Create and Play your Pac-Man Game
with the GEMOC Studio

(Tool Demonstration)

Dorian Leroy*, Erwan BousseT, Manuel Wimmeri, Benoit Combemale§, Wieland Schwingerﬂ
*9JKU Linz (Austria), T¥TU Wien (Austria), FCDL-MINT (Austria), $Université de Rennes 1 (France)
dorian.leroy @cis.jku.at, erwan.bousse @tuwien.ac.at, wimmer@big.tuwien.ac.at,
benoit.combemale @irisa.fr, wieland.schwinger@jku.ac.at

Abstract—Executable Domain-Specific Languages (DSLs) are
used for defining the behaviors of systems. The operational
semantics of such DSLs may define how conforming models
react to stimuli from their environment. This commonly requires
adapting the semantics to define both the possible domain-
level stimuli, and their handling during the execution. However,
manually adapting the semantics for such cross-cutting concern
is a complex and error-prone task. In this paper, we present an
approach and a tool addressing this problem by augmenting the
operational semantics for handling stimuli, and by automatically
generating a complete behavioral language interface from this
augmentation. At runtime, this interface can receive stimuli
sent to models, and can safely handle them by interrupting the
execution flow. This tool has been developed for the GEMOC
Studio, a language and modeling workbench for executable DSLs.
We demonstrate how it can be used to implement a Pac-Man DSL
enabling the creation and execution of Pac-Man games.

Index Terms—Model Execution; Reactive DSLs; Code Gener-
ation

I. INTRODUCTION

A large number of Domain-Specific Languages (DSLs)
geared toward the description of the behavior of systems
(e.g., [11, [2], [3], [4], [5]). Enabling the execution of their
conforming models allows to make the most out of those
models. This requires the definition of the execution semantics
of these languages, including how conforming models react to
stimuli from their environment [6]. This includes the definition
both of possible domain-specific events—i.e., the different types
of stimuli in the considered domain—and of how occurrences
of said events are to be handled.

But incorporating events handling logic within operational
semantics is a difficult task, as it impacts both the content
(e.g., adding event-processing code in existing execution rules)
and the scheduling of execution rules (e.g., defining instants in
the execution when stimuli should be handled). In addition, at
runtime, it is necessary to provide an interface to allow external
actors (e.g., a simulator, a test engine, other models, etc.) to
send event occurrences to models being executed. Depending
on how a semantics is structured, this may require a mechanism
to temporarily interrupt the execution of the model (similarly
to interruptable models in the DEVS formalism [6]), in order to
react to event occurrences by triggering their handling. Overall,
manually defining such interface and its integration with the
semantics can be a tedious and error-prone task, which must
be repeated for each executable DSL.

The demonstrated tool aims to solve this problem. It is
developed as an extension to the GEMOC Studio [7], an Eclipse-
based language and modeling workbench for executable DSLs.
It provides a non-intrusive and modular way to define both
the possible domain-specific events and their handling logic
within the operational semantics of a DSL. It then generates
an interface to safely send event occurrences to a model being
executed, i.e., only when the model is in a consistent state. An
extension to the execution environment has been developed
to use this interface. The use of this tool is illustrated with a
Pac-Man DSL ([8], [9]) allowing to define customized versions
of the world-famous Pac-Man video game, which can then be
played. The tooling as well as the example presented in this
paper are available on Github'?.

The remainder of this paper is structured as follows. In
Section II, we provide an overview of the architecture of the
tool. Section III details the Pac-Man use case. Finally, future
research directions are given in Section IV.

II. ARCHITECTURE

In this section we present the architecture of the tool, which
is developed as a reactive extension to the GEMOC Studio
and is written in Java and Xtend.

A. Executable DSLs and Event Handlers Annotation

The tool presented in this paper supports DSLs whose
abstract syntax is provided as a metamodel and whose execution
semantics is provided as an operational semantics. The con-
sidered operational semantics can be decomposed in i) a data
structure representing the model state and ii) a set of execution
rules. The model state is defined in an execution metamodel
extending the abstract syntax metamodel. Before the execution,
models are initialized through a transformation from the
abstract syntax to the execution metamodel. Model execution
is performed by an endogenous, in-place transformation on
this model state, using the set of execution rules constituting
the operational semantics of the DSL. The approach relies on
providing an annotation mechanism to tag execution rules
as event handlers. This allows the identification of both
events and their corresponding handler. In the GEMOC Studio,
Ecore [10] is used as a metamodeling language to define

Thttps://github.com/eclipse/gemoc-studio
Zhttps://github.com/tetrabox/pacman-example.git

PacMan . .
PacManinterpreter Eventinterpreter EventManager ExecutionEngine
—gameLoop()Pr— ' ' '
loop) [while 'gameOver()] | | |
Update(dt) E E E
I:E | notify() : I
| ! ! processEvents() i

loop) [for evt in eventQueue]

opt) [canProcess(evt)]!

,__dispatchEvent(evt)

| executeRule
[~ (evt.name,evt.params)

f e

=

Fig. 1: Sequence diagram of a call to manageEvents.

the abstract syntax and the execution metamodel of DSLs.
One goal of the underlying approach is to support multiple
metaprogramming languages to define the operational semantics
of DSLs. We support the Kermeta language [11] and the xMOF
language [12]. For example, in Kermeta, an @Step annotation
allows to tag methods as execution steps. This annotation has
been extended with the eventHandler boolean parameter.
This parameter fulfills the role required to tag execution rules
as event handlers.

B. Execution Engine

Within the GEMOC Studio, model execution is orchestrated
by a component called the execution engine. Among other
things, this component is responsible for starting and stopping
the execution. It is notified whenever the execution of a rule is
about to begin or comes to an end. During such notifications,
the engine guarantees that there is no ongoing atomic execution
step, which means that the executed model is in a consistent
state. A component can be notified each time the model reaches

such a state by registering as a listener to the execution engine.

Figure 1 shows how we leverage the notifications sent to the
execution engine to introduce event processing in the execution
loop. The DSL (Pac-Man in Figure 1) interpreter executes the
rules of the operational semantics, and notifies the execution
engine when such a rule is executed (here the update rule). The
execution engine then delegates the handling of events to the
event manager, through the processEvent service. In turn, the
event manager iterates over its event queue and delegates for
each event the call of the corresponding execution rule to the
(generated) DSL event interpreter, through the dispatchEvent
service. These two components are detailed below.

C. Behavioral Language Interface

The behavioral language interface of an executable DSL
allows external actors to send stimuli to executed models. It
can be decomposed as a domain-specific event metamodel and
a domain-specific event interpreter. These artifacts are both
generated from the annotated execution semantics of the DSL
by a generator implemented in Xtend taking the definition of the
DSL as input. This generator uses the annotation mechanism
provided by the approach to detect execution rules that are

event handlers. The outputs of the generator are an Ecore
event metamodel and a Java class providing the dispatchEvent
service. As shown on Figure 1, this service retrieves the
parameters stored within the provided event model and calls
the corresponding execution rule with these parameters.

D. Event manager

The event manager is the component linking the execution
engine to the generated event interpreter. It has a dynamic state
composed of the event queue which is a list of models con-
forming to the domain-specific event metamodel (i.e., domain-
specific stimuli) part of the behavioral language interface. The
event manager provides the queueFEvent service, which is used
by external components to push event occurrences to the event
queue. The processEvents service of the event interpreter is
called by the execution engine each time the execution reaches
a new consistent state. It leads to the temporary interruption
of the planned scheduling of execution rules in order to call
the handling rule corresponding to each event occurrence in
the event queue.

E. External Components

External components use the behavioral language interface
to interact with executed models, through the event manager.
These components can listen to the execution by registering as
listeners to the execution engine. This way they are notified
when the execution starts, stops or reaches a consistent state,
which allows them to perform their intended task with reliable
data (i.e., the model’s dynamic state). These components also
have access to the services provided by the event interpreter
to check if particular stimuli can be processed in the current
execution state and to push stimuli to the queue. The Pac-
Man GUI (presented below) is such an external component,
refreshing the view when receiving notifications from the
engine, and forwarding the user’s inputs to the behavioral
interface of the Pac-Man DSL under the form of instances
from its event metamodel.

III. THE PAC-MAN EXAMPLE

In this section we detail the Pac-Man DSL used in this tool
demonstration.

Abstract Syntaq
bottom
topa. . V0.1
0..1” | AbstractTile) Board
tile
left~| ﬁ
E--l/ T right
0..1
entities
initialJile\/g. . *
WallTile || PassableTile |1 Entity
Tile || GhostHouseTile| | Pacman || Ghost

Execution Rulesl

| merges

Execution Metamodeﬂ

AbstractTile

AbstractPellet

AN targetTile 0..1
1

PassabIeTiIe<]—| ?peuet
T currentTile Tile
1

Entity
+speed: int

SuperPellet || Pellet

A Pacman
+pelletsEaten: int
+lives: int
+energized: boolean

Ghost

I‘limports

gamelLoop(Board: board)
update(Board: board, int: deltaTime)

update(Entity: entity, int: deltaTime)
enterNextTile(Entity: entity)
modifySpeed(Entity: entity, int: speed)

activate(Ghost: ghost)
energize(Pacman: pacman)

@EventHandler
up(Pacman: pacman)

@EventHandler
down(Pacman: pacman)

@EventHandler
left(Pacman: pacman)

@EventHandler
right(Pacman: pacman)

Fig. 2: Overview of the Pac-Man DSL.

eventl pacmanl
<<abstract>> Pacman
Event
~ pacman /\1
pacman.eventl A
<<abstract>l> <<abstract>>
<|— PacmanEvent
PacmanDSLEvent
+pacman: Pacman
1 1
PacmanUpEvent ||| PacmanDownEvent
PacmanLeftEvent PacmanRightEvent

Fig. 3: Event metamodel generated for the Pacman DSL.

Abstract Syntax: Figure 2 shows the abstract syntax
of the Pac-Man DSL as well as its execution metamodel.
A Board is composed of AbstractTiles and Entities. An
AbstractTile can be a PassableTile or a WallTile. PassableTiles
are further refined into Tiles and GhostHouseTiles. Tile
has an initialPellet attribute indicating which type of
pellet the tile contains, if any. Lastly, an AbstractTile has
two bidirectional references to its neighboring AbstractTiles:
right (the opposite being left), and bottom (the opposite
being top). An Entity can either be a Pacman or a Ghost and
points to an initial PassableTile where it starts the game and
where its position is reset when a Pacman loses a life or a
Ghost is eaten. Not shown on the class diagram, a Ghost also
has a personality dictating its behavior during the game,

Algorithm 1: gamel.oop

Input: board
1 begin
previous Time < nanoTime()
while —gameOver() do
currentTime < nanoTime()
0t < currentTime — previousTime
board.update(dt)
if 6t < targetFrameRate then
| sleep(targetFrameRate — &t)

® N A U R W N

9 previousTime < currentTime

and a Pacman has a number of initialLives.

The domain targeted by this DSL is thus the definition of
Pac-Man games, including the topology of the level (walls,
ghost house and pellets), the number of ghosts, their behavior
and the starting positions and number of ghosts and pacmen.

Operational Semantics: The real-time aspect of the
execution semantics is obtained by using a classic game loop,
illustrated by Algorithm 1. Thread sleeps are used in order to
reach a target frame rate. The lower part of Figure 2 shows a
subset of the execution rules of the Pac-Man DSL. Entities have
an update rule used to check whether they reached a new
Tile according to their speed and the time they already spent
in their current Tile. Entities also have an enterNextTile
rule that takes care of the actual move and deals with the
consequences of this move (e.g., killing the Pacman if a Ghost
reaches the same Tile, eating the Pellet present on the Tile,
etc.). The Pacman entity has a set of rules (up, down, left
and right) allowing it to change its direction. These rules are
annotated as an event handlers, which means that events can be
sent to the model to change the direction of the pacman. The

event metamodel generated from these annotations is shown
in Figure 3.

User Interface: The user interface has been specifically
developed for the Pac-Man DSL. It is implemented in JavaFX
and consists of two parts: an editor presenting useful tools to
build a Pac-Man game, and the actual game interface, which
receives events from the keyboards and delegates them to the
behavioral interface through the event manager. The game
interface is implemented as an execution engine listener and
updates its view when notified by the engine that a call to the
update execution rule of the Board has been completed.

IV. FUTURE WORK

The direct perspectives of this work include the three
following research topics. First, defining and the handling
of output events occurrences sent by an executed model to
its environment. This would be a first step toward enabling
co-simulation in a generic way. Second, the combined use of
behavioral language interfaces and temporal property languages
would allow to investigate activities such as testing or runtime
monitoring for executable DSLs. Third, the implementation
of the underlying approach with another meta-programming

language such as xMOF.

Acknowledgements—This work has been funded by: the Aus-
trian Science Fund (FWF): P 28519-N31; the Austrian Agency
for International Mobility and Cooperation in Education, Science
and Research (OeAD) on behalf of the Federal Ministry for
Science, Research and Economy (BMWFW) under the grand
number FR 08/2017, by the French Ministries of Foreign Affairs
and International Development (MAEDI), and the French Min-
istry of Education, Higher Education and Research (MENESR);
Austrian Federal Ministry of Science, Research and Economy
and the National Foundation for Research, Technology and
Development.

REFERENCES

[1] Object Management Group, “Semantics of a Foundational Subset for
Executable UML Models, V 1.1,” August 2013.

[2] R. Bendraou, B. Combemale, X. Crégut, and M. P. Gervais, “Definition
of an executable SPEM 2.0, in Proceedings of the 14th Asia-Pacific
Software Engineering Conference (APSEC’07), pp. 390-397, IEEE, 2007.

[3] T. Fischer, J. Niere, L. Torunski, and A. Ziindorf, “Story Diagrams: A
New Graph Rewrite Language Based on the Unified Modeling Language
and Java,” in Proceedings of the 6th International Workshop Theory and
Application of Graph Transformations (TAGT’98), vol. 1764, pp. 157-167,
2000.

[4] D. Harel, H. Lachover, A. Naamad, A. Pnuelli, M. Politi, R. Sherman,
A. Shtull-trauring, and M. Trakhtenbrot, “STATEMATE: a working
environment for the development of complex reactive systems,” IEEE
Transactions on software engineering, vol. 16, no. 4, pp. 403-414, 1990.

[5] OASIS, “Web Services Business Process Execution Language Version

2.0,” 2007.

Y. V. Tendeloo and H. Vangheluwe, “An introduction to classic DEVS,”

CoRR, vol. abs/1701.07697, 2017.

[7]1 E. Bousse, T. Degueule, D. Vojtisek, T. Mayerhofer, J. Deantoni, and
B. Combemale, “Execution Framework of the GEMOC Studio (Tool
Demo),” in Proceedings of the 9th International Conference on Software
Language Engineering (SLE’16), SLE 2016, p. 8, 2016.

[8] R. Heckel, “Graph transformation in a nutshell,” Electr. Notes Theor.
Comput. Sci., vol. 148, no. 1, pp. 187-198, 2006.

[9] E. Syriani and H. Vangheluwe, “A modular timed graph transformation
language for simulation-based design,” Software and System Modeling,
vol. 12, no. 2, pp. 387-414, 2013.

[6

=

[10] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework, 2nd Edition. Eclipse Series, Addison-Wesley
Professional, 2008.

J.-M. Jézéquel, B. Combemale, O. Barais, M. Monperrus, and F. Fouquet,
“Mashup of metalanguages and its implementation in the Kermeta
language workbench,” Software and Systems Modeling, vol. 14, no. 2,
2013.

T. Mayerhofer, P. Langer, M. Wimmer, and G. Kappel, “xMOF: Exe-
cutable DSMLs based on fUML,” in Proceedings of the 6th International
Conference on Software Language Engineering (SLE’13), vol. 8225 of
LNCS, Springer, 2013.

(1]

[12]

