Extending Osate 2 for Custom Simulation of Virtual Devices

Faber D. Giraldo', Monica M. Villegas', Juan E. Medina’
1 SINFOCI Research Group University of Quindio, Colombia
Email:fdgiraldo@uniquindio.edu.co, mmvillegasa@ugqvirtual.edu.co

2 Smartenit Inc., San Juan Capistrano, CA, USA

juan@smartenit.com

Abstract— When developers test cyber-physical systems, there
may be a lack of enough physical devices. In such cases, a tool
that allows virtual simulation of the devices is useful. In this
work, we propose an extension named Custom Simulation of
Virtual Devices (CSVD) developed for OSATE' 2, an
Eclipse-based tool that supports Architecture and Analysis Design
Language (AADL’) models. The CSVD extension allows the
simulation of virtual serial devices specified in an AADL model
inside the QEMU’ emulator, which is configured using the
parameters specified in the AADL model of the designed system.
An example of a system in this context is a local network of
devices connected by a serial bus to a gateway with the purpose
of simulating a data flow between the gateway and a device with
serial connection.

Keywords— OSATE 2, AADL, QEMU, Simulation, CPS, Model

1. INTRODUCTION

Nowadays, the design of digital systems that involve the
communication between external devices and embedded
systems has increased, for instance, in the area of automation,
sensors networking or IoT design, where the interaction
between devices and embedded platforms is common. When
the software for such embedded systems is developed,
simulating the devices for validating the software becomes
necessary.

The focus of this work is to present an extension of the
OSATE 2 tool, an environment that supports AADL models
and is based on the Eclipse* platform. The extension presented
in this work, named Custom Simulation of Virtual Devices
(CSVD) is an Eclipse plugin that allows the analysis of AADL
models for the generation of files that are needed for the
execution of the simulation of devices specified in the AADL
model. The simulation is executed using the QEMU [5]
emulator, which is configured by the parameters defined in the
AADL model of the designed system.

The CSVD extension is useful for the OSATE 2 tool because it
provides an environment to simulate custom virtual devices,

! http://www.osate.org

2 http://www.aadl.info

3 https://www.gemu.org
* https://www.eclipse.org

such as sensors connected to a gateway through a device,
responsible for collecting information and sending data over a
serial bus. This specific scenario emulates a system where a
Zigbee® dongle is used for controlling a network of sensors
reporting temperature and humidity = measurements
periodically.

The simulation runs in the QEMU emulator, which is launched
using the configuration, such as a modeled gateway. The
configuration specifies the desired platform (supported by
QEMU), the operating system image, the kernel image, RAM
size, and storage values.

The usage of the CSVD extension is simple. The user needs to
select the AADL model of the system, execute the generation
of required files for the simulation/emulation, and if the
process finishes successfully, proceed with the execution of the
simulation inside the emulator. Debug messages are also
provided in the GUI of the CSVD extension in case the AADL
model is not valid or if there were problems in the generation.

Section 2 of this paper provides an introduction to the AADL
language as an AADL review. Section 3 presents an
introduction to the OSATE 2 tool, as an OSATE 2 review.
Section 4 includes a description of related tools. Section 5
contains a description of the CSVD extension of OSATE 2.
Section 6 describes a case study to show a usage example of
the CSVD extension. Section 7 concludes the paper and
finally, Section 8 provides some future work proposed for this
project.

1I. AADL ReviEW

Architecture Analysis & Design Language (AADL) is a
modeling language used for modeling embedded systems and
representing their architecture as a hierarchy of interacting
components that allow the analysis of the modeled system.

AADL is a unifying framework for model-based software
systems engineering which can be used to capture the static
modular software architecture, the runtime architecture

3 http://www.zigbee.org

regarding communicating tasks, the computer platform
architecture on which the software is deployed, and any
physical system or environment that the system interacts with

[1].

AADL models are composed of components, properties, and
notations. For components, AADL defines the categories of
data type, thread, thread group, subprogram, process,
memory, bus, processor, device, virtual processor, virtual bus,
system and abstract. For properties, predefined property sets,
such as deployment properties, thread properties, timing
properties, communication properties, memory propetrties,
programming properties, modeling properties, and AADL
project properties [2]. As an example, a system can be
modeled from its abstraction, where a system is composed of
subsystems, or a system can be composed of only devices. As
shown in Figure 1, an AADL model of a system can have
features and annexes. Features, in this case, is the specification
of a serial bus in the system, and annexes can be used for extra
details that are not considered in the AADL meta-model. In
Figure 2 is shown the diagram of the AADL specified in
Figure 1, generated by the OSATE tool.

package example system
public

with Buses::UART;

system ex_system
features
serial bus:requires bus access serialBus;
annex extras {** custom parameter : "some_parameter" **};
end ex_system; - -

bus serialBus extends Buses::UART::UART
end serialBus;

end example system;

Fig. 1. AADL model example.

AN

.serialBus .

N TV

ex_system

A A\V4 N
Buses::UART::UART

N V

Fig. 2. Diagram of the AADL model in Figure 1.

II1. OsATE 2 REVIEW

OSATE 2 is an open source platform that fully supports the
AADL meta-model and which is based on the Eclipse
platform. OSATE 2 provides a complete textual editor for
AADL and a set of simple analysis tools [3]. This tool can be

extended to allow, for instance, the addition of a
simulation/emulation launching method. Figure 3 shows a
snapshot of the OSATE 2 environment, containing the
example shown in Figures 1 and 2.

fysten.tjexample,systemaadl - OsATE2 = B 3 (0% 0) fdeagoiteM B
K3 ® LR AR N v 1800285 4nl @ 08 B Y © o

 Problems &

Fig. 3. Snapshot of OSATE 2.

IV. REeLatep TooLs

After a review of extensions of OSATE 2 that provide analysis
of AADL models we found some related works that will be
mentioned as follows: Delange et al. [4] described an approach
for the modeling, verification, and implementation of
ARINC653 systems using AADL. It details a modeling
approach exploiting the new features of AADL version 2 for
the design of ARINC653 architectures. Delange’s work also
proposed modeling patterns to represent other safety
mechanisms such as the use of Ravenscar for critical
applications.

Hamdane et al. [6] proposed an approach for the verification of
the AADL architecture, which is assisted by a toolchain.
Hamdane’s work [6] defined a source meta-model for AADL
and a target meta-model for the timed automata formalism.
The transformation process works in two steps, a
Model2Model transformation, which takes an AADL Model
and produces the appropriate timed automata model, and a
transformation of a Model2 Text which takes a timed automata
model and generates code, which is accepted by the Uppaal
toolbox.

The difference between works [4], [6], and the one presented
in this paper, is that our proposal is focused on the simulation
of serial devices inside an emulated environment with
controlled parameters from the architectural model.

Our work allows the interaction with the devices modeled
inside the emulator, and is useful for the wvalidation of
embedded software, such as software for ARM-based
platforms.

V. CSVD ExtensioN ForR OSATE 2 TooL

The particular process of the CSVD extension consists of (1)
loading the AADL model in the GUI of the plugin, (2)
executing the generation of the required files and (3) launching
the simulation through the QEMU emulator. Figure 4 shows a
diagram that represents the structure of the CSVD extension.

0

N 0 i

0.8. Image Modifier

l

FILES GENERATION g
QEMU Launcher

'

Virtually Generated Data
Processor

Required Files for
Simulation Generator

AADL Model

EXECUTE SIMULATION

‘CSVD EXTENSION FOR OSATE 2

Fig. 4. Structure of the CSVD Extension.

For using the CSVD extension, it is necessary to click on the
CSVD launching icon that is located in the Toolbar of OSATE
2 as shown in Figure 5. After clicking the CSVD launching
icon, a graphical user interface (GUI) is displayed as
illustrated in Figure 6, which allows the loading of the AADL
model, the generation of the required files and the executing of
the simulation. The button for the simulation execution is
enabled if the generation process is successfully finished.
Also, below the ‘Execute Generation’ button is a label that
shows the messages related to the status of the generation of
required files, allowing the user to know if the process had an
error or if it finished successfully.

ISystem_1/example_system.aadl - OSATE2

O = i I L S I (v S = |

CSVD (Ctrl+6)

Fig. 5. Icon for launching the CSVD extension in OSATE 2.

@ (CSVD Configuration

Code Generation
Select AADL Model:

Generation Status: N
Cancel

Fig. 6. CSVD Graphical User Interface.

The generation of the required files is based on a python
process that loads specific rules written in JSON format, rules
that are specified by the user/developer and which are related
to the way specific commands and configurations will be
generated from the AADL model of the designed system.
After the Python process generates the required files, the
Operating System (OS) image that QEMU starts with, must be
reconfigured through an OS image modifier. The modification
to the OS image is done by a process that unpacks it, adds the
generated and required files including the process that
simulates the devices and a script to launch the simulation
inside the emulator. After the addition of the files is
completed, the OS image is re-packed and ready to be started.

The launch of the QEMU emulator is executed through the
button in the Plugin GUI. After the window of the QEMU is
displayed and the OS starts, the data stream received on the
serial port from the simulated devices inside the QEMU
emulator can be read and made available to be processed by
specific software.

VI. ExamPLE oF OUR APPROACH

In this section, a system composed of two sensors, one serial
device receiving data from the two sensors and one serial bus
that connects the serial device with the gateway is modeled as
an example (shown in Figure 7). Each sensor has a MAC
address which can be used to identify them.

Figure 8 shows the declaration of the systems and devices of
the model, where the extra details are specified, for instance,
QEMU kernel image path, OS image path and CPU type for
the emulation. For the sensors, the MAC address, and the
mean and deviation parameters for the random values
generated from the sensors are specified.

Sar:lal
Sensor 1 W oo
A .%
20DESSAB2051C123

Serial Bus

Sensor 2
MAG: '% Gateway
20EFS0AE2DTI1CFOI3

Fig. 7. System Modeled.

package systenl
public
with Memories; with Processors::ARM: with Buses::UART;
system top system
end top system;
system gw systen
features
bus serial:requires bus access SerialComnection;
annex eirrns{”qsn'u_kernsl:“qemu-kernel/kernsl-qeml"; gemu_os:"0s_Linux_stable.ing"; qemu_cpu:“arm";**};
end gw_system;
device TemperatureSensorl
features
data_pk_out:out data port;
properties
Perind=>2000ms;
annex extras {**MAC="20DE55AB2051C123"; mean="20"; deviation="20"**};
end TemperatureSensorl;
device TemperatureSensor2
features
data pk out:out data port;
properties
Period=>2000ms;
annex extras {**MAC="26EF50AE2071CF03"; mean="10"; deviation="20"**};
end TemperatureSensor?;
device SerialRadio
features
data_pk_sensorl:in data port;
data_pk_sensor2:in data port;
bus_serial:requires bus access SerialConnection;
end SerialRadio;
bus SerialConnection extends Buses::UART::UART end SerialConnection;

Fig. 8. Declaration of systems and devices in AADL of the designed
system.

systen inplementation top systen.uith devices
subconponents
this gw:system gw systen;
this temperature sensor 1:device TemperatureSensorl;
this temperature sensor 2:device TemperatureSensor2;
this serial radio:device SerialRadio;
this bus:bus SerialConnection.impl;
connections
sensor 1 conn:port this temperature sensor 1.data pk out -> this serial radio.data pk sensorl;
sensor 2 conn:port this temperature sensor 2.data pk out -> this serial radio.data pk sensor2;
bus serial:bus access this bus -> this gu.bus serial;
bus radio:bus access this bus -» this serial radio.bus serial;
end top system.with devices;
systen 1nplenentation gu systen. inpl
subconponents
RAM:menory Memories: :RAH { Memory Size => 256 MByte ; };
CPU:processor Processors::ARM: :Generic ARM;
end gu system. impl;
device inplementation TemperatureSensorl.inpl end TemperatureSensorl.inpl;
device inplementation TemperatureSensor2, inpl end TemperatureSensor2. inpl;
device inplementation SerialRadio.inpl end SerialRadio.impl;
bus inplementation SerialConnection.inpl end SerialConnection.inpl;
end systenl;

Fig. 9. Implementation of the systems and devices in AADL of the
designed system.

The expected output of this simulation is to view data being
generated on the virtual serial port in the QEMU emulator
with the MAC address of each sensor modeled. This data
could be used by a software process, by reading and
processing it according to specific requirements, such as
temperature values from a sensor, where a data package could
contain start and end bytes, the MAC address and the payload
including the temperature value of the sensor.

Figure 9 describes the implementation of the systems and
devices. The connections between the devices and systems are
specified. The subcomponents area specifies the RAM size and
CPU type for the gateway.

Figure 10 shows the interface of the virtual port created from
the AADL model inside QEMU. Two virtual ports are created,
one for reading and one for writing to the simulated serial
device. Currently, the version of this extension supports
reading data from the devices but not writing.

Figure 11 shows the data being received from the serial device
that collects the data from the sensors. The simple verification
is to check that the data is from the modeled sensors by
analyzing the values in the data package and comparing the
MAC address with the one specified in the model, this,
because the MAC address inside the data package (marked
with blue in Figure 11) must match the MAC address of each
sensor specified in the model (Figure 8). With this, a software
that needs data from several simulated devices can read the
port and process the information received.

For this example, only two sensors were modeled, but both the
language and the simulation/emulation system supports several
more devices.

rupi:~8 1s sdeusttyus
dex

Fig. 10. Interface of the virtual port created from the AADL
model inside QEMU.

root@raspberrypi: 8
errypi: # cat sdevsttyVo
' 1ZAB
11dAB

Fig. 11. Serial data received.

VIIL. CONCLUSIONS

The CSVD plugin developed for OSATE 2 is extensible. It
allows the addition of new types of models and systems. In its
current state, the support is limited regarding specific
simulation systems that can be customized. The work
described in this paper could be useful for future modifications
or specific code generation with simulation/emulation
purposes. Modifications to the plugin can be done easily by
adding new support, allowing developers to create new
simulations of other kinds of devices available in the AADL
language and that can be somehow linked to other kinds of
simulators and emulators.

The primary idea of the CSVD plugin is to provide serial data
packages for them to be used in software processes running in
the QEMU emulator, such as processes that need serial data
for testing purposes.

VIII. Future Work

We propose the addition of other QEMU like emulators that
can be used for simulating the system on other embedded
systems architectures. We also propose to continue extending
the functionalities of the “files generation” and ‘“execute
simulation” components to add support for new devices and
protocols.

REFERENCES

[1] Peter H. Feiler, David P. Gluch, “Model-Based Engineering with
AADL”, Addison-Wesley 2012

[2] SEI, “AADLv2 Cheat Sheet:
Basics”, Available:
https://wiki.sei.cmu.edu/aadl/images/a/ac/Aadlsheet letter.pdf,
Accessed: July 2017

[3] SEI, “Osate 27, Available:
https://wiki.sei.cmu.edu/aadl/index.php/Osate 2, Accessed: July
2017

[4] Julien Delange, Laurent Pautet, Alain Plantec, Mickael
Kerboeuf, Frank Singhoft, and Fabrice Kordon. 2009. Validate,
simulate, and implement ARINC653 systems using the AADL.
In Proceedings of the ACM SIGAda annual international
conference on Ada and related technologies (SIGAda '09).
ACM, New York, NY, USA, 31-44.
DOI=http://dx.doi.org/10.1145/1647420.1647435

[5] QEMU, “QEMU”, Available: http://www.gemu.org/, Accessed:
July 2017

[6] M. Hamdane, A. Chaoui and M. Strecker, "Toolchain Based on
MDE for the Transformation of AADL Models to Timed
Automata Models," Journal of Software Engineering and
Applications, Vol. 6 No. 3, 2013, pp. 147-155. doi:
10.4236/jsea.2013.63019.

https://wiki.sei.cmu.edu/aadl/images/a/ac/Aadlsheet_letter.pdf
https://wiki.sei.cmu.edu/aadl/images/a/ac/Aadlsheet_letter.pdf
https://wiki.sei.cmu.edu/aadl/index.php/Osate_2
https://wiki.sei.cmu.edu/aadl/index.php/Osate_2
http://dx.doi.org/10.1145/1647420.1647435
http://www.qemu.org/
http://www.qemu.org/
http://dx.doi.org/10.4236/jsea.2013.63019
http://dx.doi.org/10.4236/jsea.2013.63019

