
MDE-based Automated Provisioning and
Management of Cloud Applications

Anirban Bhattacharjee∗
∗Department of Electrical Engineering and Computer Science

Vanderbilt University, Nashville, Tennessee, USA
Email: anirban.bhattacharjee@vanderbilt.edu

Abstract—Digital innovations in the modern era are driven
by cloud-native applications, cloud architectures, and cloud-
based development. In this realm, continuous architectural de-
sign, framework/infrastructure (re-)configuration, deployment,
migration, and resource monitoring to iteratively tune the
application and underlying resources as per business demand
are required in the form of a self-service cloud deployment
and management platform. To address these challenges while
ensuring broader applicability using vendor-agnostic approaches,
this doctoral research envisions an intelligent and context-aware,
model-driven, automated service provisioning technique, where
manual efforts and domain expertise are alleviated to a large
extent. In this context, this paper describes a self-service cloud-
based application deployment and management ecosystem based
on a Model-Driven Engineering (MDE) approach.

I. INTRODUCTION

Deployment and management of cloud-based applications
in both homogeneous or heterogeneous cloud environments
are often hampered by the intricacies and variabilities in the
deployment and configuration processes stemming from the
diversity in both the software stacks that control the cloud
platforms and the underlying platform resources. Application
provisioning is important since it enables the service providers
to deploy their service’s application components in the cloud
provider’s resources in accordance with the service’s Quality
of Services (QoS), availability, business policy, and cost model
requirements [33], [28]. This complexity restricts the cloud ap-
plication development and deployment knowledge to a narrow
set of experts who possess both the domain knowledge and
application-specific knowledge to explore the power of these
techniques. Even with advances in DevOps community tools,
they demand domain expertise and hence creating full-blown
deployable models are error-prone and time-consuming.

To address these challenges, this doctoral dissertation en-
visions an intelligent and context-aware, model -driven, au-
tomated service provisioning platform where manual efforts
and domain expertise are minimal. To that end, in this pa-
per, we propose a model-driven engineering (MDE)-based
ecosystem [29] to automate the process of deployment and
management for cloud applications and emphasize on extensi-
bility, (re-)usability and scalability. Our approach emphasizes
vendor-neutrality in order to be broadly applicable to diverse
cloud platforms with their control software stacks. In the
remainder of this paper, we explore the challenges faced in
realizing the MDE approach for deployment and management

of cloud applications, the current state of the art, and propose
solutions while providing some preliminary results.

II. PROBLEM FORMULATION

Consider as an example a distributed, data-intensive appli-
cation deployed in the cloud. It requires significant efforts for
the designers -

1) To configure and deploy the application to use the
available big data frameworks [31],

2) To set up the virtual machines to host the frameworks
and finally, and

3) To establish the connection properly among application
components.

Moreover, adding application component which requires a
different framework exacerbates these problems. To address
these problems, we envision an automated solution and outline
the key requirements of such an approach and their associated
technical challenges:

A. Requirement 1: Infrastructure Design Provisioning and
Configuration Automation

Need to abstract away the architecting phase by pre-defining
the configuration of applications and infrastructure as intuitive
modeling artifacts, which will speed up the deployment and
migration process.

• Challenge 1: Capturing the Application and Cloud
Specifications in the Metamodel, where all the deploy-
ment and infrastructure complexities of the application
and cloud specification are identified and defined.

• Challenge 2: Defining a Language for Model Trans-
formation, where the DSML will transform the abstract
business model to target model (i.e. infrastructure code)
using a knowledge base.

• Challenge3: Verification of the Business Model, where
all relationships and constraints of application compo-
nents are checked and satisfied.

B. Requirement 2: Support for Continuous Integration, Mi-
gration, and Delivery

Changes in business strategies and demands lead to evolu-
tion of the business model, and hence the platform should be
integrated with adaptation techniques.

• Challenge 4: Extensibility and Reusability of the Appli-
cation Components, where the addition, upgradation or



migration of application components can be done at the
model level, and should support collaboration and version
control.

• Challenge 5: Extensibility of the Platform, where the
addition of a new application type should be performed
in a modularized way, and should be only a one-time
effort.

C. Requirement 3: Dynamic Modeling and Provisioning

Continuously monitoring the infrastructure of the system
and applications are required, and hence the model should
always reflect the current up-to-date state.

• Challenge 6: Context-Aware Provisioning, where opti-
mization of cloud resources based on cost and resource
availability should take place iteratively for potentially
differing QoS needs, policies, etc.

• Challenge 7: Model@Runtime, where the changes stem-
ming from self-adaptation of the provisioning techniques
should be reflected back at the model level dynami-
cally [4].

III. RELATED WORK

We explore existing research efforts directly aligned with
our research goals. The script-centric DevOps community
provides toolchains such as Chef [26], Puppet [21], or An-
sible1 to speed up deployment for developers [18]. Cloudify
and Apache Brooklyn2 enable cloud application orchestration
of topology templates in a vendor-agnostic way according
to the Topology and Orchestration Specification for Cloud
Applications (TOSCA) [27] specification. However, we need
declarative high-level modeling abstraction on top of these
tools to reduce the burden of domain expertise.

To satisfy Requirement 1, multiple pattern based approaches
are proposed [2], [9], [8], [22] where a model-based pattern de-
scribes a set of capabilities and functional and non-functional
properties of application service deployment in cloud infras-
tructures [15], [1]. Alternatively, requirement solvers [25], [7]
are also proposed to synthesize infrastructure configuration
in a declarative fashion. OpenTOSCA [14] and CELAR [12]
exercise the combination of MDE and TOSCA specification to
automate deployment of cloud applications from users’ partial
business relevant topology. The components can be deployed
and managed in the right order [5]. Later in [6] a context-
aware provisioning and management plan along with detection
and correction of the unintended error due to software conflicts
and dependency is proposed. However, their platform is not
based on any standardization, and their planner does not use
any DevOps community tools. Hence, their approach might
lack extensibility and robustness.

In relation to Requirement 2, CHAMPS [19] focuses on
Change Management process by which IT systems are ef-
ficiently modified to minimize reconfiguration impact. Sim-
ilarly, various standard modeling environments as an object-
oriented formalism for configuration problems is proposed in

1https://www.ansible.com/
2https://brooklyn.apache.org/

[10], [13]. For Requirement 3 [24], [17], dynamic resource
management on enterprise application vendors is proposed by
various frameworks based on queuing model [34], [32], or by
dynamic QoS Control [11], [16], [30].

IV. PROPOSED SOLUTION

We propose a composable ecosystem called CloudCAMP
to deploy, monitor and manage cloud application intelligently.
The workflow of the proposed approach is shown in Fig. 1.
The contributions in this research include the following tasks:

• Task 1: A Deployment Framework Metamodel, to au-
tomate the infrastructure design and implementation by
capturing variability and commonality endpoints for the
application and cloud specifications along with their SDK
and APIs, to provide abstractions based on TOSCA-
specifications. This metamodel details will be stored in
the knowledge base of the platform.

• Task 2: Model-to-Infrastructure-as-code Transformation
DSML, as the basis for the deployment time and runtime
composition and orchestration through generative pro-
gramming. The DSML will also be integrated with pre-
defined constraints to verify the correctness of business
model.

• Task 3: An Integrated Repository, that allows storage,
query, and manipulation of models, templates, metadata,
parameters, software dependency knowledge base and
provenance in a scalable data store.

• Task 4: A Model@Runtime framework, that permits re-
flection of the current model by capturing and monitoring
the streamlined system and application information across
heterogeneous resources at runtime.

• Task 5: Integration of Adaptive Resource Provisioning
Engine, to provide the QoS guarantees while scaling the
application vertically and horizontally, based on policy,
economic issues, etc.

The approach to integrating diverse sets of deployment and
management building blocks for a specific application and
cloud providers offers significant advantages over traditional
methods – such as DevOps or orchestration frameworks –
by applying a blend of generative programming and micro
service architectures. Concrete implementation our proposed
generative approach will be demonstrated in a cloud-based
MDE environment called WebGME [23].

V. CURRENT STATUS

Our CloudCAMP approach to integrating a diverse set of
deployment and management building blocks for a specific
application and cloud providers offers significant advantages
over traditional methods – such as DevOps or orchestration
frameworks – by applying a blend of generative programming
and micro service architectures.

A concrete implementation of our MDE-based, generative
approach called CloudCAMP is being developed within a
cloud-based MDE environment called WebGME [23]. A pre-
liminary version of CloudCAMP supports few application



Fig. 1: The complete workflow of the proposed approach

Fig. 2: THESIS Defense Timeline

types in an OpenStack cloud environment. The DSML trans-
forms the business model to an infrastructure-as-code based
on the metamodel and pre-defined knowledge base, which is
a MySQL database. We have integrated a monitoring tool to
check the VMs and applications health. Presently, our DSML
can realize the CloudCAMP metamodel and generate Ansible
specific infrastructure code.

The development of CloudCAMP comprises of the design
and evaluation of the expressivity of the metamodel and the
DSML with all the product-line features. Figure 2 provides
a timeline for this research, conducted under the supervision
of Dr. Aniruddha Gokhale, Associate Professor, Vanderbilt
University.

VI. PLAN FOR EVALUATION AND VALIDATION

To demonstrate the deployment and management ecosys-
tem, we are developing the CloudCAMP platform based on

Generic Modeling Environment (GME) [20] as Task 1 and 2.
Our research evaluation plans call for validating the frame-

work in the context of our ongoing and upcoming industry and
federally sponsored research projects. The source code is avail-
able at https://anirban2404.github.io/DeploymentAutomation/.
For example, one of our new projects is building a cloud-based
machine learning ecosystem which illustrates many of the
needs addressed by our research. We also plan to validate our
framework in cloud-based, collaborative education services for
STEM education [3].

VII. EXPECTED CONTRIBUTIONS

CloudCAMP will ease the deployment and management of
applications based on deployment abstraction and intelligent
resource optimization. The following key contributions are
expected from this research:



The following key contributions are expected from this
research:

1) Automated generation of infrastructure code from an
abstract business model in a standardized manner. It can
reduce deployment and migration time of application
components enormously. Our CloudCAMP framework
can be extended, and the application components are
reusable and modularized.

2) Business model verification. Business model will be ver-
ified via a set of pre-defined constraints, which collected
by reverse engineering and prototyping.

3) Model@Runtime framework. We will monitor and reflect
the current system information in the model-level, so the
business user can understand application design state and
can override the architecture if necessary.

4) Integration of Resource Management Techniques. To
build the context-aware self-service framework, we will
integrate the resource management algorithm, which
will trigger the addition or migration of application
components to scale the system based on demand.

REFERENCES

[1] Ardagna, D., Di Nitto, E., Casale, G., Petcu, D., Mohagheghi, P.,
Mosser, S., Matthews, P., Gericke, A., Ballagny, C., D’Andria, F., et al.:
Modaclouds: A model-driven approach for the design and execution of
applications on multiple clouds. In: Proceedings of the 4th International
Workshop on Modeling in Software Engineering. pp. 50–56. IEEE Press
(2012)

[2] Arnold, W., Eilam, T., Kalantar, M., Konstantinou, A.V., Totok, A.A.:
Pattern based SOA deployment. Springer (2007)

[3] Barve, Y., Patil, P., Bhattacharjee, A., Gokhale, A.: Pads: Design and
implementation of a cloud-based, immersive learning environment for
distributed systems algorithms. IEEE Transactions on Emerging Topics
in Computing PP(99), 1–1 (2017)

[4] Blair, G., Bencomo, N., France, R.B.: Models@ run. time. Computer
42(10) (2009)

[5] Breitenbücher, U., Binz, T., Képes, K., Kopp, O., Leymann, F., Wet-
tinger, J.: Combining declarative and imperative cloud application pro-
visioning based on tosca. In: Cloud Engineering (IC2E), 2014 IEEE
International Conference on. pp. 87–96. IEEE (2014)

[6] Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., Wieland, M.:
Context-aware provisioning and management of cloud applications. In:
International Conference on Cloud Computing and Services Science. pp.
151–168. Springer (2015)

[7] Di Cosmo, R., Eiche, A., Mauro, J., Zacchiroli, S., Zavattaro, G.,
Zwolakowski, J.: Automatic deployment of services in the cloud with
aeolus blender. In: International Conference on Service-Oriented Com-
puting. pp. 397–411. Springer (2015)

[8] Eilam, T., Elder, M., Konstantinou, A.V., Snible, E.: Pattern-based
composite application deployment. In: 12th IFIP/IEEE International
Symposium on Integrated Network Management (IM 2011) and Work-
shops. pp. 217–224. IEEE (2011)

[9] Fehling, C., Leymann, F., Retter, R., Schumm, D., Schupeck, W.: An
architectural pattern language of cloud-based applications. In: Proceed-
ings of the 18th Conference on Pattern Languages of Programs. p. 2.
ACM (2011)

[10] Feinerer, I.: Efficient large-scale configuration via integer linear pro-
gramming. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing 27(01), 37–49 (2013)

[11] Gambi, A., Toffetti, G., Pautasso, C., Pezze, M.: Kriging controllers for
cloud applications. IEEE Internet Computing 17(4), 40–47 (2013)

[12] Giannakopoulos, I., Papailiou, N., Mantas, C., Konstantinou, I.,
Tsoumakos, D., Koziris, N.: Celar: automated application elasticity
platform. In: Big Data (Big Data), 2014 IEEE International Conference
on. pp. 23–25. IEEE (2014)

[13] Guillén, J., Miranda, J., Murillo, J.M., Canal, C.: A service-oriented
framework for developing cross cloud migratable software. Journal of
Systems and Software 86(9), 2294–2308 (2013)

[14] Hirmer, P., Breitenbücher, U., Binz, T., Leymann, F., et al.: Auto-
matic topology completion of tosca-based cloud applications. In: GI-
Jahrestagung. pp. 247–258 (2014)

[15] Homer, A., Sharp, J., Brader, L., Narumoto, M., Swanson, T.: Cloud
design patterns: Prescriptive architecture guidance for cloud applications
(2014)

[16] Huber, N., Brosig, F., Kounev, S.: Model-based self-adaptive resource
allocation in virtualized environments. In: Proceedings of the 6th Inter-
national Symposium on Software Engineering for Adaptive and Self-
Managing Systems. pp. 90–99. ACM (2011)

[17] Huber, N., Brosig, F., Spinner, S., Kounev, S., Bahr, M.: Model-based
self-aware performance and resource management using the descartes
modeling language. IEEE Transactions on Software Engineering (2016)

[18] Humble, J., Molesky, J.: Why enterprises must adopt devops to enable
continuous delivery. Cutter IT Journal 24(8), 6 (2011)

[19] Keller, A., Hellerstein, J.L., Wolf, J.L., Wu, K.L., Krishnan, F.: The
champs system: change management with planning and scheduling. In:
Network Operations and Management Symposium, 2004. NOMS 2004.
IEEE/IFIP. vol. 1, pp. 395–408. IEEE (2004)

[20] Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason,
C., Nordstrom, G., Sprinkle, J., Volgyesi, P.: The generic modeling
environment. In: Workshop on Intelligent Signal Processing, Budapest,
Hungary. vol. 17, p. 1 (2001)

[21] Loope, J.: Managing Infrastructure with Puppet. ” O’Reilly Media, Inc.”
(2011)

[22] Lu, H., Shtern, M., Simmons, B., Smit, M., Litoiu, M.: Pattern-based de-
ployment service for next generation clouds. In: Services (SERVICES),
2013 IEEE Ninth World Congress on. pp. 464–471. IEEE (2013)

[23] Maróti, M., Kecskés, T., Kereskényi, R., Broll, B., Völgyesi, P., Jurácz,
L., Levendovszky, T., Lédeczi, Á.: Next generation (meta) modeling:
Web-and cloud-based collaborative tool infrastructure. MPM@ MoD-
ELS 1237, 41–60 (2014)

[24] Morin, B., Barais, O., Jezequel, J.M., Fleurey, F., Solberg, A.: Models@
run. time to support dynamic adaptation. Computer 42(10) (2009)

[25] Narain, S., Levin, G., Malik, S., Kaul, V.: Declarative infrastructure
configuration synthesis and debugging. Journal of Network and Systems
Management 16(3), 235–258 (2008)

[26] Nelson-Smith, S.: Test-Driven Infrastructure with Chef: Bring Behavior-
Driven Development to Infrastructure as Code. ” O’Reilly Media, Inc.”
(2013)

[27] OASIS: Topology and orchestration specification for cloud appli-
cations. http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf
(2013), oASIS Standard

[28] Peiris, C., Sharma, D., Balachandran, B.: C2tp: a service model for
cloud. International Journal of Cloud Computing 1(1), 3–22 (2011)

[29] Schmidt, D.C.: Model-driven engineering. COMPUTER-IEEE COM-
PUTER SOCIETY- 39(2), 25 (2006)

[30] Shekhar, S., Chhokra, A.D., Bhattacharjee, A., Aupy, G., Gokhale,
A.: Indices: Exploiting edge resources for performance-aware cloud-
hosted services. In: Fog and Edge Computing (ICFEC), 2017 IEEE 1st
International Conference on. pp. 75–80. IEEE (2017)

[31] Tekiner, F., Keane, J.A.: Big data framework. In: Systems, Man, and
Cybernetics (SMC), 2013 IEEE International Conference on. pp. 1494–
1499. IEEE (2013)

[32] Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M., Tantawi, A.: An
analytical model for multi-tier internet services and its applications. In:
ACM SIGMETRICS Performance Evaluation Review. vol. 33, pp. 291–
302. ACM (2005)

[33] Yassa, S., Chelouah, R., Kadima, H., Granado, B.: Multi-objective
approach for energy-aware workflow scheduling in cloud computing
environments. The Scientific World Journal 2013 (2013)

[34] Zheng, T.: Model-based Dynamic Resource Management Multi Tier
Information Systems. Ph.D. thesis, Carleton University Ottawa (2007)


