
Feature Model for Collaborative Modeling
Environments

Constantin Masson
University of Montreal
Montreal, QC, Canada

Email: constantin.masson@umontreal.ca

Jonathan Corley
University of West Georgia

Carrollton, GA, USA
Email: jcorley@westga.edu

Eugene Syriani
University of Montreal
Montreal, QC, Canada

Email: syriani@iro.umontreal.ca

Abstract—There has been a growing trend toward collabora-
tive environments especially those utilizing browser-based inter-
faces which can be seen in modeling tools such as AToMPM and
WebGME. In response to the growing interest in collaborative
modeling, we explored existing systems and potential solutions to
identify the various features relevant to collaborative modeling
systems. In this paper, we detail the feature diagram resulting
from our exploration of collaborative modeling systems. We
also detail the features of an existing collaborative system both
to illustrate the use of the diagram and further explore the
features. Through this feature diagram we identify key areas for
collaborative modeling systems. We hope the feature diagram will
be used to guide development, analysis, and discussion around
collaborative modeling systems.

I. INTRODUCTION

There has been a growing trend toward collaborative envi-
ronments especially those utilizing browser-based interfaces.
Basic tools include Google Docs1, Trello2, and Asana3. Ad-
ditionally, this trend can be seen in modeling tools such as
AToMPM [1] and WebGME [2]. These tools bring together
developers, including geographically distributed teams, in a
collaborative modeling environment to work on a shared set
of software artifacts.

In prior work, we defined a set of requirements and chal-
lenges for a collaborative modeling environment, enumerating
four possible collaboration scenarios [3]. We also investigated
an efficient and distributed architecture to support collaborative
modeling as a service [4]. Other researchers and developers
have also been working in this space: the (aforementioned)
WebGME project has provided a browser-based interface to
the GME modeling environment; Basciani et al. proposed
MDEForge [5], a web-based modeling platform including
collaborative features; Obeo has introduced collaborative mod-
eling features [6]; and MetaEdit+ supports offline collaborative
modeling through version control [7]. In response to the
growing interest in collaborative modeling, we have explored
existing systems and potential solutions to identify the various
features relevant to collaborative modeling systems.

In this paper, we detail the feature model resulting from
our exploration of collaborative modeling systems. The model
highlights key features and interdependencies. These features

1https://docs.google.com
2http://www.trello.com
3https://www.asana.com/

are to be interpreted as key challenges for collaborative mod-
eling environments, such as collaboration scenarios, conflict
management, or multi-user support. The features shall be
used to guide development, analysis, and discussion around
collaborative modeling systems. We also discuss how some
existing tools already implement certain features, and identify
where future research can focus.

In the remainder of the paper, we give a brief overview of
existing work in the area of collaborative modeling in Sect. II.
In Sect. III, we present a feature modeling covering primary
concerns in collaborative modeling systems. In Sect. IV, we
instantiate the feature model on four tools as a form of
validation. In Sect. V, we further discuss the various features
and significant issues for collaborative modeling systems.
Finally, we provide our concluding remarks in Sect. VI.

II. BACKGROUND AND RELATED WORK

Before discussing the feature diagram that is the focus of
this paper, this section will overview collaborative modeling
systems and meta-studies in the area.

A. Collaborative Modeling Systems

AToMPM was one of the first web-based collaboration tool
for MDE [1]. It takes advantage of the ever increasing capa-
bilities of web technologies to provide a purely in-browser in-
terface for multi-paradigm modeling activities. The AToMPM
project is also working to provide an API for collaborative
modeling services along with the in-browser interface [4].
Clooca [8] is also a web-based modeling environment that
lets the user create DSLs and code generators. However, it
does not offer any collaboration support.

Recently, Maroti et al. proposed WebGME [2], a web-
based collaborative modeling version of GME4. It offers a
collaboration where each user can share the same model and
work on it. In contrast with the Modelverse, WebGME relies
on a branching scheme (similar to the GIT version control
system) to manage the actions of different users on the same
model. WebGME supports the multi-user single-view and
multi-view single-model scenario [3]s, but not in an always-
online environment, unlike in AToMPM where operations
immediately succeed or fail.

4WebGME is now available at https://webgme.org/

ExecutionConcurrency Conflict ManagementNetwork Architecture Multi-User

Realtime Execution => "Conflict Awareness" "Distinction Mechanism" v "Sandbox Mode"v v

¬ API => ClientType

Legend:

Mandatory
Optional
Or
Alternative
Abstract
Concrete
Collapsed

Collaborative Modeling System

Collaboration Scenario Support Data Storage Client Type

Undo-Redo => History

User-Specific v "All Visible" v Identified v "Ownership System" => "User Identification"

Realtime => Multi-User "Push Notification"

Manual => "Conflict Awareness"
Versioning => History Persistent

Offline => "Batch Operations"

"Multi-View Multi-Model" => "Multi-View Single-Model"

v

v

Fig. 1. Top-level features and constraints

MetaEdit+ has also released a collaborative modeling en-
vironment [7] of their prior desktop application [9]. The
collaborative environment incorporates Git into the tool to
provide for offline collaboration among modelers.

GenMyModel [10] also provides a collaborative modeling
environment using an in-browser client. The environment
supports many common varieties of models including BPMN,
UML, Ecore, and more. Modeling projects are managed com-
pletely through the browser interface with provided facilities
for managing collaboration.

Gallardo et al. proposed a three-phase framework to create
a collaborative modeling tools based on Eclipse [11]. The
difference between creating a regular DSL and creating a
collaborative modeling tool in their system is the addition
of the technological framework, which adds the collaboration
support to the DSL. Naming it “TurnTakingTool”, multiple
users are able to modify an existing model by utilizing a turn-
based system. The framework helps the user to create the DSL
as a native eclipse plug-in with concurrency controls, graphical
syntax and multiple user support.

Basciani et al. proposed MDEForge [5], a web-based mod-
eling platform. MDEForge offers services to the end user by a
rest api, including transformation, model, metamodel editing.

B. Collaborative Modeling Meta-Studies

At the 2016 COMMitMDE, Ruscio [12] presented the
protocol and preliminary results of a systematic study of
collaborative modeling systems. The study identified existing
systems and introduced terminology for collaborative mod-
eling systems. Rocco et al. [13] describe the potential and
outline challenges of collaborative modeling repositories. Our
work complements these works as a formal presentation of
features and interdependencies identified from our exploration
of collaborative modeling systems. Our work seeks to guide
development, analysis, and discussion. The key contribution
of our work is a feature diagram that may be used by
future researchers and developers. These works further the
purpose of exploring the collaborative modeling space by
identifying challenges and needs of collaborative modeling
spurring further research and development in the area.

C. Collaboration outside MDE

Collaboration is not limited to MDE and is found in many
fields. Code editors make use of collaboration, such as Eclipse
Che that uses an algorithm based on OT. File sharing systems
also use concurrent algorithms to allow several users working
on the same file. GoogleDoc, GoogleDrive and DropBox [14]
are only some examples. The Google Realtime API used
with GoogleDrive allows to concurrently modify a file [15].
Collaboration is also used in various software, such as music
editors [16] and game engines, e.g., PlayCanvas Engine.

III. FEATURES FOR COLLABORATIVE MODELING
ENVIRONMENTS

Modeling environments that directly support the collabo-
ration of many stakeholders on the same model(s) working
independently are collaborative modeling environments. These
environments may be offline systems utilizing features similar
to a version control system to manage the shared artifacts or
may allow collaborators to interact remotely in realtime. We
explored a variety of existing tools and potential solutions to
identify a set of features for the implementation of collabo-
rative modeling environments. In this section, we introduce
and briefly discuss each feature. Figure 1 shows the top-level
feature diagram and the constraints of the model. The complete
feature model is available online in ReMoDD [17].

A. Methodology

The feature model presented in this paper is the outcome of
an iterative process. To identify the feature of collaborative
modeling systems, we investigated all kinds of collabora-
tive environments. Our sources include: our own software
(AToMPM [3]), MDE-specific environments (OBEO [18],
MDEForge [5], GenMyModel [10], CDO, . . .), and other
collaborative environments (GoogleDoc [15], Eclipse Che,
Ohm Studio [16], Overleaf, DropBox [14], . . .).

We relied on published articles related to the collaboration
aspect tools when available. We also reviewed technical docu-
mentation as well as relevant blogs, tutorials, and videos that
explain the technical implementation of the tools. Finally, we
experienced each tool ourself when freely available. In some

cases, we studied specific algorithms, in particular conflict
management algorithms used by several collaborative envi-
ronments, such as Operational Transformation, locking mech-
anisms, and the DropBox synchronization algorithm explained.

From the collected set of data, we identified which features
are specific to MDE collaborative environments.

B. Collaboration Scenario Support

Fig. 2. Collaboration scenario features

An abstract model is the abstract syntax of a model con-
forming to the metamodel of a given DSL. Conceptually,
a view is a projection (in whole or part) of an abstract
model utilizing the most appropriate representation of a subset
of the model’s elements for the needs of the modeler. An
environment that does not support views could be categorized
as supporting only a single complete view for each model.
Therefore, we can detail the possible collaboration scenarios
for both tools explicitly supporting views and those not sup-
porting views in similar terms. In collaborative modeling, we
previously identified four possible collaboration scenarios [3],
that we briefly describe here. In the following, we commonly
refer to scenarios with only two collaborators, but recognize
the scenarios can scale to an arbitrary number of collaborators.

1) Multi-User Single-View: Users are working on the same
view of the model. They both see the same information in
the same language and with the same concrete syntax. The
changes made by a user are reflected automatically to others.

2) Multi-View Single-Model: Users work on distinct views
of the same model. The views may present the same, over-
lapping, or disparate sets of elements in the same or different
concrete syntax. Modifications on the abstract model of ele-
ments present in both views are perceived by the other user.

3) Multi-View Multi-Model: Each user is working on a
different view and each view is a projection of a different
model. These models have some dependency or satisfy a
global constraint. Only changes on elements related between
the abstract models are perceived by both users.

4) Single-View Multi-Model: This is similar to Sect. III-B3,
but the dependency is defined at the view level, not at the
model level, such as an aggregation of elements from both
models. A user may work on a view that projects several
models while another is working on one of the projected
models. A change on an element used in the view is propagated
to all views with the same element.

C. Concurrency

Concurrency is concerned with issues related to multiple
operations occurring at the same time or in parallel.

1) Locking: When several users are working on the same
model(s) concurrently, conflicting updates may occur. Simple
strategies, such as retaining only the last modification, could
result in losing work from one user and goes against the goals
of a collaborative environment. One approach to this issue is to
avoid conflicts entirely allowing users to work together trans-
parently. However, the collaborative aspect requires that users
are able to work concurrently on components even closely
linked. A general overview of the file-sharing problem in the
MDE environment is presented in the subversion book [19].

Pessimistic locking is a strategy widely used in concurrent
systems. It is based on data locking, which only allows one
user to modify the locked data. A naive but simple solution
is to use a global Data Lock. All of the model is locked
to a specific user and other users cannot access the model
until the lock is released. However, this reduces collaboration,
because only one user can work on the model at a time.
Another solution is to use a Fragment Lock that applies
the lock on a fragment (i.e., subset) of the model. In this
solution, each user is able to modify a distinct fragment
concurrently. The fragments should be as small as possible,
minimizing the locked portions of the model. However, the
fragment lock approach requires a well structured data format
supporting well defined fragments. In the case of XML for
example, we might lock the current XML tag and its children.
Additionally, fragment locks do not consider dependencies that
may indirectly affect the elements locked (e.g., metamodel
relationships). OBEO Designer implements data and fragment
locking. Another approach relies on Dependency Locking. This
provides finer granularity that locks the element being mod-
ified and its dependencies. Though this technique is seen as
only an improvement here, taking dependencies into account
may be seen as required by the semantic nature of models.
This is discussed in more detail in Sect. V.

Though we try to minimize the set of elements to be locked,
pessimistic locking always blocks access to a set of data. This
might lead to a situation where a user waits for a resource to be
free. OBEO shows an overview of these locking techniques in
their documentation [18]. Optimistic Lock tries to resolve this
issue without locking. Instead, it allows the users to modify,
possibly the same, elements concurrently and then merges
all changes to create one unified new version of the model.
For example, this is how Google Docs allows for concurrent
changes and relies on the Operational Transformation (OT)
algorithm [20] for merging. Unfortunately, though OT works
well for text based data, model merging requires merging
graphs, which makes this approach hard to apply [21].

2) Collaboration Type: We differentiate two scenarios of
collaboration: Realtime and Offline. In the former, the model
is modified by several users at the same time; changes are
applied on the data immediately; and users are updated of
changes made by others immediately. The model is the unique
source of truth that all users alter concurrently. Here even the
changes from a given user may not be considered complete
until acknowledged by a central authority or a set of peers. On
the other hand, offline collaboration presents an asynchronous

Fig. 3. Concurrency features

approach. Users may apply modifications on the model without
sending the changes right away. This principle is often seen
in version control systems (VCS) that allow working locally
and pushing changes at a later time. This prevents immediate
conflicts between users, but local versions may diverge and
result in complex merging processes later, as in Git.

3) Batch Operations: All modeling systems support a set
of atomic operations (e.g., creating or deleting an element)
that provide the ability to develop and manage models. We
recognize that some systems also allow collecting together
these atomic operations in batches. The processing scheme
for these batches becomes significant when discussing col-
laborative systems and handling potential conflicts. Resolve
as Atomic resolves a set of operations in an all-or-nothing
approach. Every operation in the batch must succeed or
none of the operations can be applied. Thus, a single failing
operation may result in the need to rollback changes from a set.
Resolve Divided allows processing each operations separately.
However, this may result in partial sets being applied thereby
generating unexpected or even invalid results.

4) History: In a collaborative environment, storing the
complex history of operations applied to a given element can
be beneficial. The series of events leading to a conflict or
failure may be complex, and not easily understood without a
record of the operations. Here we intentionally separate history
from versioning. For instance, a basic feature of any VCS
is to manage the project history. Therefore, the presence of
versioning mandates the presence of some form of history (this
is represented as a constraint in the feature diagram). However,
a collaborative environment might store some portion or form
of history without the presence of a VCS. GenMyModel [10],
for example, has a full and complex history feature, that allows
replaying the history from a defined start time. History is Per-
sistent if it persists when the environment halts. An example
of non-persistent history is an undo / redo stack that only lasts
until a given session terminates. Using a VCS implies that the
history is persistent. However, it may not be enough to use the
VCS history directly, but a user interface (UI) wrapper might
be required. VCS integrates the set of changes from the whole
project. While working on a specific model, the user does
not need all of this information. Therefore, an environment
might implement a history wrapper that shows only the current

data models history. Identified history adds the user identity
information to each modification. This is often the default
behavior of a VCS. Allowing attributing a change to a specific
user helps in diagnosing a series of events from multiple users
that may have led to a conflict or failure.

5) Versioning: VCS are tools that trace all changes for a
system and have facilities for managing this history. A single
user working on a data model has a complete view of its state
at all points and understands the full history of the model
naturally. However, several users working on the same data
model may lead to misunderstandings and inconsistencies.
When trying to merge artefact(s), the data model(s) might
be significantly altered since the last connection. Changes
performed by other users may be difficult to understand.
This introduces the need for versioning systems with history
management. It adds the possibility to look back at the changes
performed over the intervening time and to understand the full
series of changes. Moreover, VCS also support other features
such as documentation, reverting previous changes, or listing
the added features for a release. A survey on model versioning
was provided by Altmanninger et al. [22].

6) Version Control System: VCS play an important role
in software development. Tools like Git and SVN are largely
used and are very efficient. Therefore, collaborative modeling
environments may opt to integrate an External VCS into the
environment rather than reinventing the wheel. This places
the data under the VCS management and each change is
added to the history. However, these VCS use compare and
merge mechanisms to integrate the changes into a new version,
which require manual intervention. For instance, to integrate
new changes made under Git, changes must be commited
and pushed manually. Moreover, these systems are subject to
conflicts, which require manual resolution. Employing locking
with a version control system may avoid conflicts. Merging
is then performed automatically in the background. This
approach is utilized by MetaEdit+ that integrates Git with
their MDE collaboration [7]. They use fine granularity locking
to avoid conflict, that allows processing the merge without
risk of conflicts. Furthermore, these VCS are specialized for
versioning, comparing and merging text files as opposed to
complex semantical data structures in MDE. For these reasons,
some modeling systems may opt to build Custom VCS. We

discuss these issues in more details in Sect. V.
7) SandboxMode: Sandbox is used to divorce a user from

the typical collaborative environment. This supprts experimen-
tal or debugging processes. Working in a sandbox environment
allows developing components that temporary break other
components or violate general rules/expectations, without dis-
turbing other users. The modifications may then be integrated
when complete, potentially resulting in complex merges.

8) Branching Type: Multi Branching is used to divide the
project into several branches. In VCS, branches are a divergent
copy of the project where users may work independently from
other branches. Branches are often used for new incoming
feature that are not stable yet. As soon as the feature is stable
and needs to be integrated, a merge with the main branch is
done. This eases the team work and separates the maintenance
from the new release components. However, a manual merge
is required and the new feature(s) may be difficult to integrate
with the main branch. New features are built on top of the
old base code that may be deprecated. This issue appears
when maintenance largely diverges from the main branch.
Moreover, dependency ambiguities are complex to resolve,
which is emphasized by the semantic nature of models.

Single Branch avoids these issues. No branches are used
and every change is performed on a single version of the
system. In order to separate new features, e.g., to exclude
them from the release, Revision Flags may be used. In this
way, new features depend on the up to date state of the code,
while still hidden from release. One great example is Google
with the Piper VCS which uses only one trunk for all its
teams and flags for new features [23]. It is important to note
that the use of branches is not always relative to the actual
VCS branching support. Though the used VCS may support
branching, users (or even environments employing an external
VCS) can make the decision not to use branching. This is the
case with MetaEdit+ that uses Git as a VCS but does not use
Git branching feature.

D. Data Storage

Fig. 4. Data Storage Features

Data storage is concerned with how models are stored and
managed in the system to enable reuse among collaborators.

1) Workspace Location: In a collaborative environment,
data is often saved in a remote place (i.e., the “cloud”). The
workspace location is where the data is stored while users are
modifying it. Data may be Local, meaning that the relevant
models are on the users local machine. This may support an
asynchronous workflow as with an offline collaboration type or

be a response to other constraints on the system. Collaboration
is often reduced to active screen sharing (single-view single-
model) as supported by AToMPM. Since network latency is
sometimes high, having a local copy may remove the delay
between an operation being requested and being applied on
the data. In contrast, Remote locations do not require loading
the project locally. This is useful in the case of a project using
a high quantity of memory. Lazy loading may even be used
to load specific data only when required.

2) Data Format: Models use a specific data storage format.
The choice of format is important and may influence or be
influenced by other factors (e.g., the VCS). Some formats
may be hard to use with a text-based VCS, hard to fragment
for locking, or mandated to be compatible with a distributed
database utilized by the system. Popular formats are JSON (for
web-based modeling environments), XMI (for Eclipse-based
tools), or NoSQL database formats when scale is an issue.

3) Data Management: Data management refers to manag-
ing the basic operations and long-term storage in the system
(e.g., CRUD operations). Internal Management implies data is
processed by tools internal to the software, whereas External
Management reuses existing tools like a distributed database.
Namespaces (e.g., URI) are crucial to access a model.

4) Format Optimization: Format Optimization identifies the
way a system might optimize the model representation/storage
for certain actions; e.g., Model Browsing or model Search.
Basciani et al. [5] overview different supported query mecha-
nisms for several systems according to the managed artifacts.

E. Network Architecture

Fig. 5. Network Architecture Features

Collaboration requires the use of the network so that in-
stances of the modeling system on different machines com-
municate and exchange data.

1) Communication Protocol: Clients and servers must be
able to communicate using a common protocol. TCP/IP is a
widely used network protocol. It maybe relevant to investigate
reliable networks to guarantee no data loss, but at the cost of
time performance. Client and server must then use the same
data format to communicate information.

2) Architecture Type: This is the network architecture cho-
sen for the collaborative environment. We distinguish two
fundamental types of architectures: Centralized and Decentral-
ized. Centralized uses a central authority. It has the advantage
of having one source of truth: the centralized storage is the

true version of the work. Alternatively, Decentralized systems
distribute authority. An example of Decentralized architecture
is Git, thought often used in a Centralized way (e.g., Using
Github server as the main storage location).

Centralized architecture may be Single-Server or
Distributed-Server. This is an internal detail, since end-users
see the cluster as only one single-authority. Distributed-Server
adds complexity to handle data synchronization across all
storage locations. Nevertheless, it adds a layer of security
(a single server crash will not affect the whole system)
and performance (distributing processes and storage across
a large set of nodes). This is useful for servers with high
traffic demand. An industrial example of this is the Google
Piper VCS [23], which is duplicated into 10 servers across
the world using the Paxos algorithm [24]. This divides the
number of request performed on each unique server and
speeds up response time.

3) API: An API, though optional, may be integrated to al-
low extension of the system and other client implementations.
For example, we are working toward an API for collaborative
modeling services to allow building and integrating potentially
many distinct clients [4]. Each client may support their own
needs and rely upon the common modeling services provided
by the API to simplify system design and interoperability.
APIs are the basis for modeling as a service systems, such
as MDEForge. Additionally, an API may be provided purely
for internal use to manage operations between layers or nodes
in the architecture. For example, there is a simplified API
between the MVC and MvK within the architecture described
in our prior work [4].

4) Failure Recovery: Hardware and network systems are
subject to failure and error, but user experience should not
be affected by a technical issue within the system. The
possibility of recovery is closely relative to the chosen Network
Architecture. Decentralized architectures mitigate this issue as
each user owns a state of the project. Though the error might
be disconnected from many users, consistency schemes must
exist to manage the decentralized authority.

Centralized architectures are notably subject to failure in the
case of Single-Server where there is a single point of failure
necessary to take the entire system down, and recovery can
be difficult to impossible depending on the severity of the
failure. On the other hand, Distributed-Server may implement
a failure recovery system. If one server crashes, the system
may use another server instead to maintain availability and
redundancy may be used to prevent the loss of data.

F. Conflict Management

Divergent modifications on the same data model may lead
to a conflict when trying to resolve all modifications to a single
consistent model state. It is important to detect conflicts and
act upon resolving them.

1) Conflict Resolution: Conflict resolution is the process
by which all modifications are combined in order to create
a new version of the model. Automatic conflict resolution is
the ideal solution, where conflicts are resolved automatically.

Fig. 6. Conflict Management Features

Other features, such as collaboration type and locking, strongly
impact the complexity of managing automatic resolution of
conflicts. A live collaboration environment with fine grained
locking may be conflict free. High risks of conflict appear
when using offline collaboration and versioning. Each user
works separately on a divergent version of the work. To share
his change with others, the user needs to perform a merge
action. This could be accomplished through a diff / merge
algorithm. In case of unambiguous changes, this action may
be transparent to the user. For example, if each user changed
different parts of the model(s) without cross dependencies.
However, often Manual conflict resolution may be needed.
This is the case of WebGME tools that refuse a push request
if the server has already been modified [2]. The user must then
first pull the latest changes and manually merge them with his
own changes before pushing them to the server.

2) Conflict Awareness: When working in collaboration,
users should be aware of other users changes. Conflict Aware-
ness is the mechanism that warn users of conflicts. Notification
may be sent in response to conflict (e.g., 2 users move
the same element) or to warn users about potential conflict
(e.g., elements being edited by other users). It is disruptive
for a user to perform a modification that results in unexpected
behavior, because the user was not notified of a conflict.

Warning conflict awareness are only mechanisms to inform
user about conflicts and concurrent actions. This feature pro-
vides only information about conflicts or potential conflicts.
This is often used by the GUI, which uses combinations of
colors and animation to display the information. OBEO applies
this solution by drawing a lock icon at the bottom of any
locked element. However, this is not only restricted to GUI,
this can also be applied in an API. For instance, it can be a
special return value of a function in case of conflict, or an
object state that changes according to it’s conflict state. The
case of a GUI is discussed in more details in Sect. V.

Prompt Action conflict awareness on the other hand, informs
about conflict and requests the user take some action, such as
in MedaEdit+. The user is prompted to update the model with
the server to remove existing locks.

G. Multi-User

This feature is concerned with the fact that multiple users
are interacting with the same or related models.

1) Authentication Method: Collaboration implies that sev-
eral users are able to access the data models. An authentication

Fig. 7. Multi-User features

mechanism can be incorporated to give access only to regis-
tered users or to simply track who is responsible for a given
operation. User Identification requires such an authentication
method. The method may involve utilizing an external au-
thentication method. For example, GenMyModel allows users
to connect through their Github account. Alternatively or in
addition, Anonymous Access may be provided to allow users
to connect without having to register. This can be used for
example to allow read-only access. One example outside MDE
is the IRC channels that do not require registration.

2) Access Control: Users working in collaboration must
be able to access the data model. However, each user may
be provided a distinct set of permissions. This is handled
by the Access Control feature. There are two distinct al-
ternatives: Operation-Based and Data-Based. They may be
mixed together in order to have more fine-grained control.
Operation-Based restricts what a given user is able to do on
any model, based on the possible set of operations (e.g., CRUD
operations). A user is granted a specific operation permission
that applies on any model from the project. This is similar to a
database administrator that has full access to all elements. On
the other hand, other users may have a restricted set of allowed
operations. Data-Based access control may be provided to
control the elements (at model or element level) and operations
for those elements available to the user.

Access Control can be augmented with an Ownership Sys-
tem that adds the possibility to restrict exceptional permission
to only a set of users, as in GenMyModel. A project can be
shared with a team and permissions are given to certain users.
They also add project visibility. A public project is visible to
everyone, though read only, any user can clone the project in
its own session, thereby creating a totally new project copied
from this public repository.

3) User Presence Awareness: When collaborating, it is
often preferred to know who is working concurrently. User
Presence Awareness is the mechanism used to know which
users are currently working on the same model. Current User
Visible does not display any user other than the current one.
This is the behavior of non collaborative software. This might
be useful in collaboration in case of high number of users,
to remove the information overload, but instead only show
the total number of current users. To fully use the power
of collaboration environment, it is recommended to use All
Visible feature. This implies that the presence of all users

working concurrently is known. One implementation would be
to highlight the mouse cursor of all users (e.g., Google Docs)
or highlight the graphical element actively used by each user.
Nevertheless, a large number of users may cause confusion on
the canvas. This introduces the use of a Distinction Mechanism
that adds special attributes to differentiate users. It may only
differentiate local user from all others (e.g., using two colors),
or differentiate each user (e.g., one color per user). Using a
distinction mechanism for each user can also lead to infor-
mation overload. We can add additional information by using
an Identification Mechanism to identify the operation/focus of
each user distinctly. This is used by GenMyModel, which lists
all current collaborators for a model.

4) Undo / Redo: Undo / Redo is a fundamental feature
of professional software. The common and expected behavior
of undo is to revert the last action performed with fur-
ther invocations of undo reverting prior action in reverse
order of original application. The standard behavior considers
only a single user, providing User-Specific Undo / Redo.
Common patterns are known for implementing this feature
(i.e., Command pattern [25]). Though this pattern works well
for a single-user environment, additional complexities must
be handled in collaborative systems. We need to take into
account not only the current user changes but also other user
changes. Using a local undo stack is not sufficient: reverting
a command in a collaborative environment must consider all
commands. Otherwise, unexpected behaviors might appear
since our previous state has been altered by others. Consider
the following scenario. Alice adds the attribute name in an
empty element. Bob adds the attribute age. Let us assume our
undo implementation resets the element to its exact previous
state. If Alice undoes her change, the element ends up being
empty again. The age attribute has also disappeared because
the implementation neglected modifications from other users.
A real-time API must implement a more complex stack
system for its undo / redo management that takes into account
the sequence of operations and resulting interdependencies
introduced by concurrent collaboration. An example Undo /
Redo in a collaborative environment is discussed in detail by
Cheng et al. [26]. Another way to handle Undo / Redo is
to use Global Undo / Redo. The stack is shared across all
collaborators. GenMyModel can handle both alternatives: a
user undo / redo is present, while history features allow global
undo / redo using the general stack of changes.

5) Push Notification: This is the mechanism by which
user modifications are automatically propagated to others
collaborating on the same model(s). Whenever an operation
is executed, all users must be aware of it and their local data
model updated. We distinguish between two kinds of Push
Notifications. Any Modification is a continuous notification
scheme. Every operation generates a push out to every user.
This ensures the server is up to date and all users see
what others are doing in real-time (with some tolerance for
network latency delays). This technique is used by OBEO,
GenMyModel, and WebGME.

Alternatively, Bulk Notification regroups changes and sends
them only when specific conditions are reached. Bulk notifi-
cations may be sent manually in an Event-Driven approach
(e.g., on a save action), in a Periodic approach (e.g., each
2 minutes), or in a Change Threshold approach. MetaEdit+
chooses the event-driven option and sends changes only when
the user saves. This gives several advantages over Any Modifi-
cation notification. Network load is notably reduced and users
can hide from others the temporary broken or intermediate
state of the data model. Working on models often requires
moving a set of elements, temporarily destroying links, and
other temporary or intermediate states. Though the goal of
one’s action may be acceptable, others may be disturbed
by this temporary/intermediate state. Other users are only
interested in the result. However, the Sandbox feature can be
provided to handle similar scenarios.

6) Communication: Communication tools are used to con-
tact other collaborators, ask them questions, add comments on
elements, or discuss conflicts detected and merges. Commu-
nication tools are closely related to User Presence Awareness
that allows identifying who is working concurrently, and then
communication tools enable contacting them without using
external tools. Real-time tools allow for direct communica-
tion. The users must communicate in real-time. This is the
case of video call, audio call, and instantaneous chat. On
the other hand, Asynchronous communication allows delayed
communication with other users (e.g., chat box, comment, or
annotations on components). A complete taxonomy of com-
munication tools in MDE collaborative tools is provided by
Davide Di Ruscio in his systematic mapping of collaborative
model-driven software engineering [12].

H. Client Type

Fig. 8. Client Type Features

The end-user typically works on model(s) through a graph-
ical representation. Modeling tools often make heavy use
of mouse cursor. Therefore, Desktop (MetaEdit+, OBEO)
and Browser (AToMPM, WebGME) applications are common

choices. On the other hand, very few Mobile application are
utilized for modeling(e.g., FlexiSketch [27]). Browser clients
have an advantage in portability. Collaboration involves multi-
ple users that often use different operating system. Supporting
a cross platform desktop application introduces additional
complexity and in modern systems in-browser environments
seem to be preferred. In-browser environments also eliminate
the need for installation and dependency management for end-
users. However, a system may be provided without an explicit
client type being specified, but an appropriate API must be
provided to enable access to the system.

I. Execution

Fig. 9. Execution features

A special attention should be given to executable models
in a collaborative context. Let it be model transformation or
model simulation, Executing Models can be done locally or
have an impact on the remaining users’ experience. Many
issues arise, such as whether the transformation should happen
in batch or every step is visible to all users. The latter is sup-
ported by AToMPM. Similarly, Debugging executable models
is often done in a different mode than when editing. This may
raise conflict where the state of a model element is modified
by the execution while another user is modifying it. Note that
supporting execution within a realtime environment imposes
additional constraints (included in Figure 1). The constraints
address the need to support users working concurrently by
preventing or mitigating the impact of conflicting operations
on the workflow of a given user.

IV. EXAMPLES

We present four tools, among those we examined, chosen
because of specific variants of the features they use and be-
cause there was enough documentation to support the claims.

A. Instantiation

An instantiation of the feature diagram will include all
mandatory features as well as specifying those features with
alternative sub-features or any optional features included.
The following discussion assumes all mandatory features are
included. In our feature diagram, the top level mandatory fea-
tures are Collaboration Scenario Support, Concurrency, Data
Storage, Network Architecture, and Conflict Management.
Without one of them, a collaboration environment wouldn’t
be possible. On the other hand, Mutli-User, Client Type, and
Execution are not mandatory. Though feature such as Multi-
User are important, some cases may not need it. This is for
instance the case of API for MDE collaboration without a
provided client.

a) OBEO: OBEO is a collaborative modeling tool in
Eclipse based on CDO with Centralized server and continuous
integration. Concurrency in OBEO uses Pessimistic Locking
with both Data Lock and Dependency Lock. Any modification
on a model locks the whole model for this user (Data Lock)
restricting the ability for two users to work on the same
model concurrently. However, they can work on separate
models, even with strong dependencies, using Dependency
Lock. Whenever a model is locked, its dependencies are
also locked. This is fine grained locking allowing users to
work concurrently without conflict. OBEO uses four Easy-
To-Customize representations, diagrams, tables, matrices and
trees. Collaborators may use any of these representations to
work on the same data model, therefore, both scenarios Multi-
User Single-View and Multi-View Single-Model are supported.

b) WebGME: WebGME is an open source project that
implements collaborative modeling with a Centralized server.
Concurrency is integrated with a Custom Versioning System
that also handles Multi Branching. Several users may work
on different branches and then merge together, using the inte-
grated merging tool. Each modification automatically creates a
commit. Offline modification is supported: the working branch
is automatically merged with the synchronized version at the
next connection. Concurrency is resolved by an interesting
Optimistic Locking mechanism such that no actual locks are
required. In most cases, conflicts are resolved automatically
using, for example, a first-win rule. However, some conflicts
require manual intervention. In that case, a conflict is automati-
cally resolved by creating a new branch for the user in conflict.
His changes are then local to its branch and a manual merge to
the trunk is required. Though Concurrency is well supported,
User Presence Awareness is still missing and users may not
understand why a conflict occurred. WebGME supports the
Single-View Multi-Users scenario.

c) GenMyModel: GenMyModel is a browser-based mod-
eling tool that supports collaboration. GenMyModel introduces
a complex sharing system similar to that provided by GitLab
and Github; i.e., Data-Based Access Control with an Owner-
ship System. A user is the owner of their project and has all
rights on it. Collaborators may then be added to the project
with specific rights. An Operation-Based Access Control is
introduced with the public or private state of a project.
In public projects, any user has read-only access, whereas
private projects are visible and accessible only by their owner
and collaborators. GenMyModel provides Live Collaboration,
implementing a Centralized Network Architecture. Data can be
accessed from anywhere and is not cloned on the client side.
History is implemented without an external VCS. All changes
made by users are saved creating a modification timeline.
Users can therefore browse the change and go back to a
previous version. GenMyModel allows several collaborators to
work on the same model with the same view. This is the first
scenario Multi-User Single-View that is supported. Moreover, it
also adds possibility to have a view that project several models,
therefore Single-View Multi-Model scenario is also supported.

d) MetaEdit+: The collaborative infrastructure of
MetaEdit+ is similar to OBEO. It uses a Centralized server
with continuous integration and applies Pessimistic Lock with
a fine granularity and distinguishes dependencies. Therefore,
only a minimal set of elements is locked and only when
needed [9]. It integrates a Version Control System using an
External VCS. The VCS working directory is managed as a
separate repository and uses the MetaEdit+ API to process the
requests. In that sense, MetaEdit+ implements a full support
of existing VCS to version control models. Single-View
Multi-Users scenario is supported by MetaEdit+.

V. DISCUSSION

A. Locking and dependencies

Locking a model may seem safe, since only one user can
apply modifications on it. However, dependencies must be
taken into account. The current model Alice is modifying (and
locked to her) is safe from Bob’s updates. But this model may
have dependencies with another model that is not currently
locked. If Bob modifies this other model, we would have
altered Alice’s model, even if it was locked. For instance, Alice
can divide a UML diagram into several subsets linked together.
Changes that affect another subset should spread. Therefore,
when an element is modified, other affected elements must be
locked as well. However, dependencies are common in models
and even small fragments might end up locking a huge set
of elements. Dependencies should be taken into account, but
supporting transitive links may be too restrictive. Maroti et
al.emphasize how simple operations, such as copy or delete,
may end up locking a significant portion of a model [2].

B. Versioning for Models

Version control systems are widely used for source code
projects. The syntactic nature of source code works efficiently
with the text based nature of this diff & merge. The VCS
detects modifications in the files and create a new version by
merging both changes. EMF Compare is a good example of an
MDE tool using text-based comparison for models. A recent
article shows a way to use EMF Compare with EGit on Eclipse
in order to integrate MDE versioning [28]. However, only diff
& merge is often not the most relevant for MDE because of
the semantic nature of models. This issue of integration with
VCS is explained in details by MetaEdit+ [7].

C. GUI for Conflict Awareness

We have explained the importance of having a User Conflict
Awareness mechanism. Here, we discuss concerns relevant to
GUIs. The following examples emphasize the importance of
User Conflict Awareness in a GUI. Assume that Alice drags
and drops an element from a model. Bob tries to drag and drop
the same element at the exact same time, but to a different
location. Alice releases the element before Bob. If the conflict
management system is optimistic, the last to drop is retained.
Therefore, Bob’s final action prevails, and the element is
placed according to his action. From Alice’s point of view,
the element disappears or shifts when she releases it. This is

confusing and unexpected behavior. Alice may even see this
as a bug. In such situations, a GUI warning may be displayed.
One solution is to blink the element on Alice’s GUI and play
an animation that moves the element to the final position (from
Bob’s action). This way, Alice understands that her change was
immediately followed by Bob’s. OBEO applies this solution
by annotating with a lock icon at the bottom of any locked
element. Google Drive, places a special red cross icon on a
deleted element. The cross lasts long enough for the user to
see the element being deleted before it disappears.

D. Why should we use User Presence Awareness

Knowing who is currently working on the same document
has several advantages. For a communication purpose, this
warns us of others currently working on the same project.
This eases the general knowledge of the team work and who
to contact if an element needs to be discussed. For instance,
if a fast feed-back is required for a modification, it is easy
to request others. Moreover, it has an impact on the learning
process: users are able to help each other. If Bob makes use
of an action unknown to Alice, asking him is easy and fast
via the communication mechanism in place.

E. Note about Push Notification

We discussed in the Push Notification feature that user
modifications are sent either continuously (Any Modification),
or regrouped and sent manually or periodically (Bulk Notifi-
cation). In practice, it is often a mix of both. For example,
in GoogleDoc, modifications are sent at upon saving the
document, which is triggered automatically. The frequency
of saves usually starts after a significant change is made
in the document. This result in an almost continuous Push
Notification and releases the network load at the same time.

VI. CONCLUSION

Following our prior work and the growing trend toward
collaborative modeling systems, we have outlined a feature
model identifying key concerns for collaborative modeling
systems. To develop the feature diagram, we explored exist-
ing collaborative modeling systems and potential solutions.
We hope that it will encourage and facilitate development,
discussion, and analysis on collaborative modeling systems.

As future work, we would like to systematically assess the
benefits of each feature. This will help us choose the features
and variants to support in our tool AToMPM.

REFERENCES

[1] E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. Van Mierlo,
and H. Ergin, “AToMPM: A Web-based Modeling Environment,” in
Invited Talks, Demonstration Session, Poster Session, and ACM Student
Research Competition, ser. MODELS’13, vol. 1115. CEUR-WS.org,
2013, pp. 21–25.

[2] M. Maróti, T. Kecskés, R. Kereskényi, B. Broll, P. Völgyesi, L. Jurácz,
T. Levendovszky, and Á. Lédeczi, “Next Generation (Meta)Modeling:
Web- and Cloud-based Collaborative Tool Infrastructure,” in Multi-
Paradigm Modeling, vol. 1237. CEUR-WS.org, oct 2014, pp. 41–60.

[3] J. Corley, E. Syriani, H. Ergin, and S. Van Mierlo, “Cloud-based
Multi-View Modeling Environments,” in Modern Software Engineering
Methodologies for Mobile and Cloud Environments, A. M. Cruz and
P. S, Eds. IGI Global, 2016.

[4] J. Corley, E. Syriani, and H. Ergin, “Evaluating the cloud architecture
of atompm.” in MODELSWARD, 2016, pp. 339–346.

[5] F. Basciani, J. Di Rocco, D. Di Ruscio, A. Di Salle, L. Iovino,
and A. Pierantonio, “MDEForge: an extensible Web-based modeling
platform,” CloudMDE, p. 66, 2014.

[6] “Obeo collaborative modeling documentation,” http://docs.obeonetwork.
com/obeodesigner/8.0/user/CollaborativeModeling User.html, 2017.

[7] S. Kelly, “Smart model versioning,” http://modeling-languages.com/
smart-model-versioning/, 2017.

[8] S. Hiya, K. Hisazumi, A. Fukuda, and T. Nakanishi, “clooca : Web based
tool for Domain Specific Modeling,” in Invited Talks, Demonstration
Session, Poster Session, and ACM Student Research Competition @
MODELS’13, vol. 1115. CEUR-WS.org, 2013, pp. 31–35.

[9] S. Kelly, K. Lyytinen, and M. Rossi, “MetaEdit+ A fully configurable
multi-user and multi-tool CASE and CAME environment,” in Confer-
ence on Advanced Information Systems Engineering, ser. LNCS, vol.
1080. Springer, 1996, pp. 1–21.

[10] M. Dirix, blog.genmymodel.com/discover-the-revision-history-in-your-
genmymodel-projects.html, 2017.

[11] J. Gallardo, C. Bravo, and M. A. Redondo, “A model-driven develop-
ment method for collaborative modeling tools,” Journal of Network and
Computer Applications, vol. 35, no. 3, pp. 1086–1105, 2012.

[12] Davide Di Ruscio, “Collaborative model driven software engineering: a
Systematic Mapping Study,” COMMitMDE at MoDELS 2016, 2016.

[13] Juri Di Rocco, Davide Di Ruscio, Ludovico Iovino, and Alfonso
Pierantonio, “Collaborative Repositories in Model-Driven Engineering,”
IEEE Software, 2015.

[14] Guido Van Rossum, “How the Dropbox Datastore API Handles Con-
ficts,” https://blogs.dropbox.com/developers/2013/08/how-the-dropbox-
datastore-api-handles-conflicts-part-two-resolving-collisions/, 2013.

[15] Google, “Google realtime api,” https://developers.google.com/
google-apps/realtime/overview, 2017.

[16] Irisate, “Real time collaboration technology roundup,” https://irisate.
com/collaborative-editing-solutions-round-up/, 2017.

[17] E. S. Constantin Masson, Jonathan Corley, “Collaborative
modeling environment features,” http://www.remodd.org/v1/content/
collaborative-modeling-environment-features, Universit de Montral,
University of West Georgia, 2017.

[18] OBEO, “Collaborative features,” https://www.obeodesigner.com/en/
collaborative-features, 2017.

[19] “Subversion book,” https://tortoisesvn.net/docs/release/TortoiseSVN en/
tsvn-basics-versioning.html, 2017.

[20] D. Spiewak, “Understanding and applying operational
transformation,” http://www.codecommit.com/blog/java/
understanding-and-applying-operational-transformation, 2010.

[21] G. Taentzer, C. Ermel, P. Langer, and M. Wimmer, “A fundamental
approach to model versioning based on graph modifications: from theory
to implementation,” Software & Systems Modeling, vol. 13, no. 1, pp.
239–272, 2014.

[22] K. Altmanninger, M. Seidl, and M. Wimmer, “A survey on model ver-
sioning approaches,” International Journal of Web Information Systems,
vol. 5, no. 3, pp. 271–304, 2009.

[23] R. Potvin and J. Levenberg, “Why google stores billions of lines of code
in a single repository,” Communications of the ACM, 2016.

[24] Leslie Lamport, “Paxos Made Simple,” ACM SIGACT News, vol. 32,
no. 4, pp. 51–58, 2001.

[25] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-oriented Software. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1995.

[26] Y. Cheng, F. He, S. Jing, and Z. Huang, “An multiuser undo/redo method
for replicated collaborative modeling systems,” Computer Supported
Cooperative Work in Design, 2009. CSCWD 2009 13th International
Conference on Computer Supported Cooperative Work in Design, 2009.

[27] D. Wüest, N. Seyff, and M. Glinz, “FlexiSketch: A Mobile Sketching
Tool for Software Modeling,” in Mobile Computing, Applications, and
Services, ser. Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering. Springer,
Berlin, Heidelberg, 2012, pp. 225–244.

[28] Philip Langer, “Version control for models: From Research to Industry
and Back Again,” in Workshop on Models and Evolution, vol. 1706.
CEUR-WS.org, 2016, p. 1.

