Executing Models:
Enhancing Validation by Filmstrip Templates and
Transformation Alternatives

Nisha Desai
Department of Computer Science
University of Bremen
D-28334 Bremen, Germany
nisha@informatik.uni-bremen.de

Abstract—This paper discusses an approach to execute models
with filmstrip templates in order to enhance the validation and
execution process so that model execution time is decreased.
A filmstrip template identifies recurring model parts. When
such recurring model parts are constructed only once, model
validation time is reduced. We also improve our previous filmstrip
approach by employing more efficient architectures for the
needed filmstrip transformation. By performing a feasibility
study we check and show the performance of our filmstrip
templates for different architectures and compare execution times
for particular test cases. Among the developed and tested seven
architectures, three show particular good results with respect to
execution and validation time.

Index Terms—UML and OCL model, Operation contract,
Model execution, Model validation and verification, Filmstrip-
ping, Filmstrip template, Filmstrip architecture

I. INTRODUCTION

Recently, modeling languages as UML and OCL and ex-
ecutable models [1], [2] are gaining more and more impor-
tance in designing systems. For a given application model,
it is crucial to validate and verify system properties during
the design phase. A variety of validation and verification
techniques are currently available. For the purpose of model
behavior validation, the tool USE [3] can be employed to
transform a given UML and OCL application model into an
equivalent so-called filmstrip model [4]. In USE, a model
validator can automatically generate a valid object diagram by
using configurations, and thus automatic test case generation
is possible. As systems and their models are getting more
complex, test scenarios are getting larger, and therefore the
execution time for model validation becomes crucial.

In this paper, we introduce filmstrip templates for our
filmstrip approach in order to enhance the validation and
execution process. A filmstrip template reduces the work of
our model validator by identifying recurring model parts.
Thereby validation time is reduced. Another improvement of
our previous filmstrip approach is to employ more efficient ar-
chitectures for the needed filmstrip transformation. Currently,
the transformation of a filmstrip model is realized using a
ternary association. But, there are other possible architectures

Martin Gogolla
Department of Computer Science
University of Bremen
D-28334 Bremen, Germany
gogolla@informatik.uni-bremen.de

Frank Hilken
Department of Computer Science
University of Bremen
D-28334 Bremen, Germany
fhilken @informatik.uni-bremen.de

for the filmstrip realization using binary association, aggre-
gation, or composition. By performing a feasibility study we
check and show the performance of the filmstrip templates
for different architectures and compare the execution time of
particular test cases.

The rest of this paper is organized as follows. Section II pro-
vides some background on filmstripping. Section III describes
different architectures for filmstripping. Section IV introduces
and explains the approach enhancing the validation process,
i.e., the concepts behind filmstrip templates. Section V and VI
illustrate the execution and the results of the comparative
study that we have conducted. Related work is addressed in
Sect. VII. Finally, in Sect. VIII, the paper is closed with
conclusions and some future work.

II. FILMSTRIPPING

An ordinary UML and OCL application model can involve
structural aspects in form of OCL invariants and dynamic
aspect in form of operation pre- and postconditions. Changes
in object states are triggered by operation calls. The model
validator in the tool USE is designed for structural analysis
of UML class diagrams. In order to validate dynamic aspects
of the model, our filmstrip approach is used. Filmstripping
transforms a given UML and OCL model which is comprised
of invariants and pre- and postconditions into an equivalent
model which possesses only invariants. The transformed model
is called a filmstrip model. This transformed model involves
only structural aspects and can be validated with the USE
model validator. Roughly speaking, system dynamics is ex-
pressed in the filmstrip model by different explicit objects
representing operation calls. A sequence of operation calls
and object diagrams of an application model corresponds to a
single object diagram of the filmstrip model [4].

The filmstripping approach can be explained best in terms
of an example. Figure 1 shows essential parts of a library
model [5] in which users can borrow and return book copies.
The original application model is indicated in a gray-shaded
style, namely the classes User and Copy together with the
association Borrows in the class diagram, and the small

E Class diagram

Snapshot 0.1pred OperationCaifl
pred() : Snapshot 1 sapshot 0.1 0pc pred() : Snapshot
succ(): Snapshot succ() : Snapshot

1 snapshot 7.\ L\
1 suce
o 2‘ ~ ks pre% UserOpC CopyOpC
[N o aSelf : User | |aSelf : Copy
Copy

name : String
address : String

£
signature : String ~
numReturns : Integer \\

int(aName : smng,anAdur;gs:stmg) * copy inft(aSignature : String, aBook : Book) % int_CopyOpC
borrow(aCopy : Copy) # il borrowv(allser : User) ‘aBook - Book
return(aCopy : Copy) ¥ return() o aSignature : String
- —
— —]
O Object diagram | a Ec]l it | oerOpe return_UserOpC | [retum_CopyOpC
alame : String —_—
¥ aCopy : Copy
return_useropc2:return UserOpc | anddress : String
Self=userd o !
S ————— borrow_User0pC e T
\\ aCopy : Copy allser : User
£ snanshot3Snapshot
/)
userd:User user!:User ‘\ ‘ H Sequence diagram ﬂ“ ﬂ E
/ name="Hal' .~ name="Hal' \ \
| |pudress=x address=Tx' | \ %
| o A S A e]
| CORVZ.CopY | | cooy3copy | — : :
signature="ab02" signature="ab02"
numReturns=4 numReturns=5

Fig. 1. Application model and filmstrip model (Architecture D in Fig. 2).

sequence diagram represents the application model. Structural
and dynamic aspects of this application model are completely
described with OCL invariants and pre- and postconditions.
The application model is automatically transformed into
the filmstrip model: the non-gray shaded classes and the
object diagram in Fig. 1. In essence, the application model
sequence diagram becomes a filmstrip model object diagram.
Snapshot objects explicitly allow to capture single sys-
tem states from the application model. Operation call ob-
jects (suffix OpC) describe operation calls from the applica-
tion model. Basically, each operation is transformed into an
OperationCall class with attributes for the Self objects
and for the operation parameters. Thus, for example, the
call user4.return (copy2) from the sequence diagram
is represented by the object return_ useropc?2 in the
filmstrip object diagram. The effect of the operation call is
represented by the differences between the left and the right
snapshot: The return operation call removes the Borrows
link and increases the attribute numReturns. The two User
and the two Copy objects represent different object states
before and after the operation call. One could say that the
object copy3 is a later incarnation of the object copy2. The
library model contains another class Book not shown in Fig. 1.

III. ARCHITECTURES FOR FILMSTRIPPING

The transformation into a filmstrip model introduces new
classes for snapshots and for operation calls. Furthermore,
proper directed connections between these snapshots and oper-
ation calls are realized through links. Snapshots and operation

calls play a central role in the filmstripping approach, because
they provide the glue that keeps the items together. As men-
tioned earlier, currently a ternary association is used to link
snapshots with each other and with related operation calls.
However, there are other possible architectures through which
snapshots and operation calls can be linked. Figure 2 shows
seven different possible architectures.

.1

0
; 0.1

0.1

Snapshot OperationCall

(A) Ternary association [short: Tern Assoc]

0.1 - 1 0.1
OperationCall

1
0.1
1 0.1
0.1

(B) OpCall at Snapshot + Association (E) Snapshot OpCall Snapst
[short: C@Snap Assoc] [short: SnapCSnap Assoc]

OperationCall

as A

0.1 - 1
OperationCall

. 1
0.1
1 0.1
0.1

(C) OpCall at Snapshot + Aggregation (F) Snapshot OpCall Snapshot as Aggregation
[short: C@Snap Agg] [short: SnapCSnap Agg]

OperationCall

— 1 01 - 1 0.1

OperationCall P
1 05

(G) Snapshot OpCall Snapshot as Composition
[short: SnapCSnap Comp]

OperationCall

0.1

0.1

(D) OpCall at Snapshot + Composition
[short: C@Snap Comp]

Fig. 2. Different filmstrip architectures for the transformation.

Figure 2(A) shows the use of a ternary association
to connect Snapshot to Snapshot as well as to
OperationCall. Figure 2(B) displays a possibility to con-
nect Snapshot to Snapshot and to an OperationCall
by means of two associations. Here the first association
connects the Snapshot sequence and the other connects the
OperationCall to Snapshot which represents the pre-
state of the OperationCall. Figures 2(C) and (D) are al-
most same as (B), except that the first uses aggregation and the
second uses composition instead of an association to connect
Snapshot to Snapshot. Figure 2(E) shows another ap-
proach to connect the classes using two associations. This time
the Snapshot class is connected to the OperationCall
and in return, this OperationCall class is again connected
to the Snapshot, which represents the post-state of the
OperationCall. Figures 2(F) and (G) are more or less
similar to (E), except that the first uses aggregation and the
second uses composition instead of an association.

All newly introduced architectures (B)-(G) can be used
to realize filmstripping and are interchangeable, but they
all have some pros and cons. The architectures (B), (C),
and (D) have a link which connects Snapshot to Snapshot
directly which makes the navigation from Snapshot to
Snapshot independent from the OperationCall class.
But it could be possible that a post-state is generated with-
out an OperationCall. Thus OCL invariants are used
to overcome this situation and to execute the architectures
successfully. In the case of architectures (E), (F) and (G),
the Snapshot class is connected via the OperationCall
class. With these architectures, it is not possible to navigate
between the Snapshot objects directly, and this requires
OCL expressions to navigate from Snapshot to Snapshot
object. The use of aggregation and composition links in the
architectures ensure that the connections are cycle-free.

IV. ENHANCING FILMSTRIPPING WITH TEMPLATES

Within the filmstrip approach, the USE model validator [6]
uses configurations (which describe a number of application
and filmstrip objects and links) and constructs an object
diagram for the filmstrip model. If the number of snapshots,
operation calls and application objects are known, one can
introduce filmstrip templates. Figure 3 gives an overview on
the validation process using filmstripping and the template
approach.

The template consists of snapshot objects and application
objects without attribute values, but with already established
connecting links between them. For example, if n operation
calls on m application model objects are known from the
configuration, one can pre-compute the needed n+ 1 snapshot
objects each one being connected to m application objects
and one can establish the needed links automatically. Figure 4
sketches an example with 2 operation calls and 9 application
objects. When the developer has made the choice for the
number of snapshots and the number of objects in each
application class, the filmstrip template approach constructs
a partial object diagram (in Fig. 4, only black objects and

/ application model / configuration: /L
PP application model elements

USE
filmstripping

—/ filmstrip model /

filmstrip
template

| partial object diagram|

/ configuration: /
filmstrip model elements,

USE
model validator,

external invariants
(for specific test case scenario)

complete object diagram

Fig. 3. Overview on validation process with filmstrip templates.

links, not the gray part) that has to be only completed by the
USE model validator. So the model validator has only a few
elements to construct in order to achieve a complete object
diagram. This approach enhances the validation process and
leads to a faster execution time.

Filmstrip object diagrams using any of the architectures
have snapshot and application objects. These objects (without
attribute values) and their links (object-object and object-
snapshot) can be defined in the filmstrip template. Apart
from this, in the case of architectures (B), (C), and (D),
the Snapshot connects with itself without a need for an
OperationCall. This allows to define snapshot-snapshot
links in the filmstrip template for the architectures (B), (C)
and (D).

Figure 4 shows a template for a filmstrip object diagram
which is relying on architecture (B). The model elements
shown in black (snapshot and application model objects with-
out attribute values and links) represent the filmstrip template
and the part highlighted in gray has to be generated by the
model validator. So the model validator has only to find the
proper OperationCall objects, application model links,
and attribute values. The overhead for handling the snapshot
and application model objects are effectively reduced.

V. STUDY EXECUTION

In order to check the performance of the filmstrip template
approach and the different filmstrip architectures in terms of
execution time, a feasibility study has been performed. The test
cases have been executed with and without filmstrip templates

:Snapshot

Fig. 4. Example template in the filmstrip approach (Architecture (B) from Fig. 2).

for the filmstrip architectures. The filmstrip transformation
using ternary filmstrip architecture (A) is already available in
the tool USE. The other shown architectures (B)-(G) are now
implemented and can be accessed directly. Here two test cases,
one for the library model and one for the concurrentAppend
model [7] have been considered for the study.

The test cases used are shortly described in Table I. Each test
case constructs a scenario based on initial and final snapshot
conditions expressed as OCL invariants. The configurations
(determined by the developer) mentioned in the table restrict
the number of allowed objects in the respective class and there-
fore restrict the operation calls in a corresponding application
model sequence diagram. Based on the stated configurations
and invariants, the USE model validator constructs a valid
object diagram [8]. The filmstrip templates for this study
have been constructed manually from the configurations for
all architectures. The execution time for generating the object
diagrams with and without filmstrip templates are measured.
In order to obtain accurate execution times, each test case has
been run five times for each of the seven filmstrip architectures
(A)-(G). We have calculated a trimmed mean by dropping
the highest and lowest values from the collected execution
times [9]. A detailed description of the test cases is given
below:

A. Test case 1: library model

The scenario of test case 1 is “Initially a copy of a book is
in the library and the copy has a number of returns equal to
zero, and in the final state, the copy should have a number of
returns equal to three”.

context Snapshot inv numReturnZero:
self.pred()=null implies
self.copy->forAll (¢ | c.numReturns = 0)

context Snapshot inv noLinkUserCopy:
self.pred()=null implies
self.user.copy->size() = 0

context Snapshot inv numReturnThree:
self.succ()=null implies
self.copy->forAll (¢ | c.numReturns = 3)

There are three invariants specified in this test case for
generating the scenario. The first invariant numReturnZero
and the second invariant noLinkUserCopy are for the initial
snapshot, and the third one is for the final snapshot: First the
number of returns of the copy is required to be zero; second,
the copies in the library are restricted; the third invariant
numReturnThree concerns the number of returns of the
copy.

The operation specification for this test case has been
given in the range 0..6. Based on the externally specified
invariants, the model validator chooses the operation calls. The
configuration is mentioned below:

Snapshot = 7..7

borrow_UserOpC =
return_CopyOpC =
borrow_CopyOpC =
return_UserOpC =

o O O O
o O)Y O)Y O

B. Test case 2: concurrentAppend model

The scenario chosen for test case 2 is “Initially three cells
exist with the values in a list and one new cell (value: 5) is
appended to the list and in the final state, there should not be
an unfinished append”.

As test case 1, there are also external invariants that are
used for generating the scenario and based on the specified
invariants the model validator chooses the operation calls. In
this test case, the operation specification has been given in the
range 0..4. The configuration is mentioned below:

Snapshot = 5..5
append_AppendOpC = 0..4
found_AppendOpC = 0..4
next_AppendOpC = 0..4
return_AppendOpC = 0..4

TABLE I
TEST CASES USED FOR THE FEASIBILITY STUDY.

Test case 1 - library model

Test case 2 - concurrentAppend model

Application configuration | 1 User, 1 Book, 1 Copy

3 Cells, 1 Append

Initial condition:

Invariants
Final condition:
Number of returns of the copy is three.

Copy is in library and number of returns is zero.

Initial condition:
Mention three Cells and one Append with values.

Final condition:
Append should be finished.

Snapshot = 7..7
borrow_UserOpC = 0..6
return_UserOpC = 0..6
borrow_CopyOpC = 0..6
return_CopyOpC = 0..6

Filmstrip configuration

Snapshot = 5.. 5
append_AppendOpC = 0..4
return_AppendOpC = 0..4
found_AppendOpC = 0..4
next_AppendOpC = 0..4

Expected Result

3 { {User|Copy}_borrow and {User|Copy}_return} operation calls.

Next-Next-Append-Return operation calls.

TABLE I
MODEL SIZE FOR TEST CASES

Test case 1 - library model | Test case 2 - concurrentAppend model
Number of snapshot objects 7 5
Number of application objects (total) | 21 26
Number of operation call objects 6 4
Object model size 34 35

TABLE III
RESULT COMPARISION - TEST CASE 1.
Archi- A B C D E F G
tecture | Tern Assoc | C@Snap Assoc | C@Snap Agg | C@Snap Comp | SnapCSnap Assoc | SnapCSnap Agg | SnapCSnap Comp
Test case 1 32.73 min 0.43 min 1.34 min 1.41 min 2.50 min 3.23 min 3.28 min
T 0.13 min 0.07 min | 0.09 min 0.08 min 0.15 min 0.16 min 0.16 min
TABLE IV
RESULT COMPARISION - TEST CASE 2.
Archi- A B C D E F G
tecture Tern Assoc | C@Snap Assoc | C@Snap Agg | C@Snap Comp | SnapCSnap Assoc | SnapCSnap Agg | SnapCSnap Comp
Test case 2 90.47 min 29.13 min 20.00 min 20.46 min 20.15 min 29.24 min 27.90 min
o 033 min | 021 min 0.22 min 0.23 min 0.29 min 0.29 min
TABLE V
AVERAGE EXECUTION TIME OF TEST CASES USING FILMSTRIP TEMPLATES.
Archi- A B C D E F G
tecture Tern Assoc | C@Snap Assoc | C@Snap Agg | C@Snap Comp | SnapCSnap Assoc | SnapCSnap Agg | SnapCSnap Comp
Test case 1 | 0.13 min 0.07 min 0.09 min 0.08 min 0.15 min 0.16 min 0.16 min
Test case 2 | 0.33 min 0.21 min 0.22 min 0.23 min 0.25 min 0.29 min 0.29 min
Sum 0.46 min 0.28 min 0.31 min 0.31 min 0.40 min 0.45 min 0.45 min

VI. STUDY RESULTS AND COMPARISON

The models for the efficiency check with respect to exe-
cution time have been studied using a laptop with an Intel
Core 15-4210U processor running at 2.4GHz, 8GB of RAM
and Java 1.8.0. The models were validated employing USE
4.2.0.

In this section, the results of the execution time for the
test cases are discussed. The execution is performed with
filmstrip templates and also without filmstrip templates for
all architectures. Tables III and IV show the final averaged
execution times of each architecture for both the test cases and
also the enhanced results (execution with filmstrip template)
which are highlighted in a white-on-darkgray style. The results

are compared with the original results (execution without
filmstrip template). It can be concluded from the results that
the enhancement approach proposed in this paper makes the
execution of the validation process faster. In comparison to the
time saving, the time needed to create a template manually is
neglectable. Automatically creating these templates is part of
future work. The reason for the better performance is that the
overhead for handling the snapshot and application objects of
the model validator is significantly reduced, as the filmstrip
templates are constructed before the validation. This makes
the execution and validation process faster.

Table V shows the execution times of both the test cases
with filmstrip templates and the comparison between the

architectures. One can notice that architectures (B), (C), and
(D) (highlighted in a black-on-lightgray style) are the fastest
in both the test cases. The reason for this is that the snapshot-
snapshot link do not depend on OperationCall objects,
as was mentioned in the discussion of filmstrip templates for
architectures (B), (C) and (D). This means that filmstrip tem-
plates of that architectures contain more elements compared
to templates of other architectures. So the number of elements
to be generated by model validator is again reduced, and that
makes the execution smaller.

VII. RELATED WORK

Many approaches and tools have been proposed for UML
and OCL model execution and model validation. In [10], the
authors perform model execution by compiling the model to
program code. They have proposed a model simulator tool
which translates the UML model to Java code and execution
is performed on this generated code. In [11], the tool Matilda is
introduced, which accepts a UML model as an input data and
validates it against the UML metamodel. The tool generates a
Java abstract syntax tree (JAST) from the input UML model
and executes Java bytecode generated from JAST. In [12], the
authors discuss about a code generation tool, which transforms
UML models (classes and state machines) into C# source code
and supports execution of the application corresponding to
both structural and behavioral models. The above mentioned
approaches are based on the generation of code from the UML
models and execution is performed on this generated code. In
contrast, our approach uses model transformation concepts and
the execution is performed on this transformed model, i.e., the
execution is performed at the modeling level. In [13], the au-
thors present the tool Populo, which is used for executing and
debugging UML class diagrams whose behavior is specified
by the UML action language and described by activity diagram
containing actions. In contrast, the behavior of the UML model
is described by sequence diagrams using OCL invariants in
our approach. In [14], the authors generate a domain specific
trace metamodel which is structurally similar to our filmstrip
model. However, their approach is domain-specific and uses an
operational semantics of xXDSML composed of transformation
rules for execution. Whereas our approach is generic and
we use OCL pre- and postconditions for operation execution.
In [15], a model transformation approach for validating UML
models comprised of class and sequence diagrams is presented.
A UML model is transformed into Testable Aggregate Model
(TAM) for test case execution. In [16], a UML class diagram
along with OCL constraints is transformed to Alloy code,
and using the Alloy Analyzer, execution and validation is
performed. In [17], the authors present an approach for the
verification of EMF models annotated with OCL constraints.
The input UML model along with the properties to be val-
idated is transformed into a constraint satisfaction problem
(CSP), and using a constraint solver, the CSP is executed and
validated. In contrast to [15], [17] and [16], we transform a
UML and OCL application model into a filmstrip model and
we are using the model validator. Our approach provides a

seemless integration of structure and behavior and is based on
the support of full OCL.

VIII. CONCLUSION AND FUTURE WORK

In this paper, the automatic transformation of an application
model with invariants and pre- and postconditions into a
filmstrip model in which the system behavior is represented
with only invariants has been described. We have presented an
approach for enhancing the validation process by introducing
filmstrip templates and by proposing different architectures for
the filmstrip transformation. Through experiments, we showed
that the validation process using filmstrip templates is more
efficient in terms of execution time compared to validation
without templates. It can be concluded from our study that
architectures (B), (C) and (D) yield better results and take
less time than the other architectures.

Future work will study different and larger models and test
cases with the same methodology as applied here in order
to verify the current conclusions. We will also concentrate
on the automatic generation of the template from developer
specifications and implement developer support for this. Last
but not least, means for distinguishing application and filmstrip
elements in the configuration have to be developed.

REFERENCES

[1] T. Mayerhofer, P. Langer, E. Seidewitz, and J. Gray, eds., Proc. Ist
Int. Workshop Executable Modeling co-located with (MODELS 2015),
vol. 1560 of CEUR Workshop Proceedings, CEUR-WS.org, 2016.

[2] T. Mayerhofer, P. Langer, E. Seidewitz, and J. Gray, eds., Proc. 2nd Int.
Workshop Executable Modeling co-located (MODELS 2016), vol. 1760
of CEUR Workshop Proceedings, CEUR-WS.org, 2016.

[3] M. Gogolla, F. Biittner, and M. Richters, “USE: A UML-Based Specifi-
cation Environment for Validating UML and OCL,” Science of Computer
Programming, vol. 69, pp. 27-34, 2007.

[4] M. Gogolla, L. Hamann, F. Hilken, M. Kuhlmann, and R. B. France,
“From Application Models to Filmstrip Models: An Approach to Auto-
matic Validation of Model Dynamics,” in Proc. Modellierung (MODEL-
LIERUNG’2014) (H. Fill, D. Karagiannis, and U. Reimer, eds.), pp. 273—
288, GI, LNI 225, 2014.

[5] M. Gogolla, “Teaching Touchy Transformations,” in MODELS Edu-
cators’ Symposium (EDUSYMP’2008) (M. Smialek, ed.), pp. 13-25,
Warsaw University, ISBN 83-916444-8-0, 2008.

[6] M. Kuhlmann and M. Gogolla, “From UML and OCL to Relational
Logic and Back,” in Proc. 15th Int. Conf. Model Driven Engineering
Languages and Systems (MoDELS’2012) (R. France, J. Kazmeier,
R. Breu, and C. Atkinson, eds.), pp. 415-431, Springer, Berlin,
LNCS 7590, 2012.

[7]1 A. Rensink, A. Schmidt, and D. Varré, “Model Checking Graph
Transformations: A Comparison of Two Approaches,” in Proc. Graph
Transformations, 2nd Int. Conf., ICGT 2004 (H. Ehrig, G. Engels,
F. Parisi-Presicce, and G. Rozenberg, eds.), pp. 226-241, 2004.

[8] M. Gogolla and F. Hilken, “Model Validation and Verification Options
in a Contemporary UML and OCL Analysis Tool,” in Proc. Model-
lierung (MODELLIERUNG’2016) (A. Oberweis and R. Reussner, eds.),
pp. 203-218, GI, LNI 254, 2016.

[9] T. Hu and S. Y. Sung, “A Trimmed Mean Approach to Finding Spatial
Outliers,” Intell. Data Anal., vol. 8, no. 1, pp. 79-95, 2004.

[10] G. Dévai, M. Karicsony, B. Németh, R. Kitlei, and T. Kozsik, “UML
Model Execution via Code Generation,” in Proc. Ist Int. Workshop
Executable Modeling co-located with MODELS 2015 (T. Mayerhofer,
P. Langer, E. Seidewitz, and J. Gray, eds.), pp. 9-15, 2015.

[11] H. Wada, J. Suzuki, M. M. B. Eadara, A. Malinowski, and K. Oba,
“Design and Implementation of the Matilda Distributed UML Virtual
Machine,” in Proc. 10th Int. Conf. Software Engineering Applications
(SEA), 2006 (A. Cheng, ed.), 2006.

[12]

[13]

[14]

[15]

[16]

(17]

A. Derezinska and R. Pilitowski, “Realization of UML Class and State
Machine Models in the C# Code Generation and Execution Framework,”
Informatica (Slovenia), vol. 33, no. 4, pp. 431-440, 2009.

L. Fuentes, J. Manrique, and P. Sdnchez, “Execution and Simulation of
(Profiled) UML Models using Pépulo,” in Int. Workshop Modeling in
Software Engineering, MiSE 2008 (J. M. Atlee, R. B. France, G. Georg,
A. Moreira, B. Rumpe, S. Volkel, and S. Zschaler, eds.), pp. 75-81,
2008.

E. Bousse, T. Mayerhofer, B. Combemale, and B. Baudry, “Advanced
and efficient execution trace management for executable domain-specific
modeling languages,” Software & Systems Modeling, May 2017.

O. Pilskalns, A. A. Andrews, A. Knight, S. Ghosh, and R. B. France,
“Testing UML designs,” Information & Software Technology, vol. 49,
no. 8, pp. 892-912, 2007.

K. Anastasakis, B. Bordbar, G. Georg, and 1. Ray, “UML2Alloy: A
Challenging Model Transformation,” in Proc. Model Driven Engineering
Languages and Systems, 10th Int. Conf., MoDELS 2007 (G. Engels,
B. Opdyke, D. C. Schmidt, and F. Weil, eds.), pp. 436—450, 2007.

C. A. Gonzilez, F. Biittner, R. Claris6, and J. Cabot, “EMFtoCSP: A
Tool for the Lightweight Verification of EMF Models,” in Proc. First
Int. Workshop on Formal Methods in Software Engineering, FormSERA,
2012 (S. Gnesi, S. Gruner, N. Plat, and B. Rumpe, eds.), pp. 44-50,
2012.

