
1

Towards a Model-Driven Approach for
Context-Aware Software

Jose Bocanegra
Systems Engineering Department
Pontificia Universidad Javeriana

Bogotá, Colombia
jose_bocanegra@javeriana.edu.co

Abstract—Context-aware software (C-AS)
uses context to provide users with relevant
information or services. Although C-AS has
an increasing importance, this area is still
immature in terms of tools, languages, and
methods. Therefore, C-AS presents several
opportunities and challenges for software
engineers, and new models and theories are
needed to address these challenges. Some of
the main problems in software engineering
for C-AS are the lack of mechanisms for
representing some relevant concepts in
the requirements and design specifications
directly, and the complexity to translate
requirements and design specifications to a
concrete implementation. As an alternative
of solution, the research project proposes
MiDAS, a framework that uses a model-driven
approach to develop C-AS. Specifically, MiDAS
comprises two domain-specific languages to
specify requirements and design in C-AS; a
model-to-model transformation to derive design
models from requirements models; a model-
to-text transformation to derive a platform
independent model (PIM) from design models;
and a model-to-text transformation to derive
context-aware software for specific platforms,
taking as input the PIM.

I. PROBLEM

An adaptive software is able to adapt its
own behavior when a change occurs in its
surrounding context [1]. A context-aware soft-
ware is a particular kind of adaptive software
that uses context to provide the users with
relevant information or services [2].

For example, a context-aware application
may provide specially-tailored contents to stu-

dents considering their cognitive skills or prior
knowledge [3].

Some authors [1], [4], [5], [6] have iden-
tified several challenges in the development
process of context-aware software. These chal-
lenges can be grouped in two areas: (i) require-
ments and design, and (ii) implementation.

In the field of requirements and design,
the main issue is the lack of mechanisms for
representing the relevant concepts in C-AS in
the requirements and design specifications.

Some of these relevant concepts are the user
(the person or group of people that performs
an operation with the system or the person
or group of people affected by an operation);
the operations performed by the system; the
objects (information required or affected by an
operation); the contextual entities (entities that
should be considered for context manipulation
purposes); and contextual elements (any piece
of data or information that can be used to char-
acterize an entity in an application domain).

Generally, these concepts are usually placed
directly in the source code [7], [8]. However,
employing these kind of ad hoc solutions
usually increase the development effort and
complexity, and this reduces the project suc-
cess rate [9].

One possible strategy to address this prob-
lem is to use general purpose languages [10]
to model requirements and design for C-AS.
However, these languages are not sufficiently
expressive to represent these relevant con-
cepts.

The use of Domain-Specific Languages



2

(DSL) would be more accurate, brief, and with
fewer errors than using modeling languages of
general purpose [11], [12].

In the field of implementation, the problem
is the difficulty of developing context-aware
software based on the specified requirements.
Assuming that software engineers have an
adequate language to formally specify the re-
quirements and design of C-AS, one problem
persists: to translate those specifications to an
implementation. The traditional way to solve
this problem is to manually code a system that
implements the requirements and design spec-
ified by software engineers [13]. In the domain
of context-aware software, this scheme has
several opportunities for improvement.

One of them is that context-aware software
tends to share similar features. For example,
some context-aware applications take into ac-
count the location and characteristics of the
user to display information about places of
interest. An application can display the closest
restaurants to a user and filter those that suit
the user tastes. An application related to the
medical field can display a list of nearby
hospitals that provide specialists for a partic-
ular pathology of a user. In both cases, the
services provided by both systems are very
similar and can be abstracted into reusable
modules. Although this is a common prac-
tice in developing traditional systems, to the
best of our knowledge, there are no libraries
that provide specially-tailored functionality for
context-aware software.

Another opportunity for improvement is re-
lated to the manual coding of certain parts
of context-aware software. Assuming that one
has a set of components that provide part of
the functionality of context-aware software,
there is still the need to manually integrate
them into a full application and to add all
of the functionality that is not commonly im-
plemented by those components. Since man-
ual coding is slow, wasteful, and error-prone,
there is an improvement opportunity by au-
tomatizing the implementation through code
generation. A basic premise of this proposal is
that this automation is possible and would sig-
nificantly accelerate the development process,

similarly to what happens with traditional sys-
tems.

Taking into account the above assumptions,
this research project addresses two funda-
mental issues, which are embodied in the
following research questions: (i) how to de-
velop a domain-specific language to specify
the requirements and design of context-aware
software?; and (ii) how to automate code
generation of context-aware software from the
requirements and design specifications?

II. RELATED WORK

This section analyzes the works that have
considered the concepts of requirements and
design specifications of context-aware soft-
ware, and the implementation of context-
aware software from these specifications.

It is important to clarify that most of re-
lated works are oriented to adaptive and self-
adaptive systems. Although a context-aware
system is a subset of adaptive systems, the
former has a much more specialized field of
action than the latter. In this way, if the pro-
cess for specifying requirements and design
in adaptive and self-adaptive software has had
limited attention [14] and it is a complex task
[1], [15], this limitation is more relevant in
context-aware systems [16]. Therefore, most
of the works analyzed in this section are par-
ticularly oriented to adaptive and self-adaptive
systems.

One of the most relevant works in the
field of requirements for adaptive software is
RELAX [14]. RELAX is a DSL designed to
support the rigorous specification of adaptive
systems requirements, that explicitly addresses
uncertainty inherent in these systems. The
formal semantics for RELAX is expressed in
terms of fuzzy logic. That language also “en-
ables developers to identify uncertainty in the
requirements, thereby facilitating the design of
systems that are, by definition, more flexible
and amenable to adaptation in a systematic
fashion”. Although the main focus of RE-
LAX is the formalization of several operators
(modal, temporal, and ordinal operators and
uncertainty factors), some important elements
required in a context-aware system, such as the



3

subjects and the objects are not considered. In
addition, this work does not propose transfor-
mations to the design and subsequents phases
in the software development process.

Other work related to requirements is Adap-
tive RML [17]. This is a modeling language
focused on the representation of early require-
ments for self-adaptive systems. The language
has graphical primitives in line with classical
goal modeling languages and it is formalized
via a mapping to Techne [18]. As Adaptive
RML takes as reference classical goal-oriented
languages such as i*, it contains several flaws
in its visual notation [19].

The work of Hog et al. [20] proposes
AWS-UML, an UML profile for adaptive web
services which increases the expressiveness
of UML. AWS-UML provides (i) a special
use case model with three kind of actors
(application consumer, human consumer, and
provider) and a special icon for each one
of them; (ii) three predefined use cases with
a specific notation, (iii) a set of OCL con-
straints, (iv) a class diagram enriched with
user’s profiles; and (v) a sequence diagram
with predefined objects and predefined mes-
sages. Similarly, [21] propose an extension
to UML to represent contextual information
using profiles that contain stereotypes, tagged
values and constraints.

In the area of design, Vogel and Giese
[22] propose EUREMA, a model-driven ap-
proach for engineering adaptation engines for
self-adaptive software. EUREMA provides a
domain-specific modeling language to specify
and an interpreter to execute feedback loops.
However, EUREMA only aims at the specifi-
cations and implementing adaptation engines,
which are closer to the solution domain rather
than the problem domain.

In [23], the authors present PerCAS, a
model-driven approach for developing dy-
namic and personalized context-aware ser-
vices. A natural language-like rule language
is proposed for specifying context-awareness
logic and personalized rules can be dynami-
cally switched at runtime. However, the pro-
posed language does not provides a way to
model subjects and objects.

Hoyos et al. [12] propose MLContext, a tex-
tual Domain-Specific Language (DSL) which
is specially tailored for modeling context in-
formation. The work also provides the genera-
tion of software artifacts from abstract models
which do not include implementation details.
In MLContext, models do not include infor-
mation related to specific platforms or imple-
mentations, thus, the models can be reused in
different context-aware applications which are
based on the same context. The language also
supports a taxonomy of types of context.

In conclusion, (i) none of the proposals
takes into account all the relevant concepts
defined for a C-AS; (ii) they do not propose
both transformations (from requirements to
design and from design to implementation);
(iii) they only use a kind of notation; and (iv)
the works do not support some of the language
design principles.

III. PROPOSED SOLUTION

To solve the research problem stated in Sec-
tion I, this research project proposes MiDAS,
a model-driven approach to develop context-
aware software. MiDAS is composed by:

1) c-RSL: a domain-specific language to
specify requirements in C-AS. c-RSL
addresses the representation of users,
objects, contextual entities, and contex-
tual elements.

2) c-DSL: a domain-specific language to
specify the design in C-AS. c-DSL ad-
dresses the representation of the opera-
tions (i.e., the way in which the system
adapt a content to the user, or the the
way in which the system executes a
service).

3) A set of transformations. The first trans-
formation is aimed to derive design
specifications from requirements speci-
fications. The second transformation ad-
dresses the derivation of a platform in-
dependent model (PIM) from a design
specification model. The third trans-
formation generates context-aware soft-
ware in specific platforms (e.g., J2EE,
PHP, Android) taking as input the PIM.



4

Both languages use two types of notation
(textual and visual). Textual representations
have the advantage of detailing the specific
elements of a system whereas graphical rep-
resentation provide a better overview and ease
the understanding of models.

The languages also cover three principles
suggested by Moody in terms of symbol re-
dundancy, symbol overload, and perceptual
discriminability.

The modeling process and the transforma-
tions will be supported by means of a case tool
based-on frameworks such as Eclipse EMF,
XText, Sirius, and Accelo.

IV. PLAN FOR EVALUATION AND
VALIDATION

The main aspects to be evaluated in the
framework are (i) the usability and (ii) ex-
pressiveness of the proposed languages, (iii)
the consistency of the models generated by
the transformation, and (iv) the productivity
improvement.

Usability evaluation will be based on some
metrics proposed by Hoyos et al. [12]. These
metrics measure, for example, the required
effort to understand grammar or the facility
to learn the language.

Expressiveness will be measured by re-
questing a group of C-AS expert developers
that use the framework and determine if it is
possible to represent the most important con-
cepts required to develop a functional system
from the specifications.

To evaluate the consistency of the automati-
cally generated models (particularly the design
models), we will develop a set of algorithms
to ensure that there are no redundant, lost,
missing, and mismatched data [24].

In regards to productivity, we will measure
the ratio between models and generated code.

V. EXPECTED CONTRIBUTIONS

This research project expects to have fol-
lowing outcomes: (i) the development of two
domain-specific languages; (ii) the definition
and implementation of three transformations;
and (iii) the validation and evaluation of the
developed framework. It is expected that with

these contributions, the software development
community may use the framework to de-
velop context-aware software. The use of the
proposed framework may reduce the develop-
ment times, improve the quality of developed
systems, and increase the productivity and
competitiveness of software organizations.

VI. CURRENT STATUS

The following is the list of the preliminary
work developed in the context of this research
project.

First, an outline of the main problems in
software engineering for adaptive software and
the definition of the big picture of MiDAS
were presented in [25]. Second, in [26] was
presented the correlation between the main
problems to develop adaptive software and
Model-Driven Engineering. Third, the author
of this work has developed a preliminary ver-
sion of c-DSL1 [27]. That work also provides
a functional prototype based on the Generic
Modeling Environment (GME) and suggests
the first steps to validate the graphical nota-
tion. Fourth, an improved version of c-DSL
which uses a more complex metamodel, a re-
fined notation, and a new functional prototype
based on the Sirius plugin for Eclipse was
presented in [28].

The next proposed activities are the follow-
ing: (i) the definition of the transformations
from requirements to design and from design
to implementation; (ii) the creation of the
CASE tool as support for the entire software
development process; (iii) the definition of
the experiments to evaluate and validate the
framework; and (iv) the application of these
experiments.

REFERENCES

[1] B. H. Cheng, R. De Lemos, H. Giese, P. Inverardi,
J. Magee, J. Andersson, B. Becker, N. Bencomo,
Y. Brun, B. Cukic, et al., “Software engineering for
self-adaptive systems: A research roadmap,” in Soft-
ware engineering for self-adaptive systems, pp. 1–
26, Springer, 2009.

[2] A. K. Dey, “Understanding and using context,”
Personal and ubiquitous computing, vol. 5, no. 1,
pp. 4–7, 2001.

1This language was previously named DMLAS



5

[3] G. G. Castro, E. L. Dominguez, Y. H. Velazquez,
M. Y. R. Matla, C. B. E. Toledo, and S. E. P. Her-
nandez, “Mobilearn: Context-aware mobile learning
system,” IEEE Latin America Transactions, vol. 14,
no. 2, pp. 958–964, 2016.

[4] M. Salehie and L. Tahvildari, “Self-adaptive soft-
ware: landscape and research challenges,” ACM
TAAS, vol. 4, no. 2, p. 14, 2009.

[5] R. De Lemos, H. Giese, H. A. Müller, M. Shaw,
J. Andersson, M. Litoiu, B. Schmerl, G. Tamura,
N. M. Villegas, T. Vogel, et al., “Software engi-
neering for self-adaptive systems: A second research
roadmap,” in Software Engineering for Self-Adaptive
Systems II, pp. 1–32, Springer, 2013.

[6] F. D. Macías-Escrivá, R. Haber, R. del Toro, and
V. Hernandez, “Self-adaptive systems: A survey of
current approaches, research challenges and appli-
cations,” Expert Systems with Applications, vol. 40,
no. 18, pp. 7267–7279, 2013.

[7] X. Mao, M. Dong, L. Liu, and H. Wang, “An
integrated approach to developing self-adaptive soft-
ware,” Journal of Information Science and Engineer-
ing, vol. 30, no. 4, pp. 1071–1085, 2014.

[8] B. H. Cheng, P. Sawyer, N. Bencomo, and J. Whit-
tle, “A goal-based modeling approach to develop
requirements of an adaptive system with environ-
mental uncertainty,” in Model Driven Engineering
Languages and Systems, pp. 468–483, Springer,
2009.

[9] T. Ruiz-López, C. Rodríguez-Domínguez, M. J.
Rodríguez-Fórtiz, S. F. Ochoa, and J. L. Garrido,
“Context-aware self-adaptations: From requirements
specification to code generation,” in UCAmI, pp. 46–
53, Springer, 2013.

[10] G. Booch, J. Rumbaugh, and I. Jacobson, The unified
modeling language user guide. Addison-Wesley,
1999.

[11] S. Kelly and J.-P. Tolvanen, Domain-specific mod-
eling: enabling full code generation. John Wiley &
Sons, 2008.

[12] J. R. Hoyos, J. García-Molina, and J. A. Botía,
“A domain-specific language for context modeling
in context-aware systems,” Journal of Systems and
Software, vol. 86, no. 11, pp. 2890–2905, 2013.

[13] F. Fleurey and A. Solberg, “A domain specific mod-
eling language supporting specification, simulation
and execution of dynamic adaptive systems,” in
Model Driven Engineering Languages and Systems,
pp. 606–621, Springer, 2009.

[14] J. Whittle, P. Sawyer, N. Bencomo, B. H. Cheng,
and J.-M. Bruel, “Relax: a language to address
uncertainty in self-adaptive systems requirement,”
Requirements Engineering, vol. 15, no. 2, pp. 177–
196, 2010.

[15] N. Esfahani and S. Malek, “Uncertainty in self-
adaptive software systems,” in Software Engineering
for Self-Adaptive Systems II, vol. 7475, pp. 214–238,
Springer, 2013.

[16] U. Alegre, J. C. Augusto, and T. Clark, “Engineering
context-aware systems and applications: a survey,”
Journal of Systems and Software, vol. 117, pp. 55–
83, 2016.

[17] N. A. Qureshi, I. J. Jureta, and A. Perini, Towards
a requirements modeling language for self-adaptive

systems, pp. 263–279. Springer Berlin Heidelberg,
2012.

[18] I. J. Jureta, A. Borgida, N. A. Ernst, and J. My-
lopoulos, “Techne: towards a new generation of
requirements modeling languages with goals, prefer-
ences, and inconsistency handling,” in Requirements
Engineering Conference (RE), 2010 18th IEEE In-
ternational, pp. 115–124, IEEE, 2010.

[19] D. L. Moody, P. Heymans, and R. Matulevicius,
“Improving the effectiveness of visual representa-
tions in requirements engineering: an evaluation of
i* visual syntax,” in 2009 17th IEEE International
Requirements Engineering Conference, pp. 171–
180, IEEE, 2009.

[20] C. Hog, R. B. Djemaa, and I. Amous, “Towards an
UML based modeling language to design adaptive
web services,” in Proceedings of the International
Conference on Semantic Web and Web Services,
pp. 38–44, 2011.

[21] M.-S. Benselim and H. Seridi-Bouchelaghem, “To-
wards a uml profile for context-awareness domain.,”
International Arab Journal of Information Technol-
ogy (IAJIT), vol. 14, no. 2, 2017.

[22] T. Vogel and H. Giese, Model-driven engineering
of adaptation engines for self-adaptive software:
Executable runtime megamodels. Universitätsverlag
Potsdam, 2013.

[23] J. Yu, J. Han, Q. Z. Sheng, and S. O. Gunarso,
“Percas: an approach to enabling dynamic and per-
sonalized adaptation for context-aware services,” in
International Conference on Service-Oriented Com-
puting, pp. 173–190, Springer, 2012.

[24] S. Sadiq, M. Orlowska, W. Sadiq, and C. Foul-
ger, “Data flow and validation in workflow mod-
elling,” in Proceedings of the 15th Australasian
database conference-Volume 27, pp. 207–214, Aus-
tralian Computer Society, Inc., 2004.

[25] J. Bocanegra, J. Pavlich-Mariscal, and A. Carrillo-
Ramos, “MiDAS: a model-driven approach for adap-
tive software,” in Proceedings of the 11th Interna-
tional Conference on Web Information Systems and
Technologies - Volume 1: WEBIST,, pp. 281–286,
INSTICC, SciTePress, 2015.

[26] J. Bocanegra, J. Pavlich-Mariscal, and A. Carrillo-
Ramos, “On the role of model-driven engineering in
adaptive systems,” in Computing Conference (CCC),
2016 IEEE 11th Colombian, pp. 1–8, IEEE, 2016.

[27] J. Bocanegra, J. Pavlich-Mariscal, and A. Carrillo-
Ramos, “DMLAS: a domain-specific language for
designing adaptive systems,” in 2015 10th Com-
puting Colombian Conference (10CCC), pp. 47–54,
Sept 2015.

[28] J. Bocanegra, J. Pavlich-Mariscal, and A. Carrillo-
Ramos, “Towards a domain-specific language to
design adaptive software: the DMLAS approach,”
Ingeniería y Universidad, vol. 20, no. 2, pp. 277–
296, 2016.


