
Bridging Engineering and Formal Modeling: WebGME and Formula Integration

Tamas Kecskes Qishen Zhang Janos Sztipanovits

Department of EECS, Vanderbilt University, Nashville, TN
{tamas.kecskes, qishen.zhang, janos.sztipanovits}@vanderbilt.edu

Abstract—Emergence of heterogeneous engineering domains
that cross disciplinary boundaries lead to design flows that
span multiple Domain Specific Modeling Languages (DSML).
Analyzing system level behavior and pursuing cross-domain
trade-offs requires the semantic integration of modeling do-
mains. Driven by the specific needs of and our experience
with design automation tool suites for Cyber-Physical Systems
(CPS), this paper focuses on using model integration languages
as a flexible way for modeling cross-domain interactions. The
primary challenge in specifying and supporting model inte-
gration languages is that both rapid evolvability and semantic
precision are required. This challenge is mapped into a meta-
level model integration problem, the integration of a meta-
modeling language used for specifying DSMLs and configuring
the underlying meta-programmable modeling tool WebGME,
and a formal framework that uses algebraic data types and
Constraint Logic Programming - Formula - devoted to formally
specifying the semantics of DSMLs and model transformations.
The primary contribution of the paper is the deep semantic in-
tegration of WebGME and Formula that keep the engineering
view of an evolving model integration language and its formal
representation tightly synchronized.

Index Terms—WebGME, Formula, DSML, Model Transforma-
tion, Constraint Programming.

1. Introduction

Modeling tools are key enablers of model-driven engi-
neering. They are responsible for offering intuitive engineer-
ing interface (usually graphical) for model developers and
they provide a range of services supporting safe model en-
gineering practices including composing/decomposing, vi-
sualizing, modifying, checking well-formedness, version-
ing, and storing large models. Adaption of model-driven
methods in new cross-disciplinary fields such as Cyber-
Physical Systems (CPS) challenges modeling tool develop-
ers with heterogeneity: design flows require the integration
of multi-physics, multi-abstraction and multi-fidelity mod-
els expressed in a rich set of domain-specific modeling
languages (DSML). Since design flows and the tools in-
volved in their implementation change, the suite of relevant
modeling languages is not static; they evolve continuously.
Our approach to manage model heterogeneity has been
the introduction of model integration languages [1] that

are restricted to modeling language constructs limited to
modeling the interactions among different and changing
modeling domains. The cost of introducing easy-to-evolve
model integration languages - that are themselves DSMLs -
is the requirement for explicit representation of their formal
semantics, which is necessary to preserve the semantic
integrity of design flows [2].

In our previous work, developing the OpenMETA de-
sign automation tool suite for DARPA’s Adaptive Vehicle
Make program [3], we addressed these needs by pursuing
and coordinating two parallel paths in model integration.
As a first step, we specified and continuously evolved the
CyPhyML model integration language focusing on the in-
tegrated OpenMETA design flow targeting ground vehicle
design [3]. Since the OpenMETA design flow extended
to multiple physical and cyber domains, CyPhyML itself
proved to be a complex DSML requiring the use of our
meta-programmable modeling tool, WebGME[4]. To satisfy
the need for representing and evolving the formal seman-
tics of CyPhyML, we developed the OpenMETA Semantic
Backplane[2]. It provided a formal representation of the
interacting physical and cyber domains. Although the two-
pronged approach satisfied the basic needs, the challenge
of synchronizing the CyPhyML and Formula models, and
meta-models decreased the benefits of the Semantic Back-
plane.

In this paper we discuss our recent work on establish-
ing a deep integration of WebGME and Formula. Deep
integration means keeping the two representations - the
CyPhyML meta-models and models in WebGME and their
FORMULA equivalent - fully synchronized and providing
seamless access to complementary services of the tools.
WebGME services include [4]:

• meta-programmability with prototypal inheritance
that allows smooth language integration and evolu-
tion,

• graphical concrete syntax that is highly customiz-
able,

• multiple, well defined APIs for model interpretation
and tool integration,

• version control with branch support to allow mod-
eling in large, and

• collaborative, distributed modeling via web-
interface.



FORMULA services include:

• formal representation of structural semantics of
modeling languages [5] as strongly-typed, open-
World logic programs (OLP) [6] offering specifi-
cations that are highly declarative and executable,
they can express static, dynamic, and transformation
semantics of DSMLs,

• program synthesis and automated reasoning enabled
by the symbolic execution of logic programs into
quantifier-free sub-problems, which are dispatched
to the state-of-the-art SMT solver Z3 [7],

• modular reuse of DSMLs via the composition of
OLPs in a strong category theoretic sense [8].

The primary contribution of this paper is the semantic
integration between the tools, detailing the relationship be-
tween WebGME meta-models and Formula domain spec-
ifications. The following sections presents the integrated
use of WebGME and Formula services using constraint
specification as example.

2. Modeling in WebGME

WebGME[4] is the next generation of Vanderbilt’s
Generic Modeling Environment(GME) [9] providing many
newly designed features such as web-based deployment,
version control, real-time collaborative editing and prototyp-
ical inheritance to add more scalability and extensibility for
large, real world applications. WebGME is a response to the
limitations of GME uncovered by the widespread application
of our model-integrated computing (MIC) tools.

Although the WebGME advanced the modeling capa-
bilities of GME and provided a highly customizable and
meta-programmable framework; it still lacks an expressive
and easy-to-use platform for well-formedness checking. In
WebGME, the models could be checked with script defined
in JavaScript language, but for model-developers and engi-
neers its use is cumbersome and lacks expressiveness which
makes it hard to maintain. Elimination of this gap was one
of the key motivations for the deeper integration between
WebGME and Formula.

3. Formal Specification of Modeling Lan-
guages in Formula

Microsoft Formula[10] is a constraint logic program-
ming tool developed by Jackson at Vanderbilt and later
at Microsoft Research [5]. Formula is based on algebraic
data types and first-order logic with fixed-point semantics.
It has found many application in Model-Based Engineering
such as reasoning about meta-modeling [11] or finding
specification errors by constraints [12].

The theoretical foundation for Formula reasoning is
based on Non-recursive Horn Domain (a well-known de-
cidable subset of first-order logic) to reason about meta-
model as mentioned in a previous paper[13]. Formula is also
capable of generating automatic proofs by the help of the

state-of-the-art satisfiability modulo theories (SMT) solver
Z3 [14].

In summary, the Formula tool complements WebGME
with a range of essential services: verifying if domain con-
straints are consistent (the domain is not empty), completing
partially defined models that are part of the domain, check-
ing well-formedness of models, formally specifying (and
executing) model transformations, and formally composing
domains.

4. Integration Architecture

To provide a seamless and tight integration that com-
bines the modeling power of WebGME with the reasoning
engine of Formula, we have created an integration archi-
tecture presented in Figure 1. As it is shown, the WebGME
client interface has a single communication channel towards
the server, that helps in providing a unified platform where
the user is able to harness the capabilities of both tools.

To keep the WebGME project and its Formula represen-
tation synchronized, the system uses the webhook feature of
WebGME. It generates a notification towards a configured
machine - in our case the Formula machine - at every event
of interest. For every new commit in the WebGME model
store, the Formula machine will receive a request to make
the model translation and constraint evaluation. After finish-
ing, it will store the results in a separate database so they
can be queried later as well. With the help of an additional
middleware, the Formula editor is capable of continuously
querying the results from the server and provide it to the
user - whether it is the evaluation of constraints or some
syntax error.

Figure 1: Integration Archi-
tecture view of the WebGME
Formula integration

Another aspect of the
integration is that the We-
bGME meta-model repre-
sented as a Formula do-
main is always available
in a synchronous man-
ner. Modifications to the
meta-model are immedi-
ately reflected as Formula
domain specifications and
can be extended with For-
mula constraints without
interaction with server.

However, the constraint evaluation and syntax checking
requires server interaction with reasoning in Formula engine.

5. Semantic Integration Between WebGME
and Formula

The cornerstone of WebGME and Formula integration
is the transformation of WebGME metamodels and models
into Formula domain and instance representations. We ex-
plain this translation in two steps. First, we discuss a simple
example to demonstrate the two alternative representations,
and second we provide a simplified version of the model
transformation rules.



(a) FSM Meta-model in WebGME (b) Up-Down Counter model in WebGME

domain FiniteStateMachines {
Transition ::= new (id: String,
parent: any FSMDiagramTYPE + {NULL},
attributes: any Attr__Transition,
pointers: any Ptr__Transition).
Attr__Transition ::= new (guard: String,
name: String,
operation: String).
Ptr__Transition ::= new (base: any FCOTYPE + {NULL},
dst: any StateBaseTYPE + {NULL},
src: any StateBaseTYPE + {NULL}).

Initial ::= new (id: String,
parent: any FSMDiagramTYPE + {NULL},
attributes: any Attr__Initial,
pointers: any Ptr__Initial).
Attr__Initial ::= new (name: String).
Ptr__Initial ::= new (base: any FCOTYPE + {NULL}).

StateBase ::= new (id: String,
parent: any FSMDiagramTYPE + {NULL},
attributes: any Attr__StateBase,
pointers: any Ptr__StateBase).
Attr__StateBase ::= new (name: String).
Ptr__StateBase ::= new (base: any FCOTYPE + {NULL}).

State ::= new (id: String,
parent: any FSMDiagramTYPE + {NULL},
attributes: any Attr__State,
pointers: any Ptr__State).
Attr__State ::= new (name: String).
Ptr__State ::= new (base: any FCOTYPE + {NULL}).

End ::= new (id: String,
parent: any FSMDiagramTYPE + {NULL},
attributes: any Attr__End,
pointers: any Ptr__End).
Attr__End ::= new (name: String).
Ptr__End ::= new (base: any FCOTYPE + {NULL}).

FSMDiagram ::= new (id: String,
parent: any {NULL},
attributes: any Attr__FSMDiagram,
pointers: any Ptr__FSMDiagram).
Attr__FSMDiagram ::= new (name: String).
Ptr__FSMDiagram ::=
new (base: any FCOTYPE + {NULL}).

}

(c) Domain in Formula

model M of FiniteStateMachines {
TenMachine_attr is Attr__FSMDiagram("TenMachine").
TenMachine_ptr is Ptr__FSMDiagram(NULL).
TenMachine is FSMDiagram("TenMachine",
NULL, TenMachine_attr, TenMachine_ptr).

Initial_attr is Attr_Initial("Initial").
Initial_ptr is Ptr__Initial(NULL).
Initial is Initial("Initial",
TenMachine, Initial_attr, Initial_ptr).

End_attr is Attr_End("End").
End_ptr is Ptr__End(NULL).
End is End("End", TenMachine, End_attr, End_ptr).
State_One_attr is Attr__State("State One").
State_One_ptr is Ptr__State(NULL).
State_One is State("State One",
TenMachine, State_One_attr, State_One_ptr).

State_Two_attr is Attr__State("State Two").
State_Two_ptr is Ptr__State(NULL).
State_Two is State("State Two",
TenMachine, State_Two_attr, State_Two_ptr).

Tr_I_to_E_attr is
Attr__Transition("x=10", "Transition", "").

Tr_I_to_E_ptr is Ptr__Transition(NULL, Initial, End).
Tr_I_to_E is Transition("Tr_I_to_E",
TenMachine, Tr_I_to_E_attr, Tr_I_to_E_ptr).

Tr_I_to_1_attr is
Attr__Transition("x>10", "Transition", "x:=x-1").

Tr_I_to_1_ptr is Ptr__Transition(NULL, Initial, Sate_One).
Tr_I_to_1 is Transition("Tr_I_to_1",
TenMachine, Tr_I_to_1_attr, Tr_I_to_1_ptr).

Tr_I_to_2_attr is
Attr__Transition("x<10", "Transition", "x:=x+1").

Tr_I_to_2_ptr is Ptr__Transition(NULL, Initial, Sate_Two).
Tr_I_to_2 is Transition("Tr_I_to_2",
TenMachine, Tr_I_to_2_attr, Tr_I_to_2_ptr).

Tr_1_to_1_attr is
Attr__Transition("x>10", "Transition", "x:=x-1").

Tr_1_to_1_ptr is Ptr__Transition(NULL, State_One, Sate_One).
Tr_1_to_1 is Transition("Tr_1_to_1",
TenMachine, Tr_1_to_1_attr, Tr_1_to_1_ptr).

Tr_1_to_E_attr is Attr__Transition("x=10", "Transition", "").
Tr_1_to_E_ptr is Ptr__Transition(NULL, State_One, End).
Tr_1_to_E is Transition("Tr_1_to_E",
TenMachine, Tr_1_to_E_attr, Tr_1_to_E_ptr).

Tr_2_to_2_attr is
Attr__Transition("x<10", "Transition", "x:=x+1").

Tr_2_to_2_ptr is Ptr__Transition(NULL, State_Two, Sate_Two).
Tr_2_to_2 is Transition("Tr_2_to_2",
TenMachine, Tr_2_to_2_attr, Tr_2_to_2_ptr).

Tr_2_to_E_attr is Attr__Transition("x=10", "Transition", "").
Tr_2_to_E_ptr is Ptr__Transition(NULL, State_Two, End).
Tr_2_to_E is Transition("Tr_2_to_E",
TenMachine, Tr_2_to_E_attr, Tr_2_to_E_ptr).

}

(d) Model in Formula

Figure 2: Meta-Model and Model representation in WebGME and Formula



Concept
description

WebGME
(Meta)

representation
Formula translation

Component
FSMDiagram ::= new (id: String, parent: any {NULL},
attributes: any Attr__FSMDiagram,
pointers: any Ptr__FSMDiagram).

Containment StateBase ::= new (...parent: any FSMDiagramTYPE + {NULL},...).

Attribute

Transition ::= new (...attributes: any Attr__Transition...).
Attr__Transition ::= new (guard: String, name: String,

operation: String).

Pointer
(one to one
association)

Transition ::= new (...pointers: any Ptr__Transition).
Ptr__Transition ::= new (...dst: any StateBaseTYPE + {NULL},
src: any StateBaseTYPE + {NULL}).

Inheritance

StateBase ::= new (...).
End ::= new (...).
StateBaseTYPE ::= StateBase + ... + End.

Figure 3: Subset of translation rules of WebGME Meta concepts into Formula domain constructs

5.1. Modeling Example

Finite State Machine (FSM) is used to demonstrate how
WebGME meta-models are represented as Formula domains.
The FSM modeling language defined as WebGME meta-
model is shown in Figure 2a. The meta-modeling language
(WebGME META) adopts a UML-like concrete syntax,
which is detailed in [4]. A specific FSM instance using
WebGME graphical interface is shown in Figure 2b. The
concrete syntax is configurable as expected from meta-
programmable modeling tools. The example shows a simple
up-down counter that - given any x integer input value and
an initial state - will check the value of input, if its value
is equal to ten, a transition is triggered to move from initial
state to end state denoting the goal is reached, otherwise
it will jump to either State One or State Two and
keep incrementing or decrementing x until it reaches ten and
transfer to end state. The equivalent Formula representation
are shown in Figures 2c and 2d.

The definition on Figure 2a, still allows the creation of
malformed models. To avoid it, we need to introduce domain
constraints - so the user can evade flaws like having states
with the same name or not having an initial state at all.
From tool design point of view, Formula has its clear advan-
tages by allowing consistency check, model synthesis, and
well-formedness checking. The seamless use of Formula’s
constraint language is enabled by the tight integration of the
two tools and will be described in Section 6.

It is important to note that we leave out from this

discussion the formal specification of behavioral semantics.
Formula supports this by its constructs for specifying model
transformations. The various ways to use Formula for speci-
fying behavioral semantics in operational or denotation style
is discussed in [2].

5.2. Generation of Formula Domains and Models

A WebGME plugin, GenFORMULA makes the trans-
lation by using the Core API functions of WebGME. It
creates a Formula domain by traversing the meta-concepts
of the project. By following the rules presented in Figure 3,
every Class definition is translated into three constructors
in Formula. Attr__Class is a tuple for the available at-
tributes, Ptr__Class couples the pointer definitions, and
Class(id,parent,attributes,pointers) tuple
combines the other two and adds the containment rep-
resentation with the parent field. The plugin also de-
fines ClassTYPE set, that captures the inheritance among
meta-concepts of WebGME. Inheritance among models
and model elements are kept in the base pointer defini-
tion. Finally, it specifies some helper constructs GMENode,
GMEContainment and GMEInheritance to represent
all nodes, their containment relation and inheritance relation.
The user defined constraints are then added without modifi-
cation. This step finalizes the Formula domain. Finally the
procedure traverses the whole containment hierarchy in the
WebGME project. For every node, it gathers the necessary



values with the help of the Core API, and translate them
into instances in Formula.

The resulting formula file is then processed with the help
of the Formula engine to get the constraint evaluations and
syntax check. Being automated, the result is available after
every change, so the user will be notified at the place of
error.

6. Constraints

The constraints play important role in specifying the
structural semantics of modeling languages. They restrict
structural characteristics, properties and relations in models
such that all instances of a modeling domain are seman-
tically well-formed. However, the built-in constraints in
WebGME’s meta-modeling language are quite limited and
do not support the specification and enforcement of complex
constraints. The only available solution is the traversal of
models using JavaScript plugin and check if they satisfy
the constraints. This method is error-prone, do not provide
declarative representation for the constraints to reason about
their properties (e.g. consistency) and make the use of ad-
vanced service such as model synthesis impossible. Integra-
tion of WebGME with Formula eliminates these drawbacks.

6.1. Constraint Example for FSM Domain

In our examples shown in Figure 4, we collected a
few important constraints regarding the FSM domain. These
well-formedness rules are complex and cannot be expressed
with the graphical suite of meta-modeling of WebGME.

For example, it is required in any FSM, that all transi-
tions should have valid states as endpoints. The pointer con-
cept of WebGME doesn’t specify strict requirement regard-
ing the target so it can be NULL - as in many applications
that would be perfectly fine. To eliminate this gap, we define
the noSourceTr(t) and noDestinationTr(t) rules
for every transition. Then we combine them to get the
danglingTr(t) rule which can be used to finally get
global NoDangling constraint. Overall, many complicated
constraints can be easily written in logic programming style
Formula Language and evaluated in Formula engine.

6.2. Benefits of Using Formula Constraints in We-
bGME

Similar works can be found that enable adding visual
or textual constraints to general modeling. For example,
the Object Constraint Language (OCL) [15], Semantics Of
Business Vocabulary And Rules (SBVR) and Extensible
Visual Constraint Language (EVCL) [16] is widely used
in the UML context. Constraint Languages like OCL have
the expressiveness to describe complex constraints but they
lack model transformation and model completion features
that are integral to our needs. Other tools like EVCL [16]
generate actual JavaScript code to check visually defined
constraints. Consequently, it’s not flexible enough and can

noSourceTr ::= new(t:TransitionTYPE).
noSourceTr(t) :- t is TransitionTYPE,k = t.parent,
k is FSMDiagramTYPE, t.pointers.src = NULL.

noDestinationTr ::= new(t:TransitionTYPE).
noDestinationTr(t) :- t is TransitionTYPE,k = t.parent,
k is FSMDiagramTYPE, t.pointers.dst = NULL.

danglingTr ::= new(t:TransitionTYPE).
danglingTr(t) :- noSourceTr(t) ; noDestinationTr(t).
HasDangling :- t is TransitionTYPE, danglingTr(t).
NoDangling :- no HasDangling.
NotExactlyOneInitState :- p is FSMDiagramTYPE,
t is FSMDiagramTYPE, p.pointers.base = t,
count({s | s is Initial, s.parent = p}) != 1.

ExactlyOneInitState :- no NotExactlyOneInitState.
NotAtLeastOneEndState :- p is FSMDiagram,

p.parent = NULL,
k = count({s | s is End, s.parent = p}), k = 0.

AtLeastOneEndState :- no NotAtLeastOneEndState.
ExistsDuplicateName :- s1 is StateBaseTYPE,
s2 is StateBaseTYPE,
s1 != s2, s1.parent = s2.parent,
s1.attributes.name = s2.attributes.name.

UniqueName :- no ExistsDuplicateName.
reachable ::= new(x: StateBaseTYPE, y: StateBaseTYPE).
reachable(x,y) :- x is StateBaseTYPE, y is StateBaseTYPE,
t is TransitionTYPE, x.parent = y.parent,
x.parent = t.parent,
t.pointers.src = x, t.pointers.dst = y.

reachable(x,y) :- reachable(y,x).
reachable(x,z) :- reachable(x,y), reachable(y,z).
DisjointDiagram :- f is FSMDiagramTYPE,

x is StateBaseTYPE,
y is StateBaseTYPE, x.parent = f, y.parent = f,
x != y, no reachable(x,y).

NoDisjointDiagram :- no DisjointDiagram.

Figure 4: Formula Constraint Example

be cumbersome to specify large complex set of constraints
with visual blocks. Formula stands in the middle of these
two categories of constraint specification methods by using
declarative constraint specification style, but also providing
a reasoning engine to automatically derive the result by
repeatedly applying rules to a set of initial constants.

6.3. Constraint Editor in WebGME Visualizer

In WebGME environment, a visualizer for code editing
is implemented for users to write constraints in Formula
syntax. The embedded constraint editor is also used to
render evaluation results directly in the code by changing
the background color of the head of the constraint based on
the result as shown in Figure 5.

Furthermore, the editor also provides syntax highlight-
ing and syntax check to help users come up with correct
constraints. Whenever there is a syntax error in the text, an
exclamation mark - left of the faulty line - will be shown and
by hovering over it the user can see the source of the error.
Also, the user can turn on the Formula view, that will result
in a split view shown in Figure 5, where the upper portion
with white background shows the Formula translation of
the Language domain to help the user as those definitions
should make the foundation of the constraints.



Figure 5: Formula Code Editor

7. Conclusion and Future Work

This paper discusses the integration of WebGME, a
meta-programmable modeling tool with Formula, a formal
framework and tool for specifying domain specific modeling
languages. The purpose of the integration has been the
construction of an advanced modeling tool that provides
extensive model engineering services, such as graphical
modeling interface, scalable model repository, web-based
implementation architecture and concurrent modeling as
well as rigorous formal foundations and tool for specifying
modeling language semantics, model transformation seman-
tics, consistency checking, and model synthesis. Seamless
integration of these services are enablers for the safe use of
domain specific modeling language (DSML) technologies
in application domains, where heterogeneous and changing
modeling domains need to be integrated and evolved.

As described in the paper, the current level of integration
focused on automated and fully synchronized generation
of Formula representation from WebGME models. In the
next step we will address the opposite direction: the auto-
generation of WebGME plugins from Formula specifications
for constraint checking and model transformation. The pri-
mary goal is to preserve the advantages of the Formula-
based declarative specification of model transformations,
such as conciseness, semantic precision and preservation of
domain invariants after the transformation - but without los-
ing the efficiency of an imperative language implementation,
which is particularly important for large models.

References

[1] J. Sztipanovits, T. Bapty, S. Neema, X. Koutsoukos, and E. Jackson,
“Design tool chain for cyber-physical systems: Lessons learned,” in
Proceedings of DAC15. IEEE, 2015, pp. 1–8.

[2] G. Simko, T. Levendovszky, S. Neema, E. K. Jackson, T. bapty, P. Joe,
and J. Sztipanovits, “Foundation for model integration: Semantic
backplane,” in Proceedings of the ASME 2012 IDETC/CIE 2012.
ASME, 2012, pp. 1–8.

[3] J. Sztipanovits, T. Bapty, S. Neema, L. Howard, and E. Jackson,
OpenMETA: A Model- and Component-Based Design Tool Chain
for Cyber Physical Systems. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2014, pp. 235–248. [Online]. Available:
https://doi.org/10.1007/978-3-642-54848-2 16

[4] M. Maróti, T. Kecskés, R. Kereskényi, B. Broll, P. Völgyesi,
L. Jurácz, T. Levendovszky, and Á. Lédeczi, “Next generation (meta)
modeling: Web-and cloud-based collaborative tool infrastructure.” in
MPM@ MoDELS, 2014, pp. 41–60.

[5] E. Jackson and J. Sztipanovits, “Formalizing the structural semantics
of domain-specific modeling languages,” Software & Systems Mod-
eling, vol. 8, no. 4, pp. 451–478, Sep 2009.

[6] E. Jackson, W. Schulte, and N. Bjorner, “Open-
world logic programs: A new foundation for formal
specifications,” Tech. Rep., May 2013. [Online]. Avail-
able: https://www.microsoft.com/en-us/research/publication/open-
world-logic-programs-a-new-foundation-for-formal-specifications/

[7] L. De Moura and N. Bjørner, “Satisfiability modulo
theories: Introduction and applications,” Commun. ACM,
vol. 54, no. 9, pp. 69–77, Sep. 2011. [Online]. Available:
http://doi.acm.org/10.1145/1995376.1995394

[8] E. K. Jackson, “A module system for domain-specific
languages,” CoRR, vol. abs/1405.4041, 2014. [Online]. Available:
http://arxiv.org/abs/1405.4041

[9] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason,
G. Nordstrom, J. Sprinkle, and P. Volgyesi, “The generic modeling en-
vironment,” in Workshop on Intelligent Signal Processing, Budapest,
Hungary, vol. 17, 2001, p. 1.

[10] E. K. Jackson and W. Schulte, “Formula 2.0: A language for formal
specifications,” in Unifying Theories of Programming and Formal
Engineering Methods. Springer, 2013, pp. 156–206.

[11] E. K. Jackson, T. Levendovszky, and D. Balasubramanian, “Reason-
ing about metamodeling with formal specifications and automatic
proofs,” in International Conference on Model Driven Engineering
Languages and Systems. Springer, 2011, pp. 653–667.

[12] E. K. Jackson, W. Schulte, and N. Bjørner, “Detecting specification
errors in declarative languages with constraints,” in Model Driven
Engineering Languages and Systems - 15th International Conference,
MODELS 2012, Innsbruck, Austria, September 30-October 5, 2012.
Proceedings, 2012, pp. 399–414.

[13] E. K. Jackson and J. Sztipanovits, “Constructive techniques for meta-
and model-level reasoning,” in MoDELS, vol. 7. Springer, 2007, pp.
405–419.

[14] L. de Moura and N. Bjørner, Z3: An Efficient SMT Solver. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 337–340.

[15] M. Richters and M. Gogolla, “On formalizing the uml object con-
straint language ocl,” in International Conference on Conceptual
Modeling. Springer, 1998, pp. 449–464.

[16] B. Broll and Á. Lédeczi, “Extensible visual constraint language,” in
Proceedings of the Workshop on Domain-Specific Modeling. ACM,
2015, pp. 63–70.


