
Generating Filmstrip Models from
Actor-Based Systems

Tony Clark
Sheffield Hallam University
Sheffield, United Kingdom

T.Clark@shu.ac.uk

Vinay Kulkarni, Souvik Barat
Tata Consultancy Services Research

Pune, India
{Vinay.Vkulkarni,Souvik.Barat}@tcs.com

Balbir Barn
Middlesex University

London, United Kingdom
B.Barn@mdx.ac.uk

Abstract—Actor-based systems are hard to analyse
because of their inherent complexity arising from
large=scale concurrency and stochastic behaviour.
History traces can be produced from such a system
that describes what happened during execution lead-
ing to a challenge as to how the traces are processed.
This tool demonstration shows a novel actor-based
language ESL and its development environment EDB
that has been extended to produce histories stored in
temporal databases, and to use a logic programming
language to construct graphical filmstrips from the
databases.

Index Terms—Agent-based modeling

I. INTRODUCTION

EDB (the ESL DeBugger) is a tool that supports
the analysis of simulation behaviours. Simulations
are represented as executable agent models repre-
sented using the actor-language ESL (Executable
Simulation Language). This demonstration shows
how agent models are represented in EDB and
how executions can be captured as time-stamped
facts in a knowledge-base. ESL supports logic
programming in the form of rule-sets that are pa-
rameterised with respect to knowledge-bases. The
logic programming language provides temporal op-
erators that are used to map temporal knowledge-
bases to filmstrips. EDB provides graphical features
for displaying and playing filmstrips forwards and
backwards. We demonstrate these features using a
simple case study involving customers in a shop.

Figure 1 describes the overall EDB-based process
for creating and interacting with filmstrips arising
from actor-based simulation models represented in
ESL. A simulation model is defined in terms of

the actor structure and their individual behaviours.
The structure is equivalent to a class diagram and
the behaviour of each actor is defined as a state-
machine driven by the messages received by the as-
sociated actor. The models are translated into code
that is executed to produce a knowledge-base that
contains time-stamped actor-states. Mapping rules
are used to process the knowledge-base, producing
a sequence of diagram models that are displayed
as a filmstrip. The user can then play the filmstrip
backwards and forwards.

The rest of this paper is structured as follows:
section II describes a simple case study that is
modelled in section III; section IV describes the
ESL implementation of the simulation model and
the production of a knowledge-base; section V
shows how the knowledge-base is transformed into
filmstrips and how they are displayed by EDB.
Section VI places ESL and EDB in relation to other
work.

Fig. 1. Overall Process

II. CASE STUDY

Figure 2 shows a case study that is taken from
[10]. A shop provides stock on the shop-floor.
Customers enter the shop and may browse until
they either leave, seek help or decide on a purchase.
Items must be purchased at tills and multiple cus-
tomers are serviced via a queue. Shop assistants
may be on the shop-floor, helping a customer or
may service a till. A queueing customer can only
make a purchase when they reach the head of a
queue at a serviced till. A customer who waits too
long at an unserviced till, or for whom help is not
available, will become unhappy and leave the shop.
The shop would like to minimise unhappiness.

In addition the shop owner has noticed that stock
is going missing. A criminal gang is known to be
operating in the area. Typically they operate by
engaging all the assistants in a shop whilst one of
the gang members leaves the shop without paying
for the goods.

An actor-based implementation of the case study
will necessarily have stochastic behaviour and
therefore be difficult to verify. A formal approach
to verification is often challenging to achieve due to
the state explosion when simulations become large.
Furthermore, interacting with a running simulation
or producing printed output can either change the
behaviour or overwhelm the developer. Our ap-
proach compliments such approaches by providing
a graphical representation of the simulation that can
be post-processed.

Fig. 2. Shopping Simulation (Based On [10])

III. INPUT MODELS

ESL is a statically typed actor language. Actors
have behaviour types that are equivalent to com-
ponent interface types, and have behaviour defi-
nitions that are equivalent to module definitions.
Actor behaviour in ESL is implemented as message
handling rules that can be generated from state
machines. This section outlines the behaviour type
(structure) and behaviour (state-machine) models
that are derived from the case study. Figure 3 shows
the behaviour types for the shop simulation. In
addition to domain actors such as customer and
assistant, the transactions at a till are represented
as actors. Figure 4 shows the behaviour of the actors
represented as state machines. An actor receives
messages that are either sent by other actors or
are Time messages produced automatically by ESL.
Optionally, an actor can replace its behaviour when
it handles a message, for example this occurs in
figure 4(c) where a customer joins a till-queue.

IV. ESL IMPLEMENTATION

ESL is a statically typed text-based language.
Actor models, such as those described in the previ-
ous section, are translated into ESL. EDB provides
support for ESL development in the form of static
type checking. The following code fragment shows
how the shop models are translated into ESL.
data State = NotInShop(I n t)
| Browsing(I n t) | Queuing(Int , I n t)
| SeekingHelp(I n t) | GettingHelp(Int , I n t)
| OnFloor(I n t) | GoTill(I n t)
| AtTill(Int , I n t) | Helping(Int , I n t)
| Raid | NoRaid;

type Customer = Act {
export state::State; getId::()→ I n t;
help::(Assistant)→ Void;
Time(I n t);
SaleConcluded();
SaleTimedOut();
Helped()

}

type Facts = KB[State];
facts::Facts = kb[Facts]{ NoRaid };

a c t customer(id::Int ,tills::Tills)::Customer {
state::State = NotInShop(id);
getId():: I n t = id;
counter:: I n t = 0;
helpedBy::Assistant = n u l l;

Time(n:: I n t) when state = NotInShop(id)→
probably(probOfEnteringShop) {

Fig. 3. Structure of Shop Actors

state := Browsing(id);
facts.add(state,time++);

}
}

Actor states are defined as an algebraic data
type State as shown above. The states are used
to control the behaviour of the actors and are
also recorded in a knowledge-base for subsequent
processing by the filmstrip mapping rules.

Each actor has a behaviour type definition such as
Customer containing the operation and message sig-
nature. All message names are implicitly exported,
property names and operations are local in any
behaviour implementation unless they are exported
by the type.

The knowledge-base facts conforms to the type
State and therefore contains time-stamped state
information.

The behaviour definition customer shows a frag-
ment of the implementation of the customer be-
haviour defined in figure 4. All actors in ESL are
supplied with Time messages at regular intervals
in order to drive the simulation. The customer

behaviour shows a message handler that responds
to a Time message that occurs when the customer
is not in the shop and has a given probability of
entering. Note how the change of state is recorded

in the knowledge-base.

V. FILMSTRIP GENERATION

Filmstrips are produced by translating temporal
knowledge-bases into sequences of pictures. This is
achieved in a two-stage process: (1) the knowledge-
base is translated into a sequence of system states;
(2) each state is translated into a picture. Both
stages are performed using the features of ESL: (1)
temporal logic programming; (2) functional pattern
matching. Mapping from a knowledge-base to a
sequence of system states is performed using the
rules shown in figure 5 where a history is created
as a sequence of shop-states as defined by the rule
hist which is supplied with customer, assistant
and till identifiers. The hist rule uses the temporal
operator next to step through the knowledge-base. At
each time-step, the rule state is used to construct a
shop-state. The rules in figure 5 show how the cOut

and raid components of the shop-state are extracted
from the knowledge-base. A raid is detected by
rule isRaid when there is a current Raid state
recorded in the knowledge base; notice that is may
be necessary to step backwards in time through the
facts in the knowledge-base before the appropriate
fact is found. The identifiers of customers who

(a) Assistant Behaviour (b) Customer Behaviour

(c) No Transactions Behaviour (d) Transacted Behaviour (e) No Tills Behaviour

(f) A Till Behaviour (g) A Transaction Behaviour

Fig. 4. Shop Actor Behaviour

are currently outside the shop is calculated by the
call getCStates(n,cIds,cOut) which extracts the
nth customer state and filters the list of customer
identifiers for those customers currently in that
state. The calculation uses the rule recent to ensure
that the desired state is the most recent: this will
be false if the particular customer is most recently
in an alternative state. A fact f is currently in the
knowledge-base if fact(f) is true.

type PictureElement =
Rectangle(Int ,Int ,Int ,Int ,Str)

| Circle(Int ,Int ,Int ,Str)

| Line(Int ,Int ,Int ,Int ,Str)
| Image(Int ,Int ,Int ,Int ,Str)
| Text(Int ,Int ,Str ,Str)
type Pics = [Picture(Int ,Int ,[PictureElement])];
type EDB = Act {
Filmstrip(Str ,Pics)

}

The data type above shows the different picture
elements that can be drawn on each frame of a film-
strip. The message Filmstrip(title,pictures)

displays the sequence of pictures with a slider that
can be used to move forwards and backwards; mov-
ing the slider changes the picture that is displayed.

type Solver = Rules {
hist([I n t],[I n t],[I n t],[ShopState])

};
solver::Solver = rules {
hist::([I n t],[I n t],[I n t],[ShopState]);
hist(cIds,aIds,tIds,[s])←
state(cIds,aIds,tIds,s), end, !;

hist(cIds,aIds,tIds,[s|ss])←
state(cIds,aIds,tIds,s), !,
next[hist(cIds,aIds,tIds,ss)];

custStates::(Int ,[State]);
custStates(id,[NotInShop(id),

Browsing(id),
SeekingHelp(id),
GettingHelp(id,aId),
Queuing(id,tId)]);

state::([I n t],[I n t],[I n t],ShopState);
state(cIds,aIds,tIds,Shop(cOut,f,b,h,t,raid))←
isRaid(raid),
getCStates(0,cIds,cOut),
// extraction of f,b,h,t omitted.

// listing continues in right-hand column.

isRaid::(I n t);
isRaid(0)← fact(NoRaid), !;
isRaid(1)← fact(Raid), !;
isRaid(raid)← prev[isRaid(raid)];

getCStates::(Int ,[I n t],[I n t]);
getCStates(_,[],[])← !;
getCStates(n,[id|idsIn],[id|idsOut])←
custStates(id,ss),
nth[State](n,ss,s),
delete[State](s,ss,ss’),
recent(id,s,ss’), !,
getCStates(n,idsIn,idsOut);

getCStates(n,[id|idsIn],idsOut)←
getCStates(n,idsIn,idsOut);

recent::(Int ,State,[State]);
recent(id,f,fs)← fact(f), !;
recent(id,f,fs)← facts(fs), !, f a l s e;
recent(id,f,fs)← prev[recent(id,f,fs)];

facts::([State]);
facts([])← f a l s e , !;
facts([f|fs])← fact(f), !;
facts([_|fs])← facts(fs);
}

Fig. 5. Logic Rules for History Production

toPicture(s::ShopState)::PictureElement =
case s {
Shop(cOut,aFloor,cBrowse,h,ts,raid)→

l e t r e c customerOutside(ids::[I n t],x:: I n t)::[PictureElement] =
i f ids = []
then []
e l s e [Image(x,0,iconWidth,iconHeight,customerIcon),

Text(x,(iconHeight+textHeight),head[I n t](ids)+’’,’’)] +
customerOutside(tail[I n t](ids),x+iconWidth);

. . .
in Picture(pictureWidth,pictureHeight,customerOutside(cOut,0) + . . .)

};
show hist(cIds,aIds,tIds,history) from solver us ing facts {
edb← Filmstrip(’ShopFilmstrip’,[toPicture(s) | s::ShopState← history])

}

Fig. 6. Producing A Picture

Once the simulation has completed and populated
the knowledge-base, the filmstrip is displayed by
sending a Filmstrip message to EDB. A rule-base
is paired with a knowledge-base using the show

construct in EDB where show q from r using k

c will try to establish fact q in rule base r us-
ing knowledge-base k and then perform command
c. Figure 6 shows a fragment of the function
toPicture that maps system states to pictures using
pattern-matching functions.

Interactions with the resulting filmstrip in EDB is
shown in figure 7 where figure 7(a) shows the start
of time, figure 7(b) shows the situation after all the
customers and assistants have joined the simulation;

figure 7(c) shows customers have entered the shop
and started to browse and some are looking for help,
notice also that gang members have also arrived;
figure 7(d) shows a customer (5) queueing at till
0, customers (2,3,6) are queueing at till 1 where
assistant 1 is serving.

VI. RELATED WORK

The use of MAS for system simulation has been
explored by a number of researchers, for example
in [5], [1], [9], [11], [4]. In [1], Bosse et al.
present a generic language for the formal specifi-
cation and analysis of dynamic properties of MAS
that supports the specification of both qualitative

(a) Start of Filmstrip (b) Customers and Assistants Arrive

(c) Waiting for Help (d) Queuing and Being Served

Fig. 7. Filmstrip Animation

and quantitative aspects, and subsumes specification
languages based on differential equations. However,
this is not an executable language. It has been
specialised for simulation and has produced the
LEADSTO language [2] which is a declarative
order-sorted temporal language where time is de-
scribed by real numbers and where properties are
modelled as direct temporal dependencies between
properties in successive states. Though quite useful
in specifying simulations of dynamic systems, it

does not provide any help in animating the resultant
behaviour. Temporal logics have been used to spec-
ify the behaviour of MAS [3] and to analyse the
specification for properties using theorem proving
or model checking. Our approach uses a similar
collection of temporal operators, however we are
applying the behaviour specifications post-hoc in
order to investigate whether a given behaviour took
place. The need to analyse agent-based simulations
is related to the field of agent-based system testing.

As noted in [12] attempting to obtain assurance
of a system’s correctness by testing the system as a
whole is not feasible. Our approach is intended to be
a pragmatic partial solution that is used selectively
in collaboration with a domain expert. Managing
temporal data is becoming increasingly important
for many applications [7], [6]. Our work is related
to process mining from the event logs that are
created by enterprise systems [8] where queries
can be formulated in terms of a temporal logic
and applied to data produced by monitoring real
business systems.

REFERENCES

[1] Tibor Bosse, Catholijn M Jonker, Lourens Van der Meij,
Alexei Sharpanskykh, and Jan Treur. Specification and
verification of dynamics in cognitive agent models. In IAT,
pages 247–254. Citeseer, 2006.

[2] Tibor Bosse, Catholijn M Jonker, Lourens Van Der Meij,
and Jan Treur. LEADSTO: a language and environment for
analysis of dynamics by simulation. In German Confer-
ence on Multiagent System Technologies, pages 165–178.
Springer, 2005.

[3] Nils Bulling and Wiebe Van der Hoek. Preface: Special
issue on logical aspects of multi-agent systems. Studia
Logica,(Special Issue), 2016, 2016.

[4] Philippe Caillou, Benoit Gaudou, Arnaud Grignard,
Chi Quang Truong, and Patrick Taillandier. A simple-
to-use BDI architecture for agent-based modeling and
simulation. In The Eleventh Conference of the European
Social Simulation Association (ESSA 2015), 2015.

[5] Stephane Galland, Luk Knapen, Nicolas Gaud, Davy
Janssens, Olivier Lamotte, Abderrafiaa Koukam, Geert
Wets, et al. Multi-agent simulation of individual mobility
behavior in carpooling. Transportation Research Part C:
Emerging Technologies, 45:83–98, 2014.

[6] Martin Kaufmann, Amin Amiri Manjili, Panagiotis Vage-
nas, Peter Michael Fischer, Donald Kossmann, Franz
Färber, and Norman May. Timeline index: A unified
data structure for processing queries on temporal data in
SAP HANA. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, pages
1173–1184. ACM, 2013.

[7] Rudolf Kruse, Matthias Steinbrecher, and Christian
Moewes. Temporal pattern mining. In Signals and
Electronic Systems (ICSES), 2010 International Conference
on, pages 3–8. IEEE, 2010.

[8] Margus Räim, Claudio Di Ciccio, Fabrizio Maria Maggi,
Massimo Mecella, and Jan Mendling. Log-based un-
derstanding of business processes through temporal logic
query checking. In OTM Conferences, pages 75–92.
Springer, 2014.

[9] Gabriel Santos, Tiago Pinto, Hugo Morais, Tiago M Sousa,
Ivo F Pereira, Ricardo Fernandes, Isabel Praça, and Zita
Vale. Multi-agent simulation of competitive electricity
markets: Autonomous systems cooperation for european
market modeling. Energy Conversion and Management,
99:387–399, 2015.

[10] Peer-Olaf Siebers and Uwe Aickelin. A first approach on
modelling staff proactiveness in retail simulation models.
J. Artificial Societies and Social Simulation, 14(2), 2011.

[11] Dhirendra Singh, Lin Padgham, and Brian Logan. Inte-
grating BDI agents with agent-based simulation platforms.
Autonomous Agents and Multi-Agent Systems, 30(6):1050–
1071, 2016.

[12] Michael Winikoff and Stephen Cranefield. On the testa-
bility of BDI agent systems. J. Artif. Intell. Res.(JAIR),
51:71–131, 2014.

