need be checked for conflicts when
merging branches. Furthermore, since CORE models are
added incrementally (preserving the consistency of existing
models [4]), only changes in the realization models need
to be examined for conflicts during merge operations. This
saves time as feature and realization models tend to grow in
size when reusing other concerns [17], [19].

Features and models that are not changed and are not in
conflict with the changed features/models can be automati-
cally merged. However, in case of a conflict, the extension
hierarchy of the realization models along with the constraints
of the feature model will allow for dependency analysis to
resolve the conflict [17]. When a conflict occurs between two
or more realization models, a conflict resolution model can
be introduced to resolve this conflict. For example, during the
merge operation at Eg, we found that both MinimumBattery
(Fig. 6) and UnobstructedTakeoff (Fig. 7) has a transition

model UnobstructedTakeOff realizes UnobstructedTakeOff, ForcedLanding extends SystemBehavior

Variables: .\

min
startPos

v
Ooff]ﬂ{Start Jﬁ
toTakeoff

e: startup()

(o o

e: shutdown() off

(Operational

.

Take Off

Sl J[getAIt()>min] /toFIy[o]

landed
toFly toLand ! Descend Landed |

e: hover()
cancel/toLand -

e: startPos = getGPS()
rise()

toLand

Sensor

obstacleDetected / cancel @

.
toTakeoff

Fig. 7.

called (foLand) from TakeOff to Descend. This transition
allows the system to land before the drone starts flying,
i.e., the drone system takes off and lands immediately. When
features MinimumBattery and UnobstructedTakeoff are se-
lected, two transitions with the name roLand will appear in
the model, resulting a conflict. The system does not know
which foLand transition to fire. We resolve this conflict by
first removing the foLand transition from both MinimumBat-
tery and UnobstructedTakeoff, then introducing a model that
defines this transition, and make both MinimumBattery and
UnobstructedTakeoff extend that new model. We call the new
model ForcedLanding, shown in Fig. 8. ForcedLanding has a
pointcut that detects the occurrence of TakeOff and Descend
states and replaces them with the advice part which adds
the toLand transition between those two states. There are
other ways to resolve conflicts, some are discussed in [17].
In cases where conflicts occur because of reusing a particular
concern (e.g., a feature from the reused concern conflicts
with a feature from the reusing concern), then the conflict can
be resolved either by using a conflict resolution model or by
making a different feature selection from the reused concern.
However, it is possible that some conflicts cannot be resolved
using resolution models or by choosing an alternative variant
from the reused concern (or the conflicting variant of the
reused concern provides important functionality that cannot
be replaced).

Realization model of the UnobstructedTakeOff feature. The transition toLand is removed after the merge to resolve a conflict.

Despite the efforts from modelers to resolve conflicts as
they arise, there are conflicts that are unresolvable or are too
difficult/costly to resolve. When such conflicts occur during
a merge or commit event, the concern designers can express
them using excludes relationship in the feature model [14]. In
some cases, a conflict can be resolved by selecting additional
feature(s), as we discuss in the next subsection. In these
cases, the concern designers can explicitly express these
additional features to be selected. The advantage of using
our approach over how concerns are currently designed, is
that the concern designers can “revert” back when none of
these solutions work, i.e., discard the features/models that
introduced the conflict during the merge, and branch again
to re-model them in a way that resolves the conflict.

D. Re-modeling of features

As discussed in the previous subsection, we resolved
the conflict between the models in Fig. 6 and Fig. 7 by
introducing a new model called ForcedLanding shown in
Fig. 8. Here, we discuss a different way for resolving this
conflict. We notice that even if the two toLand transitions are
syntactically the same, they may get triggered by different
situations. Therefore, these are domain-specific transitions
that cause a semantic conflict. The merge operation could
be parameterized by a semantic conflict detection function.
We resolve the conflict by introducing a new feature in the
feature model that realizes this shared behavior. During the

model ForcedLanding realizes ForcedLanding

Pointcut

Take Off

e: startPos = getGPS()
rise()

Advice

Take Off

e: startPos = getGPS()
rise()

toLand

Fig. 8.

merge operation, we decided to introduce a new optional
feature called ForcedLanding (see Figure 1) that realizes the
point-cut advice model that we initially introduced to resolve
the conflict discussed previously. We make both realization
models, shown in Figure 6 and Figure 7, realize the newly
introduced feature ForcedLanding in addition to their re-
spective features, UnobstructedTakeoff and MinimumBattery.
Both features require the feature ForcedLanding, using the
require constrain of feature models.

It is also possible to re-model a set of features as a
separate concern. For example, during the merge operation at
FEg, we can extract the battery features (BatteryWarning and
MinimumBattery) from the DroneSystem and include them
in a new concern which encapsulates all battery related fea-
tures. For example, the new concern encapsulates additional
features that allow the user to specify whether the battery
could be recharged or should be disposed. When battery
is separated from DroneSystem as a reusable concern of its
own, we have to identify the features in DroneSystem that
are affected by this re-modeling. In particular, we have to
reuse the battery concern in those features and adapt their
realization models accordingly. The same process should be
followed when a new release of the battery concern comes
out and we would like to reuse the new upgraded battery.
We have to identify the features that reuse the old battery
concern, remove the old reuse, and establish new reuse for
the upgraded version of the battery concern. Finally, for
successful reuse of the battery concern, we have to check
for any conflict between the reused features in the battery
concern and the reusing features of the DroneSystem concern
[17].

V. RELATED WORK

Although CORE comes with a library of reusable con-
cerns, currently there is no support for VCS in CORE.
Therefore, support for collaboration is limited in CORE.
TouchCORE [20], which is a touch-based modeling tool
for CORE-based design modeling, allows multiple modelers
to collaborate in modeling through a touch-based screen.
However, it does not support tracking development activities,
branching, merging provided the VCS discussed in this
paper.

Other modeling technologies provide some support for
collaborative modeling. Commercial tools such as Rational

Aspect pointcut and advice for ForcedLanding

Rhapsody [21], Visual Paradigm [22], MagicDraw [23],
and Enterprise Architect [24] are modeling tools that are
used in industry and support collaborative modeling. Some
technologies such as MagicDraw, Eclipse CDO [25] and
EMFStore [26] provide some support for VCS. Rocco et al.
provide an overview these tools and discuss their potentials
and shortcomings [2]. They acknowledge that support for
reuse and discovering reusable artifacts is limited, increas-
ing the upfront development cost for many model-based
projects. Therefore, the potential benefits of collaborative
modeling in these approaches is limited. In addition, their
ad-hoc architectures make it difficult for domain-specific
collaboration and version control, and their simplistic use of
locking/conflict management slows down productivity [27].
However, a concern in our approach is modeled incremen-
tally and collaboratively through reusing existing models.
Since different modeling languages can be integrated under
the CORE umbrella [4], our approach has the potential
to be language-independent, allowing different modeling
languages and tools (including domain-specific languages)
to adopt our ideas. Furthermore, our approach proposes an
explicit task-assignment mechanism based on the feature and
realization models of a concern. Lastly, our approach allows
for releasing versions of a concern, we are not aware of any
modeling approach that supports gradual releasing of models.

VI. CONCLUSION

This paper introduces a novel approach for collaboration
in modeling CORE concerns. A concern groups related het-
erogeneous models and provide interfaces to facilitate reuse.
We build on ideas of CORE such as reuse and incremental
modeling to support collaborative modeling using a VCS.
We capture the ideas of our approach in a metamodel and
demonstrate the effectiveness of our approach using a an
example drone concern. In future, we plan to conduct larger
case studies using multiple modeling languages to evaluate
our approach. We also plan to integrate our approach with
some existing based modeling tools.

We expect that this feature-driven, concern-oriented, col-
laborative modeling approach will make collaborative mod-
eling easier, faster, and simpler with modular ways to resolve
conflicts.

REFERENCES
[1] “Git,” Last accessed: 2017. [Online]. Available: https:/git-scm.com/

[2]

[3]

[4]
[5]

[7]

[8]

[9]

[10]
(1]

(12]

[13]

[14]

[15]

[16]
(17]

(18]

[19]

[20]

[21]
[22]

[23]
[24]

[25]

[26]
[27]

J. D. Rocco, D. D. Ruscio, L. Tovino, and A. Pierantonio, “Collabora-
tive repositories in model-driven engineering [software technology],”
IEEE Software, vol. 32, no. 3, pp. 28-34, 2015.

J. Whittle, “The truth about model-driven development in industry
- and why researchers should care,” 2012. [Online]. Available:
http://www.slideshare.net/jonathw/whittle-modeling-wizards-2012/

0. Alam, “Concern-oriented reuse: A software reuse paradigm,” Ph.D.
dissertation, McGill University, 2016.

O. Alam, J. Kienzle, and G. Mussbacher, “Concern-oriented software
design,” in Proceedings of the 16th International Conference on
Model-Driven Engineering Languages and Systems - MODELS 2013,
ser. Lecture Notes in Computer Science, vol. 8107. Springer Berlin
Heidelberg, 2013, pp. 604-621.

W. Al Abed and J. Kienzle, “Information Hiding and Aspect-Oriented
Modeling,” in 14th Aspect-Oriented Modeling Workshop, Denver, CO,
USA, Oct. 4th, 2009, October 2009, pp. 1-6.

P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, “N degrees of
separation: Multi-dimensional separation of concerns,” 1999, pp. 107—
119.

K. Pohl and A. Metzger, “Variability management in software product
line engineering,” in Proceedings of the 28th international conference
on Software engineering (ICSE '06). ACM, 2006, pp. 1049-1050.
International Telecommunication Union (ITU-T), “Recommendation
Z.151 (10/12): User Requirements Notation (URN) - Language Defi-
nition,” approved October 2012.

R. Filman, T. Elrad, S. Clarke, M. Aksit, Aspect-Oriented Software
Development. Addison-Wesley, 2004.

E. W. Dijkstra, A Discipline of Programming, 1st ed. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 1997.

D. L. Parnas, “A technique for software module specification with ex-
amples,” Communications of the Association of Computing Machinery,
vol. 15, no. 5, pp. 330-336, May 1972.

M. Blume and A. W. Appel, “Hierarchical modularity,” ACM Trans.
Program. Lang. Syst., vol. 21, no. 4, pp. 813-847, Jul. 1999.

K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson, “Feature-
oriented domain analysis (FODA) feasibility study,” Software Engi-
neering Institute, Carnegie Mellon University, Tech. Rep. CMU/SEI-
90-TR-21, November 1990.

G. Mussbacher, J. Aratjo, A. Moreira, and D. Amyot, “Aourn-based
modeling and analysis of software product lines,” Software Quality
Journal, vol. 20, no. 3-4, pp. 645-687, 2012.

O. M. Group, Unified Modeling Language: Superstructure (v 2.4.1).
J. Kienzle, G. Mussbacher, P. Collet, and O. Alam, “Delaying decisions
in variable concern hierarchies,” in GPCE 2016, 2016, p. to be
published.

M. Schottle, N. Thimmegowda, O. Alam, J. Kienzle, and G. Muss-
bacher, “Feature modelling and traceability for concern-driven soft-
ware development with touchcore,” in Companion Proceedings of the
14th International Conference on Modularity, MODULARITY 2015,
Fort Collins, CO, USA, March 16 - 19, 2015, 2015, pp. 11-14.

0. Alam, J. Kienzle, and G. Mussbacher, “Modelling a family of
systems for crisis management with concern-oriented reuse,” Softw.,
Pract. Exper., vol. 47, no. 7, pp. 985-999, 2017.

W. Al Abed, M. Schoéttle, A. Ayed, and J. Kienzle, “Concern-oriented
behaviour modelling with sequence diagrams and protocol models,”
in Behavior Modeling - Foundations and Applications, ser. LNCS.
Springer, 2015, vol. 6368, pp. 250 — 279.

“Rational rhapsody designer manager,” Last accessed: 2017, www-
03.ibm.com /software/products/en /ibmratirhapdesimana.

“Visual paradigm,” Last accessed: 2017, https://www.visual-
paradigm.com/.

“Magicdraw,” Last accessed: 2017, https://www.nomagic.com/.
“Enterprise architect,” Last accessed: 2017,
http://www.sparxsystems.com/products/ea/.

“Cdo model repository,” Last accessed: 2017,

http://www.eclipse.org/cdo/.

“Emfstore,” Last accessed: 2017, http://www.eclipse.org/emfstore/.
D. S. Kolovos, L. M. Rose, N. Matragkas, R. F. Paige, E. Guerra,
J. S. Cuadrado, J. De Lara, I. Rath, D. Varré, M. Tisi, and J. Cabot,
“A research roadmap towards achieving scalability in model driven
engineering,” in Proceedings of the Workshop on Scalability in Model
Driven Engineering, ser. BigMDE *13. New York, NY, USA: ACM,
2013, pp. 2:1-2:10.

