
Agile model-driven engineering of financial applications

Kevin Lano, Howard Haughton, Sobhan Yassipour-Tehrani, Hessa Alfraihi

Dept. of Informatics
King’s College London, London, UK

Email: { kevin.lano, sobhan.yassipour tehrani, hessa.alfraihi }@kcl.ac.uk

Abstract—Flexibility and agility are key properties for financial applica-
tions development: systems need to be easy to change and evolve to keep
up with changing market conditions and opportunities, and changes in
the regulatory environment.

In many cases, Excel with VB is the main platform used for the
development of applications in the finance industry. This offers advantages
of flexibility and user customisation of applications in rapid development
cycles. However, this dependence upon a proprietary software package
causes problems when applications must be migrated to an alternative
platform, or when precise control over functionality is needed. Model-
driven development (MDD) and model transformations have a good
potential for improving these aspects of financial development. In this
paper, we describe techniques that enable the use of Excel as an MDD
front-end for the specification and development of financial applications
in a rigorous manner.

I. INTRODUCTION

Software development in the financial services sector is usually
carried out on Excel and VBA-based platforms, with modelling and
prototyping performed using Excel [8], [7]. After prototyping, the
Excel/VBA solution may be manually re-coded in an implementation
platform (Figure 1). This approach has deficiencies with regard to
maintainability, software architecture and documentation. Separate
spreadsheet-based applications are difficult to integrate into composite
systems, and lack the structure and modularity of more advanced
programming environments.

Figure 1. Conventional financial application development process

Starting in 2014, the MDD team at King’s College were asked
to look at alternative model-based approaches for specifying and
implementing financial software for multiple platforms. The charac-
teristics of such software represent a challenge for MDD, because:

(i) they involve complex mathematical computations, which need to
be specified in a clear and comprehensible manner and related to the
appropriate finance theory, and (ii) they have high requirements for
efficiency and accuracy. In addition, (iii) a high degree of flexibility
and agility is typically necessary.

Our solution to these challenges involved using agile MDD and
executable modelling as follows:

• Specification of applications in an executable UML dialect,
UML-RSDS [9], which supports efficient code generation in
Java, C#, C and C++.

• Adoption of an agile process based on the Scrum method
[14].

• Using Excel to provide a user-friendly means of defining
UML-RSDS specifications, so that end-users do not need to
write or understand OCL.

We considered that this approach was suitable to address issues
(i), (ii) and (iii), because UML-RSDS supports high-level declarative
specification of systems using UML class diagrams and use cases,
enabling the system specification to be expressed in the context
of relevant financial concepts, and to be structured in a systematic
manner. In addition, it supports the execution of specifications by
the synthesis of designs and programming language implementations.
UML-RSDS supports agility by enabling rapid modification of system
specifications: only one application model (integrating class diagrams
and use cases) needs to be modified, in contrast to MDD approaches
which involve multiple linked models whose consistency needs to
be managed at each specification change. The integration of agility
and MDD in this case is achieved by making the MDD aspect as
lightweight as possible, and by adopting a ‘model as code’ viewpoint,
with agile practices applied to the application models instead of the
code.

In Section II we give an overview of the approach. In Sections
IV and V we describe an example financial application we have
developed. Section VI gives related work, and Section VII gives
conclusions.

II. INTEGRATING AGILE AND MODEL-DRIVEN DEVELOPMENT

The key principles of agile development include (agilemani-
festo.org): (i) satisfy the customer through early and continuous
software delivery; (ii) welcome changing requirements; (iii) deliver
working software frequently (every 2 weeks to every 2 months); (iv)
business people and developers to work together daily; (v) rely on
face-to-face communication to convey information; (vi) continuous
attention to software quality; (vii) simplicity is essential.

Integration of agile and MDD aims to achieve these principles
in the context of model-centered development, instead of traditional

code-centered development. Research on integration has produced a
number of agile MDD approaches, such as MDD-SLAP [15] and
Hybrid MDD [4]. These usually focus on a particular domain, and
do not cover all lifecycle stages. In contrast, UML-RSDS can be
used as the basis of a general-purpose agile MDD approach, with
specialised interfaces and tools for particular domains. We adopt the
ideas of three-phase iterations from [15] and parallel tooling teams
from [4] (as shown in Figure 2).

Figure 2. UML-RSDS agile MDD process: iterations

To achieve the agile principles, we adopt the following agile
practices with UML-RSDS: (i) short iterations (principles (i) and
(iii)); (ii) model refactoring (principle (vi)); (iii) emphasis on model
and specification simplicity (principle (vii)); (iv) product and itera-
tion backlogs (principles (i), (ii)); (v) Scrumboards (principles (i),
(ii)); (vi) daily standup meetings, continuous integration and testing
(principle (vi)); (vii) Customer involvement in modelling (principle
(iv)).

The following MDD practices are used: (i) metamodelling; (ii)
transformations; (iii) executable modelling.

Within each iteration, phases of requirements analysis, specifi-
cation, implementation and testing are applied to each task, using
exploratory prototyping based on partial specifications, and review of
the prototypes/specifications with stakeholders/team members. Figure
2 shows these cycles for the main team on the LHS. Reuse of
components, and the contribution of new/updated components to a
library, can take place during these iterations. A tool development
team applies a similar agile process (on the RHS) to respond to tool
support requirements from the main team.

Prototyping and testing of completed specifications is followed
by integration with other software elements, and iterative revision of
specifications as necessary to pass tests and efficiency requirements.

III. MDD SPECIFICATION USING EXCEL

Class diagrams and use cases are the core specification notations
used in UML-RSDS to specify applications (including model trans-
formations). OCL constraints are used to define the logical postcon-
ditions of operations and use cases, and to define the procedural steps
(activities) of their designs [9].

Typically, a migration or refinement model transformation in-
volves the mapping of instances a : A of a source entity type A to
instances b : B of a target entity type B. Such mappings are formally
expressed by postconditions

A ::
ACond ⇒ B→exists(b | P(self , b))

of a use case that defines the transformation. The postcondition asserts
that (at termination of the transformation) for every instance self of A
that satisfies ACond, there must exist an instance b of B that satisfies
P(self , b).

Many financial applications involve processing of a similar form,
where some source data, such as market data, is used as input to
derive secondary information and analysis via various functions and
procedures. For example, the derivation of the internal rate of return
or Macaulay duration for a coupon bond, or the derivation of a price
for a derivative security, based on market information.

In Excel, the application data is typically laid out as a table,
with columns for each significant attribute of the data (Table Bond in
Figure 3). Derived data may be placed in cells of additional columns
of the table, or in the cells of separate tables (such as BondYield). The
second situation corresponds directly to rules of migration/refinement
model transformations, where A is a source class (eg., Bond), and B
a target (eg., BondYield).

Figure 3. Excel spreadsheet example

The correspondence between Excel and UML is as follows:

• An Excel table defines a UML class with attributes for
each column of the table, with the attribute types obtained
from the data in an example row of the table. For example,
the Bond table defines a UML class Bond with an integer
attribute Settlement, double attribute Price, etc.
Multiple source and target classes can be defined as tables
in the same spreadsheet.

• The spreadsheet functionality corresponds to a model trans-
formation (defined as a use case, sheet) operating on the
class diagram corresponding to the tables.

• When data item T of table B is defined as a function f (A.S)
of the data S of another table A, this corresponds to a

postcondition constraint

A ::
true ⇒ B→exists(b | b.BId = AId & b.T = f (S))

in cases where f expects single data values, and to a
constraint

::
AS = f (A→collect(S)) ⇒ B→exists(b | b.T = AS)

in cases where f expects aggregate data (eg., f is a function
such as the SUM, AVERAGE, etc of a column/sequence of
individual data items).
In the first case, each instance (table row) of A is mapped
to an instance (table row) of B. In the second, a single B
instance is created with its attribute values derived from
aggregates of A data.

The dataflow dependencies of the spreadsheet must be acyclic [7], that
is, if data item y depends on data x directly or indirectly, there cannot
be a dependency in the reverse direction. In the UML representation,
this means that the constraints can be ordered in a sequence where
all data that is read by one constraint Ci is directly available or has
been produced by earlier constraints Cj for j < i. This is the usual
organisation of use case constraints in UML-RSDS, using the Phased
Construction transformation design pattern [10].

An example is shown in Figure 5, which is derived from Figure 3.
The use case sheet expresses the overall functionality of the spread-
sheet application. The derivation of UML from Excel spreadsheets in
CSV format is performed automatically by the UML-RSDS tools.

Excel functions such as SUM, AVERAGE, DATE, RATE, DURA-
TION, PRICE, etc have been formalised using OCL. These definitions
are provided in a library class ExcelLib. For example:

query SUMPRODUCT(s1 : Sequence(double),
s2 : Sequence(double)) : double

pre: s1.size = s2.size
post:
result = Integer.subrange(1,s1.size)->collect(i |
s1[i]*s2[i])->sum()

In our style of Excel specification, logical expressions such
as Bond.Settlement are used to denote data items/groups, instead
of physical spreadsheet locations/ranges such as B7:B17. Logical
specifications of Excel functions and other financial and numerical
functions are provided in ExcelLib using OCL, facilitating analysis
and formal verification. In the reverse direction, the tables of a
spreadsheet can be synthesised from a class diagram: each concrete
class maps to a table, with the attributes of the class mapped to table
columns.

In Sections IV and V we describe two iterations of an agile
MDD case study in finance, for a bond-pricing application. This
was developed in collaboration with an industrial expert in financial
software construction.

IV. CASE STUDY ITERATION 1: INTERNAL RATE OF RETURN

The bond-pricing application iteration 1 computes the internal
rate of return (IRR) of a bond. The IRR measures the quality of an
investment: the effective rate at which the investment returns value
over its term. A coupon bond consists of a series of cash flows: an ini-
tial payment (-ve cash flow), followed by coupon payments/dividends

(+ve cash flows to the investor), and repayment of capital at the
end of term (Figure 4). Eg.: a £100 bond is purchased for a price
of £105, with an investment term of 10 years, it pays 8% annual
interest bi-annually (20 payments of £4), then £100 capital repayment
(redemption) at the end of the term. In contrast, a zero-coupon bond
only pays back accumulated gains and capital at the end of its term.

Figure 4. Finance domain bond classes in ExcelLib library

Using discrete compounding, the IRR is the rate r such that:

price = Σflows.size
i=1 flows[i].amount/(1 + r)flows[i].timePoint +

redemption/(1 + r)flows.last.timePoint

Time can be measured in days, months, years, etc.: r will
be the rate wrt this measure. Generally, r can be estimated by
numerical approximation techniques, eg., the secant method or
bisection. Excel uses the secant procedure to estimate the IRR,
in the function RATE(npays : int, payment : double,
price : double, fv : double) : double where npays
is the number of coupon payments to be made, payment is the constant
amount of each payment, price is the present value of the investment,
and fv (optional) is the redemption amount at termination of the
investment. The result value is an approximation to the IRR r. In
ExcelLib we provide a mathematical specification of RATE based
on the secant procedure. From the user’s perspective, they can use
RATE in the same way as in Excel. Behind the scenes, they are
using the ExcelLib library specification written in OCL, and from this,
procedural code in Java, C#, C or C++ can be automatically generated.
Note that in our version of OCL, computational numeric types are
used: 32-bit and 64-bit integers, and IEEE 754 standard double-
precision floating-point numbers. This reduces the semantic gap
between the specification and implementation, improving verifiability.

The operation defineFlows1() of Figure 4 is specified as:

defineFlows1()
pre: true
post:
Integer.subrange(1,
(maturity*frequency).floor)->forAll(t |

$CashFlow->exists(f | f.amount = coupon &
f.timePoint = (t*1.0)/frequency &
f : flows))

This creates all the positive cash flows from coupon payments over
the lifetime of the bond. (maturity in $Bond is the term of the bond).

To derive the IRR of a series of bonds, the user specifies two
tables in a spreadsheet, as in Figure 3. The Bond table identifies
the attributes of the Bond class, and their types, whilst the BondYield
table also defines the mapping of Bond to BondYield, using the RATE
function. The function in cell D12 is

RATE((Bond.Maturity - Bond.Settlement) *
Bond.Frequency,

Bond.Coupon,
Bond.Price, 100)

The UML-RSDS tools convert the spreadsheet to the class dia-
gram of Figure 5, and derive the following postcondition constraint
of the use case sheet:

Application::
bondx : Bond =>

BondYield->exists(bondyieldx |
bondyieldx.BondId = bondx.BondId &
bondyieldx.Yield = RATE(
(bondx.Maturity - bondx.Settlement) *

bondx.Frequency,
bondx.Coupon,bondx.Price,100) &

bondyieldx.Duration = DURATION(
DATE(bondx.Settlement,1,1),
DATE(bondx.Maturity,1,1),
bondx.Coupon,
bondyieldx.Yield,
bondx.Frequency))

The meaning of this postcondition is that for each Bond instance, a
BondYield instance will be produced with its Yield value set to the
IRR computed using RATE. In addition, we also compute the discrete
Macaulay duration of the bond (the time to maturity of the equivalent
zero-coupon bond):

duration =

(Σflows.size
i=1 flows[i].timePoint ∗ flows[i].amount/

(1 + yield)flows[i].timePoint)/

(Σflows.size
i=1 flows[i].amount/(1 + yield)flows[i].timePoint)

This computation can use the previously-computed yield value of
each BondYield instance. In the spreadsheet, the value of the Duration
column (cell E12) is expressed as:

DURATION(DATE(Bond.Settlement,1,1),
DATE(Bond.Maturity,1,1),
Bond.Coupon, BondYield@pre.Yield,
Bond.Frequency)

The @pre annotation indicates that the Yield derived by the preceding
equation should be used. A continuous duration function DURA-
TIONC is also available.

V. CASE STUDY ITERATION 2: YIELD CURVE FITTING

In iteration 2 of the bond-pricing application, the yield and
duration derived in iteration 1 are used as input datapoints for
a process which attempts to find the best-fitting yield curve for
interest rate data, according to some yield curve model such as
the Nelson-Siegal or Nelson-Siegal-Svensson models. The adapted
Nelson-Siegal-Svensson (NSS) model [5] which we use is defined by

Figure 5. Class diagram derived from Excel spreadsheet

the equation:

y(t) = β1 + β2 ∗ (1− exp(−t/ λ1))/(t/ λ1) +

β3 ∗ ((1− exp(−t/ λ2))/(t/ λ2)− exp(−t/ λ2))

This models how the yield y(t) of a bond varies depending on its
duration t.

The yield curve in this model has a long-term rate component
(β1), a short-term (2nd factor), and a ‘hump’ (3rd factor). The
problem is to estimate the βi and λj, given market data – ‘fitting the
curve’ to this data. Estimation procedures to find the NSS parameters
that fit a given set of market bond data include genetic algorithms
(GA) and Matlab’s fminsearch using a simplex algorithm [5].
We use a combination of genetic algorithms and the Nelder-Mead
simplex algorithm [12]. These algorithms are specified using OCL in
ExcelLib.

The adapted Nelson-Siegal-Svensson model is specified in UML-
RSDS by the nelsonsiegalx and nsx functions of the finance library
class $Bond (Figure 4). These are then used to evaluate the fitness
of a candidate solution (a tuple of values for the parameters β1, β2,
β3, λ1, λ2), based on the sum of squares of differences between the
actual and predicted interest rates for the market data.

NSS-estimation is performed by an ExcelLib function
ESTIMATENSX(yields: Sequence(double), durations:
Sequence(double)) : Sequence(double). This is called on
BondYield.Yield, BondYield.Duration (considered as sequence
data) to populate a result table NelsonSiegal.

ESTIMATENSX initialises a population for a genetic algorithm
using the bond interest rate (yield) and duration data, and iterates
the genetic algorithm until there is no further improvement in the
maximum fitness in the population. The best result is then passed to
a numerical optimiser, in our case the simplex algorithm.

Having derived the NSS parameters, these can then be used
to calculate the fair price of bonds of different durations, using a
formalisation of the Excel PRICE function. This functionality was
developed in iteration 3.

We compared our formalisation of this bond-pricing procedure
with a traditional Excel/VBA solution, in terms of software size,
accuracy and efficiency A Java implementation of the UML-RSDS
specification was used, applied to a test case of 8 coupon bonds
ranging from 1 year to 12 year terms. Code size was reduced from
34K to 22K, accuracy improved from 2 ∗ 10−4 to 6 ∗ 10−6, however
execution time increased from 550ms to 730ms, mainly due to use
of a genetic algorithm.

The curve produced from the estimated parameters using our
approach is shown in Figure 6.

Figure 6. Estimated NSS curve

VI. RELATED WORK

The Kapital system used by JP Morgan has been a highly success-
ful alternative approach in finance [1], enabling financial engineers to
quickly prototype and implement new financial products. However,
Kapital is based on a specialised platform (Smalltalk). We consider
that basing a financial engineering platform on language-independent
UML and OCL specifications will provide more flexible and durable
support than a language-specific solution. In [11] we describe the risk
evaluation of multiple investment instruments [6] using UML-RSDS,
this direct MDD approach was technically effective but was consid-
ered too difficult for financial engineers to use. As an alternative, we
investigated the Excel-based approach described here. An application
of agile MDD in finance is given in [13], however this is focussed on
the management of data and message formats instead of numerical
computations. In [2], spreadsheets are mapped to relational databases
in order to optimise the spreadsheets. In [3], spreadsheet evolution is
supported via a mapping to a semantic representation. These papers
use transformations to support spreadsheet-based development, whilst
our work uses spreadsheets to define model transformations. A similar
data-flow logical specification of financial applications is described in
[7], although all the data derivations are performed within a single
table, whilst we separate data into possibly multiple source, target
and intermediate tables.

QuantLib (quantlib.org) is a widely-used library of financial
analysis functions, written in C++ (interfaces and partially-ported
versions also exist for other programming languages). In contrast to
QuantLib, we define financial functions in a platform-independent
formalism (OCL), from which language-specific implementations
can be automatically generated. In future work, we aim to include
substantial parts of the QuantLib libraries in our OCL financial library.

These could then be used directly in the Excel-style specifications
used by our approach.

VII. CONCLUSIONS

We have described techniques to combine agile MDD with
conventional Excel-based financial application development. Excel
spreadsheets are interpreted as UML class diagrams operated on by
model transformation specifications, and executable implementations
of these transformations can then be synthesised in production-quality
languages. In future work we will evaluate the usability of the
approach with financial engineers, and extend the OCL finance library
to provide comprehensive facilities for the use of MDD in the finance
domain.

REFERENCES

[1] Cincom, JP Morgan derives clear benefits from Cincom Smalltalk,
www.cincom.com/pdf/CS040819-1.pdf, accessed October 2016.

[2] J. Cunha, J. Saraiva, J. Visser, From spreadsheets to relational databases
and back, PEPM 2009.

[3] J. Cunha, J. Fernandes, J. Mendes, H. Pacheco, J. Saraiva, Bidirectional
transformations of model-driven spreadsheets, ICMT 2012.

[4] G. Guta, W. Schreiner, D. Draheim, A lightweight MDSD process
applied in small projects, Proceedings 35th Euromicro conference on
Software Engineering and Advanced Applications, IEEE, 2009.

[5] M. Gilli, S. Grosse, E. Schumann, Calibrating the Nelson-Siegal-
Svensson model, COMISEF working paper WPS-031, 2010.

[6] O. Hammarlid, Aggregating sectors in the infectious defaults model,
Quantitative Finance, vol. 4, no. 1, 2004, pp. 64–69.

[7] Y. Horry, Financial information description language and visualisa-
tion/analysis tools, Computer Languages, Systems and Structures 50
(2017), pp. 31–52.

[8] A. Kumiega, B. Van Vliet, A software development methodology for
research and prototyping in financial markets, Proc. European Spread-
sheet Risks Int. Grp., pp. 107–127, 2006.

[9] K. Lano and S. Kolahdouz-Rahimi, Constraint-based specification of
model transformations, Journal of Systems and Software, vol. 88, no.
2, February 2013, pp. 412–436.

[10] K. Lano, S. Kolahdouz-Rahimi, Model-transformation Design Patterns,
IEEE Transactions in Software Engineering, vol 40, 2014.

[11] K. Lano, H. Alfraihi, S. Yassipour-Tehrani, H. Haughton, Improving
the Application of Agile Model-based Development: Experiences from
Case Studies, ICSEA 2015.

[12] J. Nelder, R. Mead, A simplex method for function minimisation,
Computer Journal, 7, pp. 308–313.

[13] M. B. Nakicenovic, An Agile Driven Architecture Modernization to a
Model-Driven Development Solution, International Journal on Advances
in Software, vol 5, nos. 3, 4, 2012, pp. 308–322.

[14] K. Schwaber, M. Beedble, Agile software development with Scrum,
Pearson, 2012.

[15] Y. Zhang, S. Patel, Agile model-driven development in practice, IEEE
Software, vol. 28, no. 2, pp. 84–91, 2011.

