
UML Class Diagram Composition
Using Software Requirements Specifications

Alexey Tazin
Department of Electrical and

Computer Engineering
Northeastern University

Boston, MA 02115
Email: tazin.a@husky.neu.edu

Abstract—Consider a scenario of collaborative software engi-
neering process in which different software engineering teams
create different versions of software design that satisfy given
software requirements specifications. Often the software designs
are expressed as UML diagrams, e.g., class diagrams. In this
process, the class diagrams developed by different teams have
to be reconciled and only one final diagram should be included
in the final design. The reconciliation process may include the
selection of the “best” parts of each proposed diagrams and used
to compose the optimal diagram from the selected parts. It is
difficult for software engineers to achieve such a goal manually
since manual process is very time consuming, error prone, and
not scalable for large software projects. We are developing an
approach and algorithms for automating the selection of the best
subdiagrams developed by different teams and composing them
into one diagram that is optimal with respect to a given objective
function. The final diagram must satisfy software requirements
specifications that were satisfied by each proposed diagram.
The developed approach will be evaluated experimentally by
generating random software requirements (expressed in SPARQL
and OWL), generating random class diagrams satisfying these
requirements, generating composed diagrams that satisfy these
requirements, and computing two class diagram metrics for each
composed diagram. These metrics are number of classes and
number of associations. This approach was implemented using
Jena, OWL ontologies, ArgoUML, and SPARQL.

I. INTRODUCTION

During large scale software development it is almost im-
possible to come up with an optimal software design. A
software engineering team may develop a class diagram using
some software requirements specifications and then over time
perform refactoring of the diagram. The refactored diagram
may or may not be optimal. In this case, the original and the
refactored diagrams should be reconciled. The reconciliation
process may include the selection of the best parts of the orig-
inal and refactored diagrams and composition of the optimal
diagram from the selected parts. Also, different teams may
create different versions of class diagram that satisfy given
software requirements and these versions should be reconciled
in terms of optimization. In another scenario, different teams
may create diagrams modeling different parts of a system
where each diagram has parts that have the same functionality
and satisfy the same software requirements specifications. It
is desirable to eliminate such redundant diagram parts. This
elimination process may include the selection of the best

parts among the original diagrams and composition of the
optimal diagrams from the selected parts. It is difficult for
software engineers to achieve such reconciliation of diagrams
or elimination of redundant diagram parts manually since
manual process is very time consuming, error prone, and not
scalable for large software projects. In this paper we show the
basic steps of the process of automating the selection of the
best subdiagrams developed by different teams and composing
them into one diagram that satisfies a set of stakeholder needs
and is optimal with respect to a given objective function. One
of the issues that we need to address in this research is the
issue of evaluation of the proposed approach. In particular, we
need to insure that the proposed approach is applicable to a
wide variety of types of software requirements related to class
diagrams. Towards this aim, we have developed a classifica-
tion of functional software requirements using minimal UML
metamodel. The current minimal metamodel includes Class,
Association, Property, DataType and Generalization classes
and will be expanded to support commonly used class diagram
elements. Each class of this classification is represented using
SPARQL ASK query [1] template with variables for class
names, primitive data types and cardinalities.

II. RELATED WORK

There are some works [2][3] that describe implementation
of 3-way merge for UML class diagrams. The main disad-
vantage of this type of merge is that it requires an original
diagram to be used as base of merging two diagrams derived
form it. Chechik et al. [4] describe two merge operators for
models: algebraic merge and state machine merge. For both
operators relationships between model elements are created
manually, although the merge is done automatically using a
tool. The approach used by Nejati et al. [5] and Odyssey-VCS
[6] compares UML diagrams based on the syntax only. The
method used by Al-Khiaty and Ahmed [7] compares classes
using their names, attribute names, operation names, relation-
ship names, and neighbors. All the names are compared based
on their semantic similarity using WordNet [8]. Comparison
accuracy depends of weight assignment of each similatity
metric. The method used by Nejati et al. [5] compares states
in hierarchical statechart models using behavioural matching
technique. It does not take into consideration the purpose



and responsibility of model elements in more general sense.
Chechik et al. [4] present some common types of overlaps
between concepts in different models with informal semantics,
semi-formal semantics, and formal semantic properties. This
method does not provide any systematic way to discover over-
laps between elements for class diagram with informal seman-
tics or semi-formal semantics. The overlaps are determined
manually. The method used by Costa et al. [9] uses the 3-
way merge. The method uses rules describing the semantics of
the class diagram according to UML metamodel. These rules
are used to infer indirect relationships between class diagram
elements. This method supports comparison of only limited
number of class diagram types. Some methods [10][11] use
graph isomorphism [12]. The method used by Rao and Gupta
[13] compares diagrams as graphs based on their heuristics.
These methods do not recognize the semantics of diagram.
The approach used by Fahrenberg et al. [14] computes the
conjunction of class diagrams by interpreting them as views
of the same model. This approach does not support matching
of two diagrams with different classes but satisfying the same
set of requirements. Semantic approaches used by Maoz et al.
[15] enumerate some examples of instances which represent
the difference between two diagrams. These approaches are
incomplete due to small number of examples that can be
created.

III. SOLUTION

In this section we describe the basic steps of the proposed
process of developing an optimal UML class diagram based on
multiple diagrams developed by different teams. These steps
are based on the following assumptions. Two software engi-
neering teams are given the same stakeholder needs (written
in text) and develop two UML class diagrams based on these
needs. The diagrams are developed using ArgoUML tool. We
will support more UML tools in the future. There is one
diagram per package. The stakeholder needs are (manually)
converted to SPARQL queries. Different names referring to
the same thing are resolved using WordNet, and axioms.
The process begins with inputting such two diagrams and
a SPARQL representation of the stakeholder needs into the
proposed tool.

1) Read two UML diagrams developed using ArgoUML.
2) Read stakeholder needs expressed as SPARQL queries.
3) In each of the diagrams, identify all possible subdia-

grams.
4) For each pair of subdiagrams compute their union.
5) For each union, compute the quality metric.
6) Map each union to Web Ontology Language (OWL) [16]

using Ontology Definition Metamodel (ODM) based
tool UMLtoOWL that converts ArgoUML class dia-
grams to OWL.

7) Enrich each union ontology with inferred object and data
properties that correspond to derived relationships and
attributes in UML using SPARQL Update axioms.

8) Identify unions that satisfy the given set of stakeholder
needs.

9) Select the union that has the highest value of the quality
metric.

This process will be iterative, i.e., the results returned by the
tool will be shown to the teams who will make the decision
on the final diagram.

A. What is subdiagram?

For the purpose of finding subdiagrams, we use the bidi-
rected connected multigraphs [17] G = (V,E), where V is
a set of vertices of the diagram, and E a set of edges of
the diagram. Each edge is a set of two vertices in case of
undirected, or an ordered pair of vertices in case of directed.

A subdiagram G∗ of a given diagram G is defined as a bidi-
rected connected or disconnected multigraph G∗ = (V ∗, E∗)
where

• V ∗(G∗) ⊆ V (G) is the finite set of subdiagram vertices,
• E∗(G∗) ⊆ E(G) is the finite set of subdiagram edges.

B. How to Find Subdiagrams and Generate Union?

We execute an exhaustive search to find all possible subsets
of a set A that includes a class, an interface, or a group of
classes or interfaces related with generalization relationship. In
the future we are planning to consider groups of classes and
interfaces related with associations. The time complexity of
this algorithm is O(2ceil(n/m)), where n is number of classes
and interfaces in the diagram and m is average number of
classes and interfaces in each Ai. The time complexity of
the union will be O(22ceil(n/m)). If each Ai on average has
two classes and m = 2 accordingly, the time complexity of
the union algorithm will be O(2n). We are going to generate
unions that are connected graphs and do not have classes with
the same name but different structure. This would reduce time
complexity of the union algorithm.

C. Representing UML Class Diagrams in OWL

The UML class diagram to OWL conversion is based on
mapping between UML elements and OWL entities offered
by Ontology Definition Metamodel (ODM) specfication [18].
To achieve the mapping we use an existing tool - UML2OWL
by Leinhos 1. The tool is described in [19]. The tool supports
class diagrams in XMI 1.2 format implemented by Poseidon
4.1. We modified the tool to enable reading class diagrams in
XMI 1.2 format implemented by open source ArgoUML.

D. Stakeholder Need Query

We express stakeholder need statements related to class
diagrams as SPARQL ASK queries. These queries are exe-
cuted against ontological representations of class diagrams. A
stakeholder need statement is satisfied by a class diagram if the
corresponding SPARQL ASK query can be executed against
the class diagram ontology and return true. The example
below shows a need statement expressed using SPARQL query.
This query refers to Cook and Appetizer classes, some object
property, and some restriction on this property and class

1http://diplom.ooyoo.de/



Appetizer, where the Cook class is subclass of this restriction.
The restriction includes minimum cardinality of 0. This need
statement could be articulated in English as:

“Cook can have appetizer recipes.”
This query can be mapped to SPARQL as shown below:

ASK {:Cook rdf:type owl:Class.
:Appetizer rdf:type owl:Class.
:Cook rdfs:subClassOf ?r1.
?r1 rdf:type Restriction.
?r1 owl:onProperty ?p1.
?r1 owl:onClass Appetizer.
?r1 owl:minQualifiedCardinality
’0’ˆˆxsd:nonNegativeInteger }

E. Union Ontology Inferences

Stakeholder need statements related to class diagrams de-
scribe to the elements of the class diagrams. A stakeholder
need statement is satisfied by a diagram if the diagram includes
all the elements described by this stakeholder need statement.
Some of these elements are not present in the diagram initially
developed by a software engineer but are inferable based on
other elements not directly described by the stakeholder need
statement. These inferable elements are derived properties and
derived associations in UML.

A stakeholder need statement expressed as a SPARQL ASK
query includes elements of the class diagram ontology in its
ASK clause. Such a query can be answered using the class
diagram ontology and return true if all elements included in the
query ASK clause are present in the class diagram ontology.
Some of these elements corresponding to derived properties
and derived associations in UML must be inferred and asserted
using axioms.

In our experiments we used an inference engine to infer and
assert object properties, data properties, and property restric-
tions; the inferences are based on general OWL axioms in the
class diagram ontology and on SPARQL Update queries [20]
that assert new axioms into the ontology. The elements inferred
and asserted by the query are specified in its INSERT clause.
The following example shows an example of axiom inserting
query. This axiom infers and asserts an object property and
restriction corresponding to derived association in UML. The
axiom is represented in ontological terms that correspond
to the UML terms. The SPARQL Update query uses Jena
reasoner [21]; the inference takes advantage of the general
OWL subClassOf transitivity axiom.

1) Axiom description: If there are two classes A and B and
a directed association from class A to class B with cardinality
0..∗ at its navigable end, we can infer a directed association
with cardinality 0..∗ at its navigable end from class A to any
subclass of class B.

2) SPARQL Update query: The following is query assert
a new object property and restriction for the match pattern
specified in the WHERE clause.

INSERT
{ ?p2 rdf:type owl:ObjectProperty.

?p2 rdfs:domain ?c1.
?p2 rdfs:range ?c3.

_:r2 rdf:type owl:Restriction.
_:r2 owl:onProperty ?p2.
_:r2 owl:onClass ?c3.
_:r2 owl:minQualifiedCardinality
’0’ˆˆxsd:nonNegativeInteger.
?c1 rdfs:subClassOf _:r2

}
WHERE
{ ?c1 rdfs:subClassOf ?r1.
FILTER (NOT EXISTS
{?c1 rdf:type owl:Restriction}).
?r1 rdf:type owl:Restriction.
?r1 owl:onClass ?c2.
?r1 owl:minQualifiedCardinality
’0’ˆˆxsd:nonNegativeInteger.
?r1 owl:onProperty ?p1.
?c3 rdfs:subClassOf ?c2.
FILTER (?c3 != ?c2 ).
?p1 rdfs:domain ?c1.
BIND(IRI(CONCAT(STR(?c1),
STRAFTER(STR(?c3), ’#’))) AS ?p2)

}

Each newly created restriction will have a different anony-
mous name. This is handled internally by Jena [22]. The name
of a newly created object property is obtained via concatenat-
ing names of the classes corresponding to the variables c1 and
c3.

3) Query match RDF graph: OWL semantics can be en-
coded in RDF [23]. RDF models are essentially collections
triples (predicate, subject, object) that constitute graphs. The
RDF graph shown in Fig. 1 includes a subgraph corresponding
to the match pattern of the above SPARQL Update query
WHERE clause and the RDF triples asserted during the query
execution process. Resources c1, c2, c3, p1, p2, r1, r2 of the
graph correspond to the variables in the query. The query can
find multiple occurrences of subgraphs corresponding to the
match pattern and assert multiple groups of triples specified
in the INSERT clause.

Fig. 1: Axiom SPARQL Update query RDF graph.

4) Class diagram: Fig. 2 shows a class diagram that
does not include any derived properties and associations. We
convert this class diagram to OWL ontology, execute the above
axiom query against this ontology, assert a new object property
and restriction. This new property and restriction correspond
to the hasAppetizer derived directed association from class
Cook to class Appetizer. This is shown in Fig. 3. Also, Fig.



3 shows the correspondence between classes and associations,
and axiom query variables.

Fig. 2: Class diagram that does not include derived associa-
tions and properties.

Fig. 3: Class diagram that includes derived association.

IV. PLAN FOR EVALUATION AND VALIDATION

The developed approach will be verified by generating
random software requirements, generating random UML class
diagrams satisfying these requirements, and generating an
optimal composed diagram that satisfies these requirements
using number of classes and number of associations class
diagram metrics. The optimal composed diagram can be gen-
erated using these two metrics based the goal of the ultimate
application to be designed. If the goal is maintenance, then
we might want to maximize the number of classes metric.
The number of associations should be minimized in any case
in order to reduce complexity of the diagram. In the future,
we are also planning to consider more metrics. Each software
requirement is generated as SPARQL query that asserts OWL
facts. For each query template we will generate a set of
more specific templates with specified primitive data type and
cardinality variables. For cardinality constraints we will use
0, 1, a positive integer, and many. Each such template will be
used to generate a query with arbitrary class names and a set
of diagrams satisfying this query. We are going to generate
each random query by randomly selecting a template with
specified primitive data type and cardinality variables out of
all the available such templates and randomly specifying class
names. For each randomly generated query we will generate

a random diagram satisfying this query using previously gen-
erated diagrams satisfying queries with arbitrary class names.
These randomly generated diagrams will be merged into one
diagram and become subdiagrams of this diagram. Then, we
need to randomly connect these subdiagrams with directed
associations. This approach will be used for generating a
random set of queries and a pair of class diagrams that will
satisfy these queries.

V. EXPECTED CONTRIBUTIONS

1) Most of diagrams are developed based on given stake-
holder needs. In case of diagram merging it is important
to verify if the merged diagram satisfies the same
stakeholder needs. Our method provides means for such
verification.

2) Our method allows to generate semantically equivalent
merged diagrams, rather than just one merged diagram,
thus giving an opportunity for a software developer
to select a solution that better satisfies the designers
objectives expressed in terms of design quality metrics.
The designer can also select the best subdiagrams from
any two given diagrams and compose them into one
diagram that is optimal with respect to a given objective
function.

3) Classification of software requirements specifications
using UML class diagram metamodel.

4) Representation of software requirements using a formal
language SPARQL.

5) Automated method of satisfaction of software require-
ments by class diagram.

6) Generating random class diagrams for a given set of
software requirements.

7) Inference of indirect associations in the class diagram.

VI. CURRENT STATUS

We developed a software implementation of our approach
with support of limited number of axioms and full support of
all elements of a minimal UML metamodel. We developed a
classification of functional software requirements using min-
imal UML metamodel. We outlined a random class diagram
generation algorithm. We are planning to finish experimental
validation of our approach with more design quality metrics,
expand minimal UML metamodel to all most frequently used
class diagram elements, and write all the axioms in April 2018.

REFERENCES

[1] W3C, “SPARQL 1.1 Query Language.” [Online]. Available:
https://www.w3.org/TR/sparql11-query/

[2] M. Alanen and I. Porres, “Difference and union of models,” International
Conference on the Unified Modeling Language, 2003.

[3] Eclipse Project, “Emfcompare.” [Online]. Available:
https://www.eclipse.org/emf/compare

[4] M. Chechik, S. Nejati, and M. Sabetzadeh, “A relationship-based
approach to model integration,” Innovations in Systems and Software
Engineering, 2012.

[5] S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook, and P. Zave,
“Matching and merging of statecharts specifications,” ICSE 2007, 2007.



[6] L. Murta, C. Correa, J. G. Prudencio, and C. Werner, “Towards odyssey-
vcs 2: Improvements over a uml-based version control system,” In
proceedings of the 2008 international workshop on Comparison and
versioning of software models (CVSM 08), Leipzig, Germany, 2008.

[7] Mojeeb Al-Rhman Al-Khiaty and M. Ahmed, “Uml class diagrams:
Similarity aspects and matching,” Lecture Notes on Software Engineer-
ing, Vol. 4, No. 1, 2016.

[8] T. Pedersen, S. Patwardhan, and J. Michelizzi, “Wordnet::similarity -
measuring the relatedness of concepts,” HLT-NAACL, 2004.

[9] V. Costa, R. Monteiro, and L. Murta, “Detecting semantic equivalence
in uml class diagrams,” SEKE, 2014.

[10] R. S. Rao and M. Gupta, “Design pattern detection by greedy algorithm
using inexact graph matching,” IJERT, 2013.

[11] ——, “Design pattern detection by sub graph isomorphism technique,”
International Journal Of Engineering And Computer Science, 2013.

[12] G. Chartrand, Introduction to graph theory. New York: Dover Books,
1984.

[13] R. S. Rao and M. Gupta, “Design pattern detection by a heuristic graph
comparison algorithm,” International Journal of Advanced Research in
Computer Science and Software Engineering, 2013.

[14] U. Fahrenberg, M. Acher, A. Legay, and A. Wasowski, “Sound merging
and differencing for class diagrams,” FASE 2014: Fundamental Ap-
proaches to Software Engineering, pp 63-78, 2014.

[15] S. Maoz, J. O. Ringert, and B. Rumpe, “A manifesto for semantic model
differencing,” In MODELS, pp. 194203. Springer, 2011.

[16] W3C, “Web ontology language reference.” [Online]. Available:
http://www.w3.org/2004/OWL/

[17] F. Harary, Graph Theory. Addison-Wesley, 1994.
[18] OMG, “Ontology definition metamodel.” [Online]. Available:

http://www.omg.org/spec/ODM/
[19] S. Leinhos, “Owl ontology extraction and modelling from and with uml

class diagrams - a practical approach,” Master’s thesis, University of the
Federal Armed Forces Munich, 2006.

[20] W3C, “SPARQL 1.1 Update.” [Online]. Available:
https://www.w3.org/TR/sparql11-update/

[21] The Apache Software Foundation, “Reasoners and rule
engines: Jena inference support.” [Online]. Available:
https://jena.apache.org/documentation/inference/

[22] ——, “Apache jena.” [Online]. Available: https://jena.apache.org/
[23] W3C, “Resource description framework (rdf).” [Online]. Available:

www.w3.org/RDF/


