
Process-Aware Model-Driven Development
Environments

Levi Lúcio
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Abstract—Due to recent advances in Domain Specific Language
(DSL) workbenches, it has become possible to build model-driven
development environments as sets of individual DSLs that get
composed for a specific purpose. In this paper we explore how
model-driven development environments can become process-
aware, to assist the user when building a model. We offer an
explanation to our ideas at three levels of abstraction: 1) the meta-
meta level, the Meta-Programming System (MPS) workbench
with its language definition capabilities; 2) the meta level, where
brick DSLs are defined and assembled into frameworks that are
further tailored for particular modelling scenarios through the
introduction of an explicit process for model construction; and 3)
the model level, where models are built through progressive tool-
guided refinements and automated steps based on the process
introduced at the meta level. We exemplify our approach by
providing the main highlights of the ongoing development of
a model-driven requirements gathering environment for our
industrial partners.

Index Terms—Process-awareness, Domain-Specific Languages
(DSLs), Model Construction, generic requirement gathering
framework, process language, requirement refinement process,
requirement engineer, model driven development environment

I. INTRODUCTION

The current trends in domain specific software engineer-
ing, domain specific languages (DSL) and domain specific
modelling languages (DSML) demonstrate the interest for
tailored software solutions. When it comes to model-driven
engineering (MDE) tools, studies like [20] show that this
trend is justified: among the MDE tools considered in the
reported study, the ones which were successful in penetrating
industry were precisely those which were developed in a
tailored manner for a given audience, the recommendation
being: “Match tools to people, not the other way around”.

Many technologies now precisely enable this sort of tailor-
ing, among which JetBrains’ MPS [15], Sirius [11], or the
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classic MetaEdit+ [18]. With the maturity of these technolo-
gies, one can safely say that building your own MDE tool
has never been so easy – technology enthusiasts in various
industries now develop their own domain- or even company-
specific tools.

On the other hand, as [20] also mentions, tools are an
enabler, but they are not everything: “More focus on processes,
less on tools”. Even when a tailored tool is available, allowing
the modelling of one’s domain through many sub-DSLs makes
it such that new users often become overwhelmed by the
amount of modelling techniques at their disposal. This is in
fact the case for even very specialized tools like Sfit [9] for
the modelling of industrial manufacturing – while modelling a
restricted domain, the tool contains a large number of different
models, mostly rendered as diagrams. The question of method-
ology or process then naturally follows: in which order should
one build the diagrams? More generally, which information
should one model at a given point in time? The funding
of research projects focusing on this question demonstrates
the relevance of this question: for example SPES-XT [16],
targets the development of methodologies for the domain of
embedded systems. Similarly, Arcadia [10] emphasizes the
importance of the methodology in connection with MDE.

Just like for tools however, methodologies and processes can
seldom be general enough to match all use cases and answer
all needs. There is thus also a need for tailoring at that level.
To facilitate the acceptance of the methodology, it is essential
that the tool supports the methodology: this is for instance
the case with Capella and Arcadia. Capella however, supports
only the Arcadia methodology which is specific to avionic
systems engineering and to the processes of Thales. All the
above points to the fact that, if the tools can be tailored, the
process itself should be tailorable.

In this paper, we propose an approach to develop DS(M)Ls
in JetBrains’ MPS [15], equipped with a means to customize
the tool in order to support a given process: using our



approach, in addition to the usual MPS mechanisms to develop
their DSLs, developers can also explicitly express their own
process. Such a process of model construction is declared as a
statechart-like diagram, being that the current state is defined
by the satisfaction of some properties of the model as well as
by its previous states. For each state, the tool developer can
define hints to be displayed as well as quickfixes in the form
of creation of new artifacts.

In order to clarify our work we draw an analogy with the
M-levels defined by the Object Management Group:

• M3: the MPS tool with its language definition capabili-
ties.

• M2: development and composition of “brick DSLs” in a
domain-specific model-driven development environment,
together with a model construction process.

• M1: usage of the developed domain-specific tool.
We also identify four different roles in the development and
usage of the framework:

• the framework developer (in our case JetBrains), who
develops MPS (level M3),

• the framework customizer (the authors of this paper), who
develops a library for process-customizable DSLs (level
M2),

• the (domain-specific) tool developer (typically a consul-
tant or the in-house technology department of a company)
who actually develops the domain-specific tool, making
use of our libraries (level M2),

• and the user (level M1).
In this work, we contribute a framework at level M2 to support
the tool developer in developing a process-aware domain-
specific tool. At the M1 level, a “dashboard” allows the user
to know permanently what is the next step to achieve.

As a case study, we demonstrate how to use this framework
for the specific domain of requirements engineering: the step-
by-step formalization of requirements is a common approach,
making it, therefore, an ideal candidate for the development of
a process-aware tool. For this purpose, we have implemented
a set of DSLs supporting the MIRA [17] framework, a gen-
eral approach for the stepwise formalization of requirements
focusing on quality assurance for requirements.

A tool developer can use this set of DSLs as a basis for
their model-based development environment, by composing
them with more specific DSLs of their own design. This can
also “drive” the user in her requirements formalization process
by implementing a process using our Process language.
We illustrate this approach by developing a requirements-
engineering tool specialized in the development of hardware
cooling systems, inspired from a case study from our industrial
partners at Diehl Aerospace.

The remainder of this paper is structured as follows. In
section II we describe the MPS framework, which we use
as the technological basis for all the results presented in
this paper. Section III then describes our case study – the
construction of a model-driven development environment for
the incremental gathering and refinement of requirements.

Then, in section IV, we exemplify the construction of the
requirements using the environment described in the previous
section. Section V provides pointers to work in the literature
that closely relates to the results we present here. Finally,
section VI presents a discussion of our research and potential
future work.

II. THE metameta LEVEL: MPS: A LANGUAGE
META-EDITOR

The metameta level (M3, in MOF terms) is where the bricks
for our approach are built. These bricks consist of DSLs,
defined in the MPS (Meta Programming System) [3] frame-
work. MPS is a stable and industrially-proven projectional
meta-editor which provides editing capabilities at the meta-
levels needed for our approach: M2 and M1. It uniformly
integrates language and editor design capabilities, together
with code generation tools and in-built correct-by-construction
techniques such as meta-model conformance, syntax highlight-
ing, auto-completion or type checking. MPS is developed by
JetBrains, which assumes the role of framework developer.
Throughout this paper we will often use vocabulary that is
close to that used in the MPS world in order to remain
aligned with the technical aspects of our work. In particular,
the following terms are recurrently used in what follows:

• Language: an MPS language includes a metamodel, in
the classical EMF sense. It additionally includes one or
more editors for its metamodel, which provide concrete
syntax.

• Concept: the MPS equivalent of metamodel class.
• Concept / language instance: concepts can be instanti-

ated, in the same way metamodel classes can. We will
also sometimes write language instance to refer to an
instance of the root concept of an MPS language.

• Intentions: actions attached to concepts of a language,
available to the user.

• Language composition: Reference or containment rela-
tions can exist between instances of concepts of different
languages, which is the primary language composition
mechanism in MPS. Another composition mechanism is
the MPS model, which can contain instances of concepts
belonging to many languages.

III. THE meta LEVEL: DEFINING A REQUIREMENTS
GATHERING FRAMEWORK IN MPS

A. A Generic Requirements Gathering Framework

The requirements gathering framework we introduce here
borrows its structure from the Model-based Integrated Re-
quirement Specification and Analysis (MIRA) Framework [8],
[17]. The main parts of the MIRA framework are as follows:

• The system context describes the relevant elements that
belong to the context of the system being developed.

• The requirement list documents the capabilities and lim-
itations of the system under development.

• The trace link list keeps the relations between the arte-
facts being defined.



• The QA collection describes quality assurance activities
and results.

This broad classification of the concepts necessary to build
a requirements gathering framework is helpful to us in an
operational manner. We wish to build our framework as a set of
composed domain specific languages in the MPS environment.
For that we need an architecture around which we can organize
such languages. The MIRA architecture thus helps us in
understanding how to group and compose those languages.
A particularity of MIRA is that quality assurance is natively
integrated in the framework. MIRA’s quality assurance has an
operational counterpart in the MPS environment – in terms of
language checks that come with the DSLs defined in MPS
as well as other (formal) analyses that can be defined by
the domain-specific tool developer building the framework.
These analyses are orchestrated during the definition of the
process when building a tailored model-driven development
environment and correspond to MIRA’s verification activities.
In figure 1 we present the first two meta-levels of our frame-
work in the form of a stack of languages: at the bottom of the
stack we have MPS itself, with its meta-editing capabilities;
in the lower half of the layer immediately above we define the
four aspects of the MIRA framework. Each one of the four
aspects includes groups of DSLs that allow the requirements
engineer to express parts of the complete requirements model.
The framework customizer, in this case our group at fortiss, is
responsible for building this part of the stack. The subset of
MIRA we use for the work we present here is composed of
the following languages:

• System Context: this aspect of the framework contains a
Glossary language to allow defining the domain specific
glossary terms that are used across a requirements project,
together with values associated to those terms.

• Requirements List: this aspect of the framework contains
a Requirements language for expressing textual require-
ments, together with meta-information such as the author
of the requirement or the requirement’s current state.

• Trace Links: this group contains a generic trace language
that can be extended to build trace links from any to any
model element in MPS.

• QA collection: the QA collection group includes the
Process and the Dashboard languages. The Process
language allows defining refinement tasks for the re-
quirements engineer. The Process language is used in
conjunction with the Dashboard language in order to
define at which moments a specialized requirements
gathering framework will provide visual hints and press-
button actions that guide the requirements engineer in the
direction of achieving her task in a correct manner.

B. Customising the Framework: An Industrial Case Study

Nowadays, many embedded hardware systems (e.g. in lap-
tops, cars or planes) are assembled together with cooling
systems. The main purpose of those cooling systems is to
maintain an appropriate temperature during the operation of
the hardware being used. In this section we will extend the

generic requirements gathering framework that has been in-
troduced in section III-A in order to specialize it for gathering
requirements for software controllers for hardware cooling
systems. In particular, we will add a process for specifying
this type of requirements. The case study we present here is
inspired by a requirements document (that for non-disclosure
reasons we cannot cite here) which was made available to
us by Diehl aerospace, one of our industrial partners. Diehl
builds hardware for airplanes and, as such, cooling systems
for that hardware also need to be produced. The process
of gathering requirements of the software that controls such
cooling systems is currently almost completely manually done.
This poses a problem to Diehl, as the current requirements
gathering process imposes a large amount of effort to ensure
that those requirements are documented in a fashion that is
complete, correct, and traceable. Additionally, the aerospace
industry has to adhere to strict regulations such that their
systems can be certified to be used in production. In order to
specialize the two lower layers of the language stack presented
in figure 1 we have added the following languages: the Table
language, for defining the behavior of the controller for the
cooling system; the ModelProperty Language, which contains
algorithms for checking properties that are specific to the
cooling system requirements gathering system. Additionally,
the domain specific tool developer also builds a process
that will configure the dashboard’s behavior. The dashboard
assists the requirements engineer during the construction of
the requirements by displaying hints and press-button actions
that guide the refinement of the requirements model. The dash-
board is configured by a description of which hints should be
provided to the requirements engineer under which conditions.
This information is provided as an instance of the Process
language. In figure 2 we provide an example of such a process,
depicted directly in our tool’s concrete statechart-like syntax,
for the cooling controller requirements. The top part of each
state in the figure includes the description of the conditions
that need to be satisfied such that the hint associated to that
state is displayed on the dashboard. The conditions described
on the states of figure 2 are boolean properties that are checked
on the current state of a requirements project. An example of
the boolean properties is GlossaryTermDefinedProperty. The
boolean property GlossaryTermDefinedProperty returns true if
a glossary term is defined and false elsewise. The boolean
properties are implemented in the ModelProperty Language
in figure 1. This language holds the algorithms that implements
the analyses required for our specific requirements gathering
system. Note that, although this customization work has been
done at fortiss, the idea is that in the future this work would
be performed by a domain specific tool developer at Diehl.
In a similar fashion, frameworks for gathering requirements
for purposes other than for cooling systems could also be
customized using as basis the same original set of languages
as the one described in section III-A.



Fig. 1: A language stack for gathering software requirements

IV. THE Model LEVEL: A DOMAIN-SPECIFIC
REQUIREMENTS GATHERING FRAMEWORK IN ACTION

We will now exemplify how a user, in this case a require-
ments engineer, can make use of the specialized requirements
framework we have defined in section III-B. In particular,
based on an existing requirements document provided by
Diehl Aerospace and following the directions made available
to us from engineers at Diehl, we will incrementally build
the requirements for the software that controls a fan-based
cooling system to cool down hardware boards embedded in
the doors of passenger airplanes. Because of the fact that
airplane doors include slides that should only be deployed
when a plane lands under specific conditions, the logic running
in those boards is non-trivial. The goal of the controller is
to make sure the cooling fan runs at the correct duty cycle
(fan speed) such that the hardware board works under ideal
temperature conditions. The calculation of the duty cycle for
the fan at a given time depends on two inputs: 1) the current
temperature of the hardware board that needs cooling; and
2) whether the hardware board’s temperature is increasing
or decreasing. Note that in the example that follows we
do not pretend to be exhaustive in the construction of the
requirements for the fan’s controller. This section reflects
part of our partners’ requirements refinements process and
demonstrates our framework’s abilities in terms of providing
automated assistance to the requirements engineer.

Tool Supported Requirements Definition and Refinement

The first thing to do in a requirements project for a cooling
controller is to create a new dashboard by instantiating the
Dashboard language that implements the cooling controller
requirements process. A newly generated dashboard for our

fan requirements project is depicted in figure 2. The dash-
board is the central artefact the requirements engineer refers
to during requirements construction. It displays the current
hint given to the user, as well as the current state of the
requirements refinement process as a graph or a table. The
hint displayed by the dashboard at the beginning of the project
is “Create Project Structure”. This hint is creational, which
means the user can mouse-click on the hint to produce the
instances of concepts that constitute the initial structure of
the project in the same model where the dashboard instance
has been created. Following this action a new hint, as shown
in figure 3, proposes to the requirements engineer defining a
new requirement for the system that includes the temperature
thresholds for the functioning of the cooling system. Note that
at this point the current state of the requirements model has
now changed to “Empty requirements model and no glossary
terms defined”, as highlighted in orange in figure 3 – which
now presents a tabular view of the refinement process. The
overall desired behavior of the cooling controller is stated as is
an instance of the Requirements language in figure 4. From
this requirement the requirements engineer can then extract
minimum (e.g., “Minimum increase value’) and maximum
(e.g., “maximum increase value’) threshold values using the
MPS intention “Extract Into Glossary”. When used, this MPS
intention generates in the project’s glossary an entry with the
same names as words or sets of words selected from the text.
This constitutes the first refinement of the original abstract
requirement. The next step is to define the duty cycle of the
fan as a function of the current temperature of the controller
board and whether the temperature is going up or down.
The dashboard assists the requirements engineer in this task
by providing a hint that, when mouse-clicked, automatically



Fig. 2: A newly created dashboard for the requirements framework

Fig. 3: The Dashboard provides a hint for adding a new requirement

generates a table to define such behavior. An example of such
a table is depicted in figure 5. Note that the minimum and
maximum threshold values in the table are preset in advance,
as the process itself defines they should copied from the values
previously stored in the glossary. We now come to the last
refinement, which is to precisely define the behavior of the
cooling fan’s controller. In order to do this it is necessary to

manually insert rows in the table that define the duty cycle for
given intervals of temperature, when the temperature is going
up or down. The Table language itself implements checks for
completeness (all the temperatures between the thresholds are
mapped onto duty cycles) and functionality (only one duty
cycle value is given per temperature). Violations of these
properties are pointed out in the editor as red markers. Figure 5



Fig. 4: The requirements engineer adds a new requirement

Fig. 5: A filled in table and associated 2D visualization of the defined function

represents a filled in table holding, for non-disclosure reasons,
a fictitious behavior of the fan’s controller. In the figure a
2D-graph representation of the table is also visible and it
is produced by applying the Visualize Graph MPS intention
to the table. The running example we have described in this
paper can be downloaded at [1] as an MPS project. Another
case study of using our framework is available at [2], where
we have designed a process to assist the user in building
natural langage-like requirements for embedded controllers.
Two videos demonstrating our tool and portraying these two
case studies can be found at [5], [6].

V. RELATED WORK

Mechanisms for providing some kind of guidance to the
domain-specific language user are present, to a smaller or
larger extent, in all DSL definition workbenches. In most
cases, that guidance is provided in the form of correctness-by-

construction (e.g. only correct models that conform to a meta-
model can be built), or a-posteriori checks for conformance
to certain well-formedness rules. This is the case for example
for DSL workbenches such as Sirius [11], AutoFocus3 [8],
MetaEdit+ [18] or MPS [15] itself. However, none of those
tools is capable of natively providing the means to explicitely
define a model construction process or methodology that can
assist users when building instances of DSLs specified in those
environments.

Model construction processes naturally depend on the do-
main the DSLs are aimed at. It is thus not surprising that
the explicit notion of process is more present in modelling
environments that are specifically aimed at certain domains –
as previously mentioned, the Capella tool is a model-driven
engineering solution for systems and software architecture
engineering which enforces the Arcadia [10] methodology,
aimed at specific domains such as transportation, avionics,



space or radar; the Soley tool suite [4], dedicated to model-
based data extraction, processing and visualization, includes
workflows as first-class citizens. Coming back to generic
workbenches for language constructions, there exists a large
body of work in the area of model transformation chaining to
orchestrate the flow of models to achieve a modelling goal.
For example, authors such as Wagelaar [19] or Kolovos [12]
propose mechanisms for automatically orchestrating model
transformations such that certain modelling goals are achieved.
In this area, the study which is the closest to the proposal in
this paper is the FTG+PM framework [13], [14]. The FTG+PM
defines an explicit process for the execution of model trans-
formations. Enacting that process means that certain model
transformations are performed automatically, while for others
the user will have to input data at given points. The differences
with the work we present in this paper have to do with the
fact that our process is non-invasive, and is aimed at advising
the user rather than executing a pre-defined work flow. With
our approach automated actions are proposed to the user, who
remains in complete control of the model edition process at
all times.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a technique for the construction of
domain-specific model editors in MPS, where these editors
are based on a set of composed DSLs and on a description
of the process that should be followed when building the
models for that domain. We have applied our approach to the
construction of an editor for gathering software requirements
at two meta-levels: firstly, we build an abstract requirements
gathering framework, following the guidelines in the MIRA
framework [17]; secondly, we specialize that framework for
our industrial partners at Diehl, by introducing a specific
requirements refinement process for controllers for cooling
systems. The main technical contribution of this paper are
the means to define a process to assist in building a model
in a domain-specific model-driven development environment.
This process is based on a set of automated model analyses
and can guide the user until the model is complete. At a
methodological level, our contribution regards our ideas on
the separation of the framework customizer and the domain
specific tool developer roles. While the former is responsible
for defining a number of fundamental “brick” DSLs, the latter
further specializes them for a particular application by adding
more languages and organizing the whole according to a
process. In its current state, the main shortcoming of the
technique we propose in this paper is the fact that it is the
complete responsibility of the domain-specific tool developer
to check the consistency of the properties being checked
during the unfolding of the process, as well as their logical
sequence in the process. Although we have gathered some
information about process construction through the two case-
studies at [5], [6], it is necessary to model larger processes
to better understand the advantages and disadvantages of our
proposal. Scalability is also an issue as analyses currently
run very often in the background, which will rapidly lead to

performance degradation in larger systems. Potential solutions
to this problem are currently being investigated by colleagues
of our at fortiss [7]. As future work, beyond mitigating the
shortcomings above, we will continue working with Diehl
Aerospace to develop the case study we present in this paper
into a usable requirements gathering system. Other partner
companies have shown interest in applying our work domains
other than requirements engineering, which points to building
or assembling different language stacks as well as different
processes.
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extending java. In M. Plümicke and W. Binder, editors, Proceedings
of PPPJ ’13, pages 165–168. ACM, 2013.

[16] K. Pohl, M. Broy, H. Daembkes, and H. Hönninger, editors. Advanced
Model-Based Engineering of Embedded Systems, Extensions of the SPES
2020 Methodology. Springer, 2016.

[17] S. Teufl, D. Mou, and D. Ratiu. Mira: A tooling-framework to
experiment with model-based requirements engineering. In Proceedings
of RE’13, pages 330–331, July 2013.

[18] J. Tolvanen. MetaEdit+ for collaborative language engineering and
language use (tool demo). In Proceedings of SLE 2016, pages 41–45,
2016.

[19] D. Wagelaar. Blackbox composition of model transformations using
domain-specific modelling languages. In Proceedings of CMT 2006,
2006.

[20] J. Whittle, J. E. Hutchinson, M. Rouncefield, H. Burden, and R. Heldal.
Industrial adoption of model-driven engineering: Are the tools really the
problem? In Proceedings of MODELS 2013, pages 1–17, 2013.


