
Consistency Recovery in Interactive Modeling
Juri Di Rocco1, Davide Di Ruscio1, Marcel Heinz2, Ludovico Iovino3, Ralf Lämmel1,2, Alfonso Pierantonio1

1 DISIM, University of l’Aquila, Italy
2 Faculty of Computer Science, University of Koblenz-Landau Germany

3 Gran Sasso Science Institute, L’Aquila, Italy

Abstract—MDE projects contain different kinds of artifacts
such as models, metamodels, model transformations, and deltas.
These artifacts are related in terms of relationships such as trans-
formation or conformance. In this paper, we capture the types
of artifacts and the relevant relationships in a megamodeling-
based manner for the purpose of monitoring and recovering a
MDE project’s consistency in response to changes that users may
apply to the project within an interactive modeling platform. The
approach supports users in experimenting with MDE projects
and receiving feedback upon changes on the grounds of a specific
execution semantics for megamodels. The approach is validated
within the web-based modeling platform MDEFORGE.

Index Terms—Model management; Model repository; Consis-
tency recovery; Megamodeling; Modeling platforms

I. INTRODUCTION

Research context: This research is concerned with model
management [1], [2] on top of model repositories [3], [4]
which users can access through a modeling platform [5],
[6]. Model repositories are a promising form of aggregating
reusable MDE artifacts such as models, metamodels, and
model transformations. Model management is the model-based
(model-driven) approach to the automated management of
collections of MDE artifacts instead of using ad-hoc tools or
lacking good automation. Modeling platforms such as Eclipse,
MDEFORGE, or MMINT are essential tools for users of model
repositories—users may either explore MDE artifacts in a
repository or they may be developers in some scope of the
repository.

Research objective: We want to exercise an effective,
declarative (model-based), and transparent (understandable)
approach to organizing the artifacts in an MDE project (in
a model repository or not) and the relationships between the
artifacts. That is, a model-managed project has an associated
megamodel so that a user (a developer within the project)
can understand the structure of the project in megamodeling
terms. Further, the project’s consistency with the megamodel
is continuously monitored in the background of the interactive
modeling platform so that any changes can be mapped to
corrective, automated actions to be proposed to and confirmed
by the user.

Research contribution: We address the research objective
by an emerging language design, definition, implementation,
and integration into a modeling platform. The language and its
implementation are referred to as MegaL/Forge because the
language is inspired by our previous work on linguistic archi-
tecture, as a form of megamodeling, as realized by the MegaL
family of languages [7], [8], [9], [10] and the integration

targets the web-based modeling platform MDEFORGE [5]. An
original aspect of MegaL/Forge is that its semantic model
addresses consistency recovery; the approach is inspired by
our previous work on relationship maintenance in software
language repositories [11]. In this paper, we focus on defining
the consistency-recovering response to a repository change
while taking interaction with the user of a modeling platform
into account.

Roadmap of the paper: Sec. II develops the running
example of the paper. Sec. III defines syntax and semantics of
the required megamodeling language. Sec. IV provides a semi-
formal account on consistency recovery. Sec. V discusses the
integration of the approach into the web-based modeling plat-
form MDEFORGE. Sec. VI discusses related work. Sec. VII
concludes the paper.

II. THE RUNNING EXAMPLE

For brevity and focus on the key idea, we commit to a
very basic running example here: there are two models m1
and m2 that conform to the same metamodel mm with the
difference being referred to as delta and model management
operations in place to express conformance of m1 and m2
to mm, comparison so that delta represents the difference
between m1 and m2, and patching so that m2 is the result of
patching m1 according to delta. This simple example involves
enough semantical issues so that it suffices for an initial
language design discussion. In our ongoing research, we also
model more involved scenarios.

A. An EMF-related Prelude

The running example operates within the EMF technologi-
cal space. We need these types of artifacts; we use the concrete
syntax of MegaL/Forge for expressing the type definitions:

EmfModel // EMF−based models (XMI representation)
EmfMetamodel < EmfModel // Ecore models
EmfCompareModel < EmfModel // Delta models

That is, we declare types EmfModel, EmfMetamodel, and
EmfCompareModel; we organize these types in a hierarchy
(‘<’). In the running example, we also need certain model-
management operations on the types just declared; again,
we use the concrete syntax of MegaL/Forge for expressing
signatures of relations and functions:

conformsTo : EmfModel × EmfMetaModel
compare : EmfModel × EmfModel → EmfCompareModel
patch : EmfModel × EmfCompareModel → EmfModel



That is, we have access to conformance checking (conform-
sTo—a relation), model comparison (compare—a function),
and delta application (patch—another function).

B. An MDE Project’s Megamodel

The following megamodel declares artifact ids for models
m1 and m2, the shared metamodel mm to which both models
are assumed to conform to, and the delta (difference) between
the models. Conformance, comparison, and patch application
are expressed by appropriate applications of relation conform-
sTo and functions compare and path. Thus:

m1, m2 : EmfModel
mm : EmfMetaModel
conformsTo(m1, mm)
conformsTo(m2, mm)
delta : EmfCompareModel
compare(m1, m2) 7→ delta
patch(m1, delta) 7→ m2

Let us apply the MegaL/Forge megamodel to an actual
project. That is, artifact identifiers in the megamodel are linked
to actual filenames in the underlying model repository (in fact,
a project). We may assume links as follows:

m1 = ”Family1.xmi”
m2 = ”Family2.xmi”
mm = ”FamilyMM.ecore”
delta = ”Delta.xmi”

These links assume relative file names (relative to a base
URI for the project). We are concerned with two versions of a
model for describing ‘families’ (family members, i.e., persons
with names and some relationships or attributes), subject to
a suitable metamodel, and a delta (a difference) between the
two models at hand.

C. Change scenarios

The modeling artefacts are subject to evolution [12]: models
are modified and updated during the engineering process and
the metamodels evolve over time to address changes to the
requirements. Let us just imagine changes to artifacts of
the project at hand. We should also explain how we expect
to respond to these changes, thereby characterizing change
scenarios. The key idea is that function applications in the
megamodel may need to be used to recover consistency.

1) Modify delta: We propagate this change by applying
the patch function, thereby deriving a new version of m2 that
is ‘in sync’ with m1 and delta. Thus, the following function
application facilitates consistency recovery:

patch(m1, delta) 7→ m2

We should note that we do not want to apply the com-
pare function (beforehand or afterwards) because we consider
changed artifacts (such as delta here) as ‘authoritative’ [13]
which we do not want to overwrite along consistency recovery.

2) Modify m1: There are two options:

2.a) First compare, then patch: We apply the compare
function to the (changed) model m1 and the (unchanged)
model m2 to compute a new version of delta to be applied by

means of the patch function, thereby deriving a new version
of m2 that is ‘in sync’ with m1 and delta. (Adding domain
knowledge (‘algebraic reasoning’), we know that the new
version of m2 equals the original one.) Thus, the following
list of function applications facilitates consistency recovery:

compare(m1, m2) 7→ delta
patch(m1, delta) 7→ m2

2.b) First patch, then compare: Thus:

patch(m1, delta) 7→ m2
compare(m1, m2) 7→ delta

An interactive user may disfavor this option on the grounds
of domain knowledge such that (the older version of) delta
readily captures aspects of m1 (and m2) and thus, it may not
work well for a new version of m1.

3) Modify m2: We could consider applying the patch
function, thereby deriving a new version of m2 that is ‘in
sync’ with m1 and delta. This is clearly not a useful strategy,
as it would overwrite the changes just made to m2. Instead, we
need to compare m1 and m2 to compute a new delta. Thus, the
following function application facilitates consistency recovery:

compare(m1, m2) 7→ delta

In fact, now that we changed delta, we may want to check
that an application of the patch function would derive a model
that is equal to the existing model m2. In that case, we would
have recovered consistency in the project. Of course, this is
exactly the semantics of comparison: it provides a delta for
two models so that the second model can be derived from the
first one by applying the delta as a patch.

III. LANGUAGE DEFINITION

We provide a language definition of MegaL/Forge. In
particular, we define the concrete syntax by means of a
grammar and the abstract syntax by means of a metamodel.
We also briefly discuss the static semantics for well-formed
megamodels. Finally, we define what may account for a
dynamic semantics by means of a consistency notion—an
MDE project (its artifacts) to be consistent with a megamodel.

A. Concrete Syntax

The following grammar (in ANTLR notation) defines the
concrete syntax of the MegaL/Forge constructs exercised in
the present paper (Sec. II).

megamodel : declaration+;
declaration

: type // Root entity type
| subtype // Entity type as subtype
| artifact // Entity
| relation // Relation signature
| function // Function signature
| relatesTo // Relationship
| mapsTo // Function application
| link ; // Artifact binding

type : ID ; // Base type
subtype : ID ’<’ ID ; // Subtype < supertype
artifact : ID (’,’ ID)∗ ’:’ ID ; // Artifacts of a given type
relation : ID ’:’ ID (’#’ ID)∗ ; // Signature



function : ID ’:’ ID (’#’ ID)∗ ’−>’ ID; // Signature
relatesTo : ID ’(’ ID (’,’ ID)∗ ’)’ ; // Relationship
mapsTo : ID ’(’ ID (’,’ ID)∗ ’)’ ’|−>’ ID; // Apply function
link : ID ’=’ ’”’ LINK ’”’ ; // Bind artifact symbol to filename

The type and subtype forms of declaration facilitate the
definition of a nominal classification hierarchy for artifacts.
Actual artifacts are introduced by their name (an id); see
declaration form artifact. The declaration forms relation and
function facilitate signatures including names for arguments
and results (the latter for functions only). There is a declaration
form relatesTo for expressing relationships on artifacts. There
is a declaration form mapsTo for expressing the specific
relationship of function application. Finally, there is a special
declaration form link for binding artifact symbols to files.
Making the links part of the megamodel rather than desig-
nating a separate model for links can be compared to the use
of annotations in OO programming rather than using XML-
based configuration.

MegaL/Forge is a very simple member in the MegaL
language family [7], [8], [9]. In particular, there is only one
kind of types—as opposed to languages versus artifacts versus
concepts in other MegaL languages.

B. Abstract Syntax

The metamodel defining the abstract syntax of the language
is shown in Fig. 1. In particular, a megamodel specification
consists of a set of Artifacts of different Types. Each function
(relation) is defined by means of a Function (Relation) dec-
laration and the corresponding MapsTo (RelatesTo) definition.
Artifacts are arguments of Functions and Relations as shown
by the constructors of the MapsTo and RelatesTo elements.
The former consists of input and output elements, whereas the
latter consists of the set of artifacts for which the specified
relation holds. All the elements in the figure specialize a
NamedElement class (not shown in the figure for brevity)
consisting of the name attribute of type String.

C. Static Semantics = Well-formedness

A static semantics for well-formedness of MegaL/Forge-
like megamodels was defined as a definite clause program
in previous work [8]. We summarize the relevant constraints
informally to make this text more self-contained.

a) Types, artifacts, relations, and function are declared
before they are used. b) Each name can be declared once
only (‘no overloading’ here of any kind). c) The arguments of
relationships and function applications and results of function
applications must be of the types as prescribed by the sig-
natures of the corresponding relations and functions. d) Each
artifact symbol is linked to some filename. (We do not consider
incompletely bound megamodels here.)

D. Dynamic Semantics = Consistency

Megamodels may have various dynamic semantics [8], [11];
we are interested here specifically in a semantics that captures
consistency of an MDE project with regard to a megamodel.
We provide a simple semantics of this kind from the ground
up here.

We take consistency to mean that all relationships on
artifacts in the project, as expressed by the megamodel, i.e.,
applications of relations and functions, must hold, subject to
suitable interpretations of the applied relations or functions.
Details follow below.

1) Environments for Interpretation: In an effort to set up
interpretations of symbols used in megamodels systematically,
we assume an environment E which is, in fact, a triple
〈EA, ER, EF 〉 as follows:
• EA maps artifact symbols, as they are used in the

megamodel, to actual artifact representations in the sense
of text, JSON, etc. In the MegaL/Forge notation (see
Section II-B), we assume a mapping from artifact sym-
bols to files. In the semi-formal model at hand, we assume
a universe U for representations of artifacts. We use
the type U in setting up interpretations for relation and
function symbols; see below.

• ER maps relation symbols to their interpretations; these
are predicates of type U+ → Boolean. We use here U+

for each predicate’s argument because, in this manner, a
simple generic type suffices for all possible relations. The
idea is, of course, that a suitable interpretation enforces
a certain length (a certain number of parameters) and
appropriate representation types (subtypes of U ) for the
different parameters.

• EF maps function symbols to their interpretations; these
are functions of type U+ → U .

As an environment effectively represents what we think
of as a ‘project’, we may also speak of consistency of a
megamodel with an environment.

2) Consistency = Relational + Functional Consistency:
We speak of relational consistency when the interpretation of
all relation applications (‘relationships) in a given megamodel
m for a given environment E returns true. We speak of
functional consistency when the interpretation of all function
applications in the megamodel m with the environment E
returns true. Details of the assumed notion of interpretation
follow.

A relation application r(a1, . . . , an) with the relation sym-
bol r and artifact symbols a1, . . . , an as arguments is inter-
preted by applying the interpretation of r to the interpretations
of a1, . . . , an, as defined by the environment. Thus:

ER(r)(〈EA(a1), . . . , EA(an)〉)

A function application f(a1, . . . , an) 7→ an+1 with the
function symbol f , artifact symbols a1, . . . , an as arguments,
and an artifact symbol an+1 for the result is interpreted by
applying the interpretation of f to the interpretations of a1,
. . . , an, as defined by the environment, and comparing the
result with the interpretation of an−1 for equality. Thus:

EF (f)(〈EA(a1), . . . , EA(an)〉) = EA(an+1)

For consistency to hold, the formulae as described above
should evaluate to true for all relation and function applica-
tions.



Fig. 1. The MegaL/Forge metamodel.

IV. CONSISTENCY RECOVERY

In response to a change in a project, we perform a recovery
analysis on the megamodel to determine the function applica-
tions (a recovery sequence) for recovering consistency, when
applied to the artifacts in the project.

A. Recovery Sequence

When consistency does not hold, then we may try to
‘overwrite’ artifacts according to function applications so that
consistency is recovered. The major assumption is here that
function applications, as they are part of the megamodel at
hand, suffice for consistency recovery and a suitable order can
be determined. In more detail, given a sequence of function
applications fa1, . . . , fan from a given megamodel m, we call
it a recovery sequence for a given environment E, if
• E is not consistent with m.
• Apply fa1, . . . , fan in the given order to overwrite the

artifact symbols for the results in the environment E.
• The updated environment E is now consistent with m.

B. Recovery Analysis

It remains to define an analysis for megamodels to map
changes to recovery sequences. For simplicity, we start from
the assumption that changes are atomic in the sense that single
artifacts are changed on a discrete timeline and consistency
is to be recovered after each change. Thus, the analysis is
essentially a mapping from a megamodel m and an artifact
symbol ac identifying the actual change to a sequence of
function applications.

Let us discuss expected properties of the analysis. We do
not want to map a change to a sequence that would change an
artifact that was changed previously, as such ‘overwriting’ may
be semantically debatable and it may also lead to divergence.
As a special case, we do not want to apply any function
application twice. For instance, this could happen, in the
running example, if we were responding to model changes
with comparison and patching in a cyclic manner.

We also need to address ‘nondeterminism’ in the context of
consistency recovery. That is, there may exist megamodels and
changes for which different recovery sequences are possible;

see the two scenarios for changing m1 in Sec. II-C2. We
may either delegate such nondeterminism to the interactive
component or enhance megamodels and the analysis thereof
to resolve nondeterminism automatically.

Let us now sketch a first attempt at the desired analysis; we
defer proper treatment of nondeterminism to future work. We
need helper functions as follows:
• in(m, a) returns all the function applications in the meg-

amodel m with the artifact symbol a as an argument.
• out(fa) returns the artifact symbol for the result of the

function application fa.
The main function for recovery analysis, ra, takes as

arguments the megamodel m, an artifact symbol ac indicating
the change, a sequence S of function applications, and it
returns a sequence of function applications that may be a
recovery sequence. We begin with an empty S and extend
it into the result sequence, step by step.

ra(m, ac, S) =

ra(m, ac, S++〈fa〉),with fa drawn from m such that
− fa 6∈ S, and
− fa ∈ in(m, ac) ∪

⋃
fa′∈S in(m, out(fa′)), and

− out(fa) 6= ac, and
− out(fa) 6= out(fa′) for all fa′ ∈ S.
S, otherwise (if there is no such fa)

(‘++’ is list append.) The conditions control that we select
function applications that can be applied to ac and results of
previous applications without though any overwriting. The for-
mulation is nondeterministic, as different function applications
could be picked in a step.

For instance, for the megamodel of Sec. II and ac = m1,
starting from S = ∅, the analysis returns a sequence starting
with a comparison, followed by a patch as follows:

compare(m1, m2) 7→ delta
patch(m1, delta) 7→ m2

Here we assume that the analysis respects the megamodel-
defined order of function applications. (Also, ‘∪’ operates on
sequences rather than sets.) Proper treatment of nondetermin-
ism is deferred to future work.



V. INTEGRATION INTO MDEFORGE

This section presents the implementation of the presented
consistency recovery approach, which has been integrated in
the MDEFORGE platform [5]. MDEFORGE was proposed as
an extensible platform enabling the adoption of model man-
agement tools as SaaS (software as a service). By resembling
facilities of desktop IDEs, like Eclipse, MDEFORGE users
have the possibility to create modeling artifacts and organize
them in projects that are, in turn, contained in workspaces.

The consistency recovery mechanism presented in the pre-
vious section has been integrated in MDEFORGE by essen-
tially extending the existing project management facilities. In
particular, the Java packages ProjectMonitoring and Consis-
tencyManagement shown in Fig. 2 contain the new classes
and interfaces that have been added in the MDEFORGE
implementation. The existing package CoreService has been
extended to work with such new packages.

The ProjectMonitoring package implements listeners that
execute the consistency recovery manager when artifacts or
projects are changed. In such cases, ApplicationEvents are
created as shown in the listing below and used by Arti-
factChangedListener and ProjectChangedListener to interact
with the ConsistencyRecoveryManager.

public void update(T artifact) {
...
eventPublisher.publishEvent(new ArtifactChangedEvent(artifact, ”

UPDATE”));
artifactRepository.save(artifact);

}

The ConsistencyManagement package implements the pre-
sented consistency recovery concepts. For each symbolic
function or relation name a corresponding IOperationApplier
implementation is available. For instance, the functions com-
pare and patch discussed in Sec. II-B have the correspond-
ing implementation consisting of the ComparisonApplier and
PatchApplier classes, respectively. Such classes implement
the method apply that executes the real behaviour of the
corresponding function. For instance, the execution of the
apply method of the class ComparisonApplier executes the
comparison mechanism already available in MDEFORGE (that
in turn is based on EMFCompare1) as shown in the following
listing showing a fragment of the apply method of the class
ComparisonApplier:

public Object apply(Object[] inputs)
{

if (inputs.length != 2)
throw new Exception();

Artifact left = inputs[0];
Artifact right = inputs[1];
ModelsServiceImpl modelService=new ModelService();
return modelService.compare(left, right);
}

The links between symbolic operation names and the
corresponding appliers are specified in the operationMap-
per HashMap of the ConsistencyRecoveryManager class. The
consistency check between a project and the corresponding

1https://www.eclipse.org/emf/compare/

megamodel is performed by the method checkConsistency
shown below:

public boolean checkConsistency(Project project, Megamodel megamodel) {
for (Artifact relatesTo : m.models) {

List <ArtifactChangedEvent> changes= checkChanges(project);
if (changes.size()==0) return true;

}
for (RelatesTo relatesTo : m.relatesTos) {

IOperationApplier opApplier = operationMapper.get(relatesTo.
getType());

boolean result = (boolean) opApplier.apply(relatesTo.arguments);
if (!result) return false;

}
return true;

}

The method consistencyRecovery implements the recovery
mechanism by exploiting the getFunctionsToRecoverConsis-
tency method shown in the listing below. It is responsible of
identifying the functions to be applied and their execution
order for recovering the consistency between the changed
project and the corresponding megamodel.

public List<MapsTo> getFunctionsToRecoverConsistency(Project project,
Megamodel megamodel){

List<MapsTo> result = new ArrayList<MapsTo>();
List <ArtifactChangedEvent> changes=checkChanges(project);
for (MapsTo function : m.functions) {

if (function.inputs.contains(changes)) result.add(function);
}
return result;

}

A fragment of the consistencyRecovery method is as follows:

public void consistencyRecovery(Project project, Megamodel megamodel) {
checkConsistency(project, megamodel);
List<MapsTo> toApply = getFunctionsToRecoverConsistency(project,

megamodel);
for (MapsTo function : toApply) {

IOperationApplier opApplier = operationMapper.get(function.
getType());

opApplier.apply(m.inputs);
}
...

}

Consistency recovery can generate new artifacts that might
overwrite existing ones. In such cases, the user will be notified
and will be asked for confirmation, as illustrated with the pop-
up in Fig. 3. The user will also be notified when consistency
recovery fails. We are also working on presenting options to
the user.

VI. RELATED WORK

In general, a few model management platforms exist, such
as MMINT [6] and Mondo [14] that try to support any
kind of operation needed in model driven engineering with a
focus on models. The problem of well-formed metamodelling
is directly addressed by the model management platform
‘Modelverse’ [15]. It is a platform emphasizing a consistently
specified form of metamodelling based on the work by Kühne
et al. [16]. Tools may not properly check conformance to
metamodels as the static semantics is left unattended [17].
SERGe generates all possible metamodel consistency preserv-
ing transformations to be reused by other tools.



Fig. 2. Event based architecture of MDEForge.

In requirements engineering, the consistency between re-
quirement artifacts needs to be maintained. In [18] authors
propose to use the Snapmind Framework and a UML-based
specification environment for user stories and domain mod-
els. The relation between elements in a mind map-based
user story and domain models are checked. In [19] authors
explicitly define correspondence relationships in architecture
descriptions for all kinds of digital artifacts. Kowal et al. [20]
explicitly aim at delta-aware consistency checking for models
that are part of difference perspectives by using rules that
describe a consistent UML-based architecture description. In

[21] a systematic literature review is presented on consistency
checking of business process models that pose further related
approaches in the domain.

In [22] authors approach consistency checking for evolving
models and consistency recovery using state space exploration
based on postulates defining consistent states. Sunye [23]
addresses collaborative modelling processes, where multiple
editors write on the same model. An addressed challenge
lies in reproducing the same order of operations for every
accessing node. In [24] authors describe a system using SAT
solvers to propagate all possible changes for source models



Fig. 3. Pop-up asking the user regarding overwriting.

such that the transformation to view models remains traceable.
Bidirectional transformations pose a need for consistency

checking and change propagation. Demuth et al. [25] discuss
failure detecting for co-evolving metamodels and domain
models. When a consistency check fails, repair measure
suggestions are automatically generated. Kusel et al. [26]
explicitly state the properties that need to be verified after
a coupled model transformation. Diskin et al. [27] classify the
various kinds of model synchronizations that may have to be
considered. Other kinds of bidirectional transformations and
their specific needs are discussed in [28].

VII. CONCLUDING REMARKS

In this paper, we have described an approach towards con-
sistency recovery in MDE projects such that megamodels are
facilitated for expressing consistency and providing guidance
for recovery thereof in an interactive setup. We are working on
the following improvements. Firstly, we look at more complex
scenarios with richer dependencies between the involved arti-
facts so that the issue of nondeterminism (Sec. IV-B) is (needs
to be) properly addressed. For instance, we study examples of
co-evolution [29]. Secondly, we look at making megamodels
and the underlying MDE projects explicitly version-aware so
that consistency recovery can be modeled atop versioning.
Thirdly, we look at techniques for automatically creating (at
least initial fragments of) megamodels out of existing MDE
projects. Finally, we look at the incorporation of ‘algebraic
reasoning’, possibly also subject to capturing more domain
knowledge in the megamodel, for the benefit of omitting
unnecessary recovery steps (e.g., patch after commit in the
running example) or addressing nondeterminism.

REFERENCES

[1] M. Barbero, F. Jouault, and J. Bézivin, “Model Driven Management
of Complex Systems: Implementing the Macroscope’s Vision,” in Proc.
ECBS 2008. IEEE, 2008, pp. 277–286.

[2] W. Kling, F. Jouault, D. Wagelaar, M. Brambilla, and J. Cabot, “Mo-
Script: A DSL for Querying and Manipulating Model Repositories,” in
Proc. SLE 2011, ser. LNCS, vol. 6940. Springer, 2012, pp. 180–200.

[3] F. Basciani, J. D. Rocco, D. D. Ruscio, L. Iovino, and A. Pierantonio,
“Model Repositories: Will They Become Reality?” in Proc. Cloud-
MDE@MoDELS 2015, ser. CEUR Workshop Procs, vol. 1563, 2016,
pp. 37–42.

[4] J. D. Rocco, D. D. Ruscio, L. Iovino, and A. Pierantonio, “Collaborative
Repositories in Model-Driven Engineering,” IEEE Software, vol. 32,
no. 3, pp. 28–34, 2015.

[5] F. Basciani, J. D. Rocco, D. D. Ruscio, A. D. Salle, L. Iovino,
and A. Pierantonio, “MDEForge: an Extensible Web-Based Modeling
Platform,” in Proc. CloudMDE@MoDELS 2014, vol. 1242, 2014, pp.
66–75.

[6] A. D. Sandro, R. Salay, M. Famelis, S. Kokaly, and M. Chechik,
“MMINT: A Graphical Tool for Interactive Model Management,” in
Proc. MoDELS 2015 Demo and Poster Session, ser. CEUR Workshop
Procs, vol. 1554, 2016, pp. 16–19.

[7] J. Favre, R. Lämmel, and A. Varanovich, “Modeling the Linguistic
Architecture of Software Products,” in Proc. MODELS 2012, ser. LNCS,
vol. 7590. Springer, 2012, pp. 151–167.

[8] R. Lämmel and A. Varanovich, “Interpretation of Linguistic Architec-
ture,” in Proc. ECMFA 2014, ser. LNCS, vol. 8569. Springer, 2014,
pp. 67–82.

[9] J. Härtel, L. Härtel, M. Heinz, R. Lämmel, and A. Varanovich, “Inter-
connected Linguistic Architecture,” The Art, Science, and Engineering
of Programming Journal, vol. 1, 2017, 27 pages.

[10] M. Heinz, R. Lämmel, and A. Varanovich, “Axioms of linguistic
architecture,” in Proc. MODELSWARD 2017. SCITEPRESS, 2017,
pp. 478–486.

[11] R. Lämmel, “Relationship maintenance in software language reposito-
ries,” The Art, Science, and Engineering of Programming Journal, vol. 1,
2017, 27 pages.

[12] R. F. Paige, N. Matragkas, and L. M. Rose, “Evolving models in model-
driven engineering: State-of-the-art and future challenges,” Journal of
Systems and Software, vol. 111, pp. 272 – 280, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121215001909

[13] P. Stevens, “Bidirectional Transformations in the Large,” in MoDELS.
ACM, 2017, to appear.

[14] D. S. Kolovos, A. Garcı́a-Domı́nguez, R. F. Paige, E. Guerra, J. S.
Cuadrado, J. de Lara, I. Ráth, D. Varró, G. Sunyé, and M. Tisi,
“MONDO: scalable modelling and model management on the cloud,”
in STAF, 2016, pp. 55–64.

[15] S. V. Mierlo, B. Barroca, H. Vangheluwe, E. Syriani, and T. Kühne,
“Multi-level modelling in the modelverse,” in MoDELS, 2014, pp. 83–
92.

[16] T. Kühne, “Matters of (meta-)modeling,” Software and System Modeling,
vol. 5, no. 4, pp. 369–385, 2006.

[17] M. Rindt, T. Kehrer, and U. Kelter, “Automatic generation of
consistency-preserving edit operations for MDE tools,” in MoDELS,
2014.

[18] F. Wanderley, A. Silva, J. Araújo, and D. S. da Silveira, “Snapmind:
A framework to support consistency and validation of model-based
requirements in agile development,” in MoDRE, 2014, pp. 47–56.

[19] A. Chichignoud, F. Noyrit, L. Maillet-Contoz, and F. Terrier, “Use of
architecture description to maintain consistency in agile processes,” in
MODELSWARD, 2017, pp. 459–466.

[20] M. Kowal and I. Schaefer, “Incremental consistency checking in delta-
oriented uml-models for automation systems,” in Procs. 7th Intl. FM-
SPLE@ETAPS Workshop 2016, 2016, pp. 32–45.

[21] A. Awadid and S. Nurcan, “A systematic literature review of consistency
among business process models,” in CAiSE, 2016, pp. 175–195.

[22] H. K. Dam and A. Ghose, “Towards rational and minimal change
propagation in model evolution,” CoRR, vol. abs/1402.6046, 2014.

[23] G. Sunyé, “Model consistency for distributed collaborative modeling,”
in Proc. of ECMFA, 2017, pp. 197–212.

[24] O. Semeráth, C. Debreceni, Á. Horváth, and D. Varró, “Incremental
backward change propagation of view models by logic solvers,” in
MoDELS, 2016, pp. 306–316.

[25] A. Demuth, M. Riedl-Ehrenleitner, R. E. Lopez-Herrejon, and A. Egyed,
“Co-evolution of metamodels and models through consistent change
propagation,” JSS Journal, vol. 111, pp. 281–297, 2016.

[26] A. Kusel, J. Etzlstorfer, E. Kapsammer, W. Retschitzegger,
W. Schwinger, and J. Schönböck, “Consistent co-evolution of
models and transformations,” in MoDELS, 2015, pp. 116–125.

[27] Z. Diskin, H. Gholizadeh, A. Wider, and K. Czarnecki, “A three-
dimensional taxonomy for bidirectional model synchronization,” JSS
Journal, vol. 111, pp. 298–322, 2016.

[28] K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel, A. Schürr, and J. F. Ter-
williger, “Bidirectional transformations: A cross-discipline perspective,”
in Proc. of ICMT, 2009, pp. 260–283.

[29] D. D. Ruscio, L. Iovino, and A. Pierantonio, “Coupled evolution in
model-driven engineering,” IEEE Software, vol. 29, no. 6, pp. 78–84,
2012.


