
A Process for Integrating Agile Software
Development and Model-Driven Development

Hessa Alfraihi
dept. of informatics

King’s College London
London, UK

hessa.alfraihi@kcl.ac.uk

Kevin Lano
dept. of informatics

King’s College London
London, UK

kevin.lano@kcl.ac.uk

Abstract—Agile software development and Model-Driven De-
velopment (MDD) are two software engineering paradigms that
contribute to enabling the rapid development of applications.
Previous approaches have proposed the integration of Agile
and MDD, however these approaches are either specific to one
application domain, or fail to cover the complete development
cycle, for example, to include requirements engineering. To
address this problem we propose a general and comprehensive
process that integrates Agile development and MDD, and that
allows applications to be safely developed in an iterative and
incremental manner. We also report on a case study to evaluate
the application of the proposed process.

Index Terms—agile development, model-driven development,
agile model-driven development, process

I. INTRODUCTION

Agile development methods have gained increasing atten-
tion among the software development community [6]. They are
centred around some values, practices and principles proposed
by the Agile Manifesto [3]. These values are related to a
tight communication with the customer, the frequent delivery
of the application, response to changes in requirements, and
so forth. Model-Driven Development (MDD) [14] is another
software development paradigm that is distinguished from
other approaches by the fact that models are not only used for
analysis and design aspects, but also for producing artifacts
semi-automatically.

Although researchers are already trying to integrate both
Agile development and MDD, this integration has not been
explored deeply so far [1], [5]. The goal of this paper is to
address this problem by proposing a process that integrates
both approaches effectively. Then, we evaluate the feasibility
of the proposed process by a case study.

The remainder of this paper is structured as follows: in Sect.
II we discuss the related work while in Sect III, we present
the proposed process, outlining its main phases and activities.
Sect. IV reports the application of the proposed process to
develop a code generator. In Sect. V, we evaluate the feasibility
of the proposed process. Finally, in Sect VI we conclude the
paper and discuss our future work.

II. RELATED WORK

Integrating Agile development and MDD (Agile MDD) is
a new discipline and research in this area just started [1], [5].

However, there exist some approaches that attempt to integrate
Agile and MDD in the areas of finance, web applications, and
telecommunications.

Zhang and Patel in [7] apply Agile MDD process to
develop a project for telecommunication by integrating two
existing processes: System-Level Agile Process (SLAP) and
MDD process. SLAP is Scrum-based process that contains
three phases: requirements and architecture, development, and
system integration feature testing (SIFT). On the other hand,
MDD process follows a V-model process which includes
the following activities: application requirements specification
and architecture, requirements analysis and high-level design,
detailed design, code generation and UML unit and integration
testing, subsystem testing and system testing. In order to
achieve Agile MDD they establish a simple correspondences
between MDD activities and SLAP sprints to end up with
three phases: application requirements and architecture, de-
velopment, SIFT.

Kulkarni et al [9] propose a method for integrating Agile
method and MDD. They argue that Agile development contra-
dicts with MDD as some activities are not suitable to be done
during short iterations. Therefore, they introduce “meta-sprint”
in addition to normal sprints in their Scrum process. This meta-
sprint is dedicated for tasks that require longer duration such
as detailed exploration or research.

Guta [8] proposes MDD process that follows a traditional
iterative and incremental process. The development process is
based on parallel collaboration between three different teams
namely; Agile development team, business analyst team, and
MDD team. It encompasses initial phase and development
phase. Initial phase contains domain model extraction, archi-
tecture elaboration, and code generator set up. On the other
hand, development phase is an iterative process where the
domain model is extended and the other artifacts are generated.
In this approach, MDD process is only applied on a subset of
the system while the other features are hand-crafted.

Besides that these processes are platform-specific, they only
describe the general course of the process and they don’t
consider the full development lifecycle. We propose a more
general process that considers the full development lifecycle
activities which can be applied to different domains.

III. AN AGILE MODEL-DRIVEN DEVELOPMENT PROCESS

In order to develop the process stages, we reviewed the
literature to identify what are the main practices and activities
in MDD processes. To this end, we adopted some MDD stages
from [11] and [17] . Similarly, to integrate Agile practices, we
analysed three different Agile methods: Scrum [13], Extreme
Programming (XP) [4], and Agile modelling [2]. Generally,
we used Scrum as the backbone process since it provides a
management framework for managing and controlling iterative
work at the project level. Some other practices such as pair
programming, refactoring, active stakeholder participation and
architecture envisioning were utilised from XP and Agile
modelling. In our Agile MDD, we adopted the three phases
from [17] and the parallel tooling sub-team from [8].
The activities of our process are assigned to a limited number
of roles, and one developer can play multiple roles. We
identified the following role and responsibilities:

• Product owner: is responsible for creating and maintain-
ing the product backlog.

• Modeller: is responsible for developing different compo-
nents of the system.

• Tester: is responsible for testing at model and implemen-
tation level.

• Specification library manager: is responsible for man-
aging and maintaining the specification library.

• Tooling sub-team: is responsible for providing extension
or adaptation to the tool.

The development process starts with the Initialisation phase
and finishes with the Deployment phase. Throughout the
development, it follows an iterative and incremental approach.
The proposed process is not tied to a particular formalism,
however we propose to adopt OMG standards, i.e., SysML
and UML, to be open to multiple tools and promote the
interoperability of the models. An overview of the process is
presented in Fig. 1 while the different phases and its stages
are explained in the following subsections.

A. Phase 0: Initialisation

The main objective of this phase is to capture the initial
information about the system such as its scope, size, environ-
ment conditions and so on. At this stage, strong collaboration
with the customer is crucial to gather the required information.
Furthermore, the initial requirements of the system and the
architecture at a high-level scale are identified. To meet agility,
it is necessary to avoid capturing too complex information
since detailed information will be evolved incrementally. All
the requirements are prioritised and recorded in the product
backlog by the product owner as a form of user stories. Based
on that, the overall release plan will be established which
distributes the product backlog tasks into iterations in order
to predict when the product can be released. Moreover, the
tools, modelling language and platform should be identified
and agreed upon at this stage.

Fig. 1: An Overview of Agile MDD Process

After the initialisation phase, the development process fol-
lows an iterative cycle. This means that the development
process goes through repeated phases until the system meets
the customer’s needs. The iterative cycle encompasses the fol-
lowing phases: Requirements and Specifications, Development,
Integration and Testing.

Each iteration begins with an iteration planning activity
to agree on the work to be accomplished in the upcoming
iteration. The initial release plan performed in the initialisation
phase can be used to feed directly the iteration planning. To
support the agile philosophy, changes in requirements should
be welcomed at any time. Therefore, any changes should be
discussed and the product backlog is revised at this planning.
Afterwards, the product owner agrees with the development
team on the requirements to be implemented at this iteration
according to their priorities. In order to communicate and
manage the requirements effectively, user stories are produced
to describe the requirements in one or two sentences. The re-
quirements selected to be accomplished in the current iteration
are added to the iteration backlog.

Throughout the iteration, daily stand-up meeting can be
conducted in order to solve the problems encountered by the
developers and to allow them to catch-up with each other’s
progress. The daily meeting should be as short as possible,
normally it lasts no more than 15 minutes.

B. Phase 1: Requirements and Specifications
The main objective of this phase is to analyse and specify

the requirements of the current iteration. This phase includes
two main stages: Requirements Analysis and Requirement
Specifications.

1.1 Requirements Analysis
In this stage, the requirements of the current iteration are
defined and structured in more detail. Both functional and
non-functional requirements should be identified clearly.
Since, non-functional requirements are ill-defined in Agile
development [12], more attention should be paid to identifying

them early at the development stage. Some requirements
mechanisms such as prototypes and scenario analysis can be
used to agree and clarify the meaning of requirements with
the customer. During this stage, any existing components
that can be used to support new requirements should
be identified. Furthermore, any components which have
potential for future reuse should be identified where possible.
The recognition of reusable components within a product
line may result in the establishment of a substantial library
of components to support the development of related products.

1.2 Requirements Specification
Once the requirements are identified, modellers start develop-
ing models that fulfil these requirements. The initial architec-
ture should be revised and amended accordingly. In the context
of MDD, metamodels and transformations are considered the
main elements of the process and any models should conform
to metamodels. As with any artifact, developers can reuse
metamodel artifacts provided by standards such as UML and
MOF or developed in previous common projects. Any iden-
tified reusable components should be imported from and/or
added to the library by the specification library manager.

When the representation of the metamodels is not available,
developers need to define it to capture the abstract syntax
and constructs used to define models. Transformations should
also be identified, these include transformations between
different models or from models to text. Afterwards, models
are created that specify the requirements precisely. Different
perspectives of the system are identified to be modelled and
a set of models is selected accordingly e.g. use case, class
diagram, activity diagram. Pair modelling, analogue to XP’s
pair programming [4], can be followed during modelling
where two developers work together. This should help
detecting and resolving modelling issues instantly [7]. At this
stage, any technical specification should be avoided.

C. Phase 2: Development
The main objective of the development phase is to produce

a technical specification of the system and to produce
an executable system that fulfils the functional and non-
functional requirements. This phase includes two main stages:
Design and Implementation.

2.1 Design
The developers model the detailed structure and behaviour
of the system that fulfils the functional and non-functional
requirements. Although extensive customer involvement is a
key factor in Agile development, in our process the customer
is selectively involved in tasks such as requirements capturing
and reviewing. This is due to the facts that most customers
don’t have required knowledge of MDD activities such as
modelling, designing and implementation. Following the
Agile practice incremental design, the developers design
and specify the platform-specific aspects by refining the
platform-independent models which have been defined in the

previous stage. These specifications describe the technical
specification of the target platform (e.g., EJB, .NET) to allow
generating the code and transformation can be employed to
refine some artifacts. Formal verification at the specification
level can be used to ensure the key properties are preserved
from one iteration to the next. Following the Agile practice
refactoring, developers should review the specification
structure continuously to ensure the best design of the
system. Since models are the intrinsic driver in development
process, when change occurs or defects are discovered,
the resolutions for the issues should be at the modelling
level. Before and after every change, all test cases should pass.

2.2 Implementation
At this stage, developers produce the software that is testable
and executable. MDD differs from other software development
approaches in that the code is partially or completely generated
from the models. The level of automation that translates
models into code can be varied from partial to complete
implementation of the system. Although the code is generated
from models, it is still necessary to run tests against the code
to make sure the model semantics are as expected. When some
part of the system cannot be generated automatically, it can
be written and manually added and tested.

In parallel to the software development process, a tooling
sub-team can be employed to provide technical support
such as necessary extensions or adaptations of tools. Having
in-house team is found to be effective to help when issues
arise [16]. The same proposed Agile MDD process can be
used by the tooling team considering the development team as
the customer who issues requirements for tools. The sub-team
is optionally employed when needed.

D. Phase 3: Integration and Testing

The main objective of this phase is to integrate the
developed parts of the system and to make sure they behave
as expected. This phase includes two main stages: Integration
and Testing.

3.1 Integration
Since one of the intrinsic characteristic of agile development
is to develop the system in an incremental fashion, the
increments need to be integrated and tested frequently.
Therefore, by adopting the agile practice of continuous
integration, developers need to integrate their work as soon
as it is completed.

3.2 Testing
Integrated parts such as components and subsystems are
verified by regression tests to detect errors early in the de-
velopment. Although testing is integrated frequently in all the
phases of the iteration, testing should be performed at the end
of the development process as well [15]. In the context of
MDD, automatic testing (model-based testing) can be carried

out. However, manual testing according to various levels of
testing activities can be used.

At the end of the iteration, an increment of the system is
released and delivered to the customer for assessment and
review. When some requirements cannot be completed during
the iteration, they are carried over to the next one. To assess
the development process and assess what has been done
during the iteration, a review meeting is held.

E. Phase 4: Deployment
When the system has been fully implemented and reaches

a stable version, the system will then be deployed to the
customer. The goal of the deployment is to release the system
and make it ready to use by the customer without developer’s
supervision. This activity takes place only once at the end of
the development process.

IV. CASE STUDY: UML TO C CODE GENERATOR

In order to illustrate the proposed process, we applied it
to the development of code generator for mapping UML to
ANSI C for the UML-RSDS [10]. UML-RSDS is a MDD
tool that uses a subset of UML as an input language. At the
specification level, UML-RSDS models application by UML
2 class diagrams and use cases. Optionally state machines and
interactions can be used. At the design level, UML activities
using pseudo-code notations are used. For this case study,
the stakeholders are: customers who needed to develop this
system, the UML-RSDS development team, and end users
who use such a system.

A. Phase 0: Initialisation

Besides the scope and the size of the system, the initial
requirements were identified. The main functional requirement
for the generator is (F1): Translate UML-RSDS designs (UML
class diagram, use cases, OCL, activities) into ANSI C code.
Using goal decomposition, F1 is decomposed into five
sub-goals:

• F1.1: Translation of types
• F1.2: Translation of class diagrams
• F1.3: Translation of OCL expressions
• F1.4: Translation of activities
• F1.5: Translation of use cases

Furthermore, non-functional requirements were identified such
as:

• NF1: Termination, given correct input
• NF2: Efficiency: input models with 100 classes and 100

attributes per class should be processed within 30 seconds
• NF3: Modularity of the transformation

The dependencies and priorities of the requirements were iden-
tified and consequently the product backlog was created. Fur-
thermore, the initial architecture was identified as a sequential
decomposition of model-to-model transformation (design2C)
and model-to-text transformation (genCText) (Fig. 2). In the

Fig. 2: C Code Generator Architecture

TABLE I: User Stories of Informal Scenarios for types2C.

ID User Story

F1.1.1.1 Translate String type to char*

F1.1.1.2 Translate int, long, double types
to same-named C types

F1.1.1.3 Translate boolean type to unsigned
char

F1.1.2 Translate Enumeration type to
C enum

F1.1.3 Translate Entity type E to
struct E* type

F1.1.4.1
Translate Set(E) type to
struct E** (array of E’, without
duplicates)

F1.1.4.2
Translate Sequence(E) type to
struct E** (array of E’, possibly
with duplicates)

release plan, the product owner organised the development
into five iterations, each of which develops one translation.
Each iteration was given a maximum duration of one month.
In the following subsections, we present the iterations. Due to
limited space, only the first three iterations are explained in
detail.

B. Iteration 1: Translation of Types

This iteration concerns the mapping of data types such as
boolean, int, long, etc. into C representations by defining the
sub-transformation types2C. During the iteration planning, the
development team planned to implement F1.1: Translation of
types.

Phase 1: Requirements and Specification
Detailed requirements elicitation identified the following
requirements: (i) the source language, (ii) the target
language, (iii) the mapping requirements, (iv) non-functional
requirements NF1, NF2, NF3. The main user story for F1.1
was:
As a developer, I want to translate a UML type to its
corresponding C type.

This user story was decomposed into further sub-user
stories and their scenarios are presented in Table I.
The requirements specification formalised these translations

as UML-RSDS rules, defining the post-conditions of a
transformation types2C. The corresponding part of genCtext
was developed alongside types2C.

Phase 2: Development
The source language for this transformation was identified as

the Type class and its sub-classes in the standard UML-RSDS
class diagram metamodel, while the initial target language is
a simplified version of the abstract syntax of C programs,
sufficient to represent UML types. The design in UML-RSDS
is produced automatically from the formal specification. The
formal specification for F1.1.1.1 and F1.1.1.2 are:

PrimitiveType::
name = "int" => CPrimitiveType->
exists(p | p.ctypeId= typeId & p.name= "int")

PrimitiveType:: name= "String" =>
CPointerType->exists(t | t.ctypeId= typeId &
CPrimitiveType->exists(p | p.name= "char" &
t.pointsTo = p))

Phase 3: Integration and Testing
Test cases were manually developed to test the functionality, in
addition to inspection and formal arguments for the satisfaction of
the requirements. Since this was the first iteration, integration was
not needed at this stage.

C. Iteration 2: Translation of Class Diagram
The goal of this iteration was to define the sub-transformation

(classdiagram2C) that is concerned with mapping UML class
diagram into C. During the iteration planning, given its high priority,
it has been planned to implement F1.2: Translation of class diagram
at this iteration.

Phase 1: Requirements and Specification
During the requirement phase, the class diagram elements Entity,
Operation, Property, and Generalisation were identified as the input
language. Exploratory prototyping was used for further requirements
elicitation.

Similar to type translation iteration, user stories for the mapping
of UML class diagrams to C were informally identified.

Phase 2: Development
In order to translate class diagram classes, the developers design the
following function to create C code getters for properties:

CMember:: query getterOp(ent : String): String
post: result = type + " get" + ent + "_" +
name + "(struct " + ent + "* self) { return
self->" + name + "; }\n"

Similar functions were defined to express other aspects of UML
classes in C.

Phase 3: Integration and Testing Phase
Testing, inspection, and formal arguments were used for validating
and verifying the requirements. Both iteration 1 and 2 have
been integrated and grouped as one executable jar file. Integration
testing was conducted to make sure the integration behaved correctly.

D. Iteration 3: Translation of Expressions
This iteration concerns the mapping of OCL expressions to

C. During the iteration planning, the development team planned
to implement F1.3: Translation of OCL expressions. There are
many cases to consider with OCL expressions mapping, thus this
functionality was divided into four subcategories: (i) translation
of basic expressions, (ii) translation of logical expressions, (iii)
translation of comparator, numeric and string expressions, and (iv)
translation of collection expressions. Due to its large size, it was not

possible to complete it in one month.

Phase 1: Requirements and Specification
Detailed requirements elicitation identified the mapping scenarios of
the above mentioned subgroups of OCL expressions. For brevity,
only the mapping scenarios for the basic expressions are presented
in Table II.

TABLE II: User Stories of Informal Scenarios for Basic
Expressions.

ID User Story

F1.3.1.1
Translate self in OCL expression
to self as an operation parameter in
C representation

F1.3.1.2 Translate variable v or v[ind] to v
or v[ind’-1] in C representation

F1.3.1.3

Translate data feature f of context E with
no objectRef to
self → f (E is root)
or getE f(self) (otherwise)

F1.3.1.4
Translate operation call op(e1,...,en)
or obj.op(e1,...,en) of instance entity
scope op of E to

F1.3.1.5
Translate call op(e1,...en) of
static/application
scope op to op(e1’,...,en’)

F1.3.1.6 Translate col[ind] ordered collection col to
(col’)[ind’-1]

F1.3.1.7 Translate E.allInstances to e-instances

F1.3.1.8 Translate value of enumerated type,
numeric or string value to value

F1.3.1.9 Translate boolean true, false to
TRUE,FALSE

Phase 2: Development
during design activity, for each category of expressions the developers
modelled the detailed specifications, for example:

BasicExpression::
query mapBasicExpression(ob :
Set(CExpression),aind : Set(CExpression),
pars : Sequence(CExpression)) : CExpression
pre:
ob= CExpression[objectRef.expId] &
aind= CExpression[arrayIndex.expId] &
pars= CExpression[parameters.expId]

post:
(umlKind= value =>
result= mapValueExpression(ob,aind,pars))
& (umlKind = variable =>
result= mapVariableExpression(ob,aind,pars))
& (umlKind = attribute =>
result= mapAttributeExpression(ob,aind,pars))
& (umlKind = role =>
resul= mapRoleExpression(ob,aind,pars)) &
(umlKind = operation =>
result= mapOperationExpression(ob,aind,pars))
& (umlKind = classid =>
result= mapClassExpression(ob,aind,pars)) &
(umlKind= function =>
result= mapFunctionExpression(ob,aind,pars))

Phase 3: Integration and Testing
Testing and inspection were used for validation and verification.
Testing of these operations revealed some errors regarding the meta-
models such as error in the value of the multiplicity. The generation

TABLE III: Development effort for UML-RSDS code gener-
ators (person-month).

Java 4 Java 7 C# C++ C

Requirements Analysis 6 2 3 6 4.5
Implementation 12 4 4 6 1
Testing 6 1 1 2 0.5
Maintenance 6 1 1 3 0
Total 30 8 9 17 6

of model.txt by the UML-RSDS tools needed to be adjusted in
several cases to ensure that appropriate information was available
for UML2C. It was decided that the integration of iteration 3 will be
conducted later with iterations 4 and 5.

Translation of activities, and use case were implemented in itera-
tions 4 and 5 respectively.

E. Phase 4: Deployment
The code generator was deployed and delivered as Java jar executa-

bles: iteration 1 and 2 were grouped in one executable (uml2Ca.jar)
and iterations 3, 4, and 5 in (uml2Cb.jar). The complete translator
was referred to as (UML2C) and it can be found via the link in the
footnote 1 .

V. EVALUATION

Several code generators have been developed previously for UML-
RSDS using Agile development with manual coding in Java (i.e,
non-MDD approach) such as Java 4, Java 7, C#, and C++. Table III
shows the approximate effort in person-months expended for each of
these to date including our C code generator. An overall development
effort reduction has been noticed for the C code generator using
Agile MDD process. The benefits of this effort reduction are mainly
due to the use of specifications instead of code, and to the use of
executable modelling. The decomposition of the transformation into
semi-independent phases formed a natural basis for the definition
of the top-level work items in the product backlog, and this in
turn led to the definition of iterations. The use of short iterations
and backlogs enabled incremental development of the translator and
helped organise the development. Partial specifications were defined
for each separate iteration of the system, and incrementally refined.
Refactoring was extensively used to improve the specification, in
particular the removal of duplicated functionality. The agile emphasis
on simplicity helped to reduce the specification complexity: in
particular only class diagrams and OCL constraints are used to define
the translator, without activities or other UML models. Also, we
found it effective in handling changing requirements to translate
static operations. Overall, we consider the combination of agile and
MDD to be effective in improving system quality and reducing
development time. Further techniques, such as model-based testing
and pair modelling, will be investigated in future work.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a systematic process for integrating
Agile development and MDD, describing its stages and activities. To
illustrate the process, the development of a UML to C code generator
was conducted and evaluated. In future work we will target evaluating
the process more comprehensively. To this end, four case studies,
developing the same system, will be conducted by four different
teams implementing different approaches: “traditional approach” (i.e,
a hand-coded non-agile approach); “MDD only” approach; “Agile
only” approach; and “Agile MDD” approach. Comparing the results
of these case studies should provide a clear understanding of the
impact of integrating Agile and MDD on the development process.

1https://nms.kcl.ac.uk/kevin.lano/uml2web/

REFERENCES

[1] Hessa Alfraihi and Kevin Lano. The integration of agile development
and model driven development: A systematic literature review. In
Proceedings of the 5th International Conference on Model-Driven
Engineering and Software Development, MODELSWARD, 2017.

[2] Scott Ambler. Agile modeling: effective practices for extreme program-
ming and the unified process. John Wiley & Sons, 2002.

[3] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, Jon Kern,
Brian Marick, Robert C. Martin, Steve Mallor, Ken Shwaber, and Jeff
Sutherland. The Agile Manifesto. Technical report, The Agile Alliance,
2001.

[4] Kent Beck. Extreme programming explained: embrace change. addison-
wesley professional, 2000.

[5] Håkan Burden, Sebastian Hansson, and Yu Zhao. How MAD are
we? Empirical Evidence for Model-driven Agile Development. In
Proceedings of XM 2014, 3rd Extreme Modeling Workshop, volume
1239, pages 2–11, Valencia, Spain, September 2014. CEUR.

[6] Widia Resti Fitriani, Puji Rahayu, and Dana Indra Sensuse. Challenges
in agile software development: A systematic literature review. In
Advanced Computer Science and Information Systems (ICACSIS), 2016
International Conference on, pages 155–164. IEEE, 2016.

[7] Gábor Guta, Wolfgang Schreiner, and Dirk Draheim. A lightweight
mdsd process applied in small projects. In Software Engineering and
Advanced Applications, 2009. SEAA’09. 35th Euromicro Conference on,
pages 255–258. IEEE, 2009.

[8] Gábor Guta, Wolfgang Schreiner, and Dirk Draheim. A lightweight
mdsd process applied in small projects. In Software Engineering and
Advanced Applications, 2009. SEAA’09. 35th Euromicro Conference on,
pages 255–258. IEEE, 2009.

[9] Vinay Kulkarni, Souvik Barat, and Uday Ramteerthkar. Early experience
with agile methodology in a model-driven approach. In Model Driven
Engineering Languages and Systems, pages 578–590. Springer, 2011.

[10] Kevin Lano. Uml-reactive system design support. Technical report,
King’s College London, 2012.

[11] Xabier Larrucea, Ana Belen Garcı́a Dı́ez, and Jason Xabier Mansell.
Practical model driven development process. Computer Science at Kent,
page 99, 2004.

[12] Balasubramaniam Ramesh, Lan Cao, and Richard Baskerville. Agile
requirements engineering practices and challenges: an empirical study.
Information Systems Journal, 20(5):449–480, 2010.

[13] K. Schwaber and M. Beedle. Agile Software Development with Scrum.
Agile Software Development. Prentice Hall, 2002.

[14] Bran Selic. Model-driven development: Its essence and opportunities.
In Object and Component-Oriented Real-Time Distributed Computing,
2006. ISORC 2006. Ninth IEEE International Symposium on, pages 7–
pp. IEEE, 2006.

[15] Markus Völter, Thomas Stahl, Jorn Bettin, Arno Haase, and Simon
Helsen. Model-driven software development: technology, engineering,
management. John Wiley & Sons, 2013.

[16] Jon Whittle, John Hutchinson, Mark Rouncefield, Håkan Burden, and
Rogardt Heldal. A taxonomy of tool-related issues affecting the adoption
of model-driven engineering. Software & Systems Modeling, 16(2):313–
331, 2017.

[17] Yuefeng Zhang and Shailesh Patel. Agile model-driven development in
practice. IEEE software, 28(2):84, 2011.

https://nms.kcl.ac.uk/kevin.lano/uml2web/

	Introduction
	Related Work
	An Agile Model-Driven Development Process
	 Phase 0: Initialisation
	 Phase 1: Requirements and Specifications
	 Phase 2: Development
	 Phase 3: Integration and Testing
	Phase 4: Deployment

	 Case Study: UML to C code Generator
	Phase 0: Initialisation
	Iteration 1: Translation of Types
	Iteration 2: Translation of Class Diagram
	Iteration 3: Translation of Expressions
	Phase 4: Deployment

	Evaluation
	Conclusions and Future Work
	References

