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Abstract—Model Driven Engineering aims at improving ef-
fectiveness and efficiency of software engineering. Model trans-
formations are a key artifact in model driven engineering as
they enable transforming models into other artifacts for further
processing, e.g. analysis models or executable code. However,
particularly graph transformation based model transformation
tools often lack detailed debugging capabilities. In this paper,
we sketch how to debug the matching step of the execution of
Henshin model transformation rules.

I. INTRODUCTION

Software engineering with models often requires the appli-
cation of model transformations, e.g., chains of model transfor-
mations to translate state machines into code or operations in
the editor to change the models. Hence, model transformations
are a key element of model-driven software engineering.

Existing research has identified the ability to analyze models
as a key driver w.rt. to successful application of model-
driven engineering in practice [1]. Debugging is a specific
analysis technique — not only with respect to finding defects
but also to understanding how the model transformation works,
e.g. for adding functionality. Debugging Henshin rules, a
graph-transformation based model transformation tool, has the
challenge that its execution process does not follow the typical
sequential order of imperative languages where one usually
executes statement after statement.

Several model transformation frameworks offer debugging
support that offers at least basic break points and stepwise
execution on the transformation rule level. Some frameworks
extend this support by offering undo/redo (e.g. QVT-0 [2]),
conditional breakpoints (e.g. QVT-o0, VIATRA [3]), visualiza-
tion of matchings (e.g. GReAT [4], VMTS [5]), or even the
modification of the current match during debugging [5]. All
of the above debugging features work on the rule level, i.e.,
they step over the matching phase of a rule. To the best of
our knowledge, there is no graph transformation approach that
enables developers to debug the matching step of a rule.

The contribution of this paper is a sketch how the matching
step can be debugged, which is the most important part of the
execution of single Henshin transformation rules.

II. HENSHIN TRANSFORMATION LANGUAGE

Henshin supports single rules, containing a left hand side
(LHS) describing the precondition of the rule and a right
hand side (RHS) describing the postcondition of the rule.
Informally, a Henshin transformation rule is executed by first

finding a match of the left hand side on the model resp. host
graph (typically a subgraph isomorphism) and then changing
the match such that it is a match of the right hand side.

We illustrate the techniques presented in this paper using the
transferMoney rule from the Bank Example [6] provided
with Henshin (cf. Figure 1). It represents the possibility to
transfer some amount of money from one account to another
while ensuring that the sender’s credit is sufficient and that the
sender cannot transfer money to himself from the receiver’s
account by entering a negative amount.

transferMoney(in client:Estring, in fromId:Eint, in toId:Eint, &

in amount:EDouble, var x:EDouble, var y: Edouble)
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Fig. 1. Bank example - transformation rule

Henshin uses a constraint based approach for finding
matches of the left hand side in the host graph [7]. In a
first step, a search plan is derived containing a variable
for every node in the left hand side. For each variable, a
corresponding domain slot is created which contains a set of
all potential candidates for this node — initially all instances
of the node’s type. Furthermore, the search plan also defines
which constraints should be enforced, e.g., constraints on
attributes as well as on references between nodes.
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Fig. 2. Bank example - search plan

Figure 2 shows the search plan of the Henshin rule
transferMoney of the bank example. The order of matching
the variables is shown by the rectangles and the big arrows.



Furthermore, for each variable the constraints are annotated.
For example, for the : Client variable first the type is checked
and then the attribute constraint is checked. Finally, the set of
candidates for the from:Account is restricted to those which
are reachable via the accounts reference from the current
candidate for the :Client variable.

The match of the left hand side is then computed by
a recursive back-tracking algorithm which binds potential
candidates, i.e., objects in the model (the model provided
with the Henshin example contains the clients Alice, Bob,
Charles), to variables while removing impossible candidates
from the domain slots by imposing the constraints derived
from the left hand side.

III. DEBUG STEPS FOR HENSHIN RULES

Our approach follows the usual debugging steps (step into,
step over, step return, run until) found in all typical debugging
environments. As described above the Henshin interpreter
uses a recursive backtracking algorithm to find a match for
the left hand side of the rule. Each recursive call covers the
matching of a single variable.

The matching of a single variable consists of several ac-
tivities of the matching process as indicated in the search
plan (cf. Figure 2): selection of a candidate as well as
checking/enforcing the different types of constraints. Multiple
instances of each constraint type are possible, e.g., multiple
attribute constraints. Each of these activities is similar to
a function in an imperative program that “call” each other,
e.g., the function responsible for selection of candidates calls
the different functions for checking/enforcing constraints, and
the function responsible for checking/enforcing all attribute
constraints calls a function for checking an individual attribute.
Hence, a specific state during matching in our running example
has a “call stack” (cf. Table I).

TABLE I
CALL STACK FOR A SPECIFIC STATE DURING DEBUGGING.

activity example

check attribute constraint: name == “Bob”
check all attribute constraints

check the candidate bob

select candidate for the variable :Client

Constraint Instance
Constraint Type
Candidate

Variable

=W

The search plan (cf. Figure 2) shows that the vari-
ables are matched in the order :Client, from:Account,
to:Account. Hence, the first debugging state is matching
the variable :Client. With step over, we would complete
the matching of the variable, i.e., selecting a candidate which
satisfies all constraints, which in our running example is Bob.
However, if we step into, the debugging state changes to
selecting the candidate Charles as it is the first object in
the model. This step into allows us to iterate with subsequent
step overs over all candidates for the variable.

But, if we further step into, we can iterate over constraint
type and instances of the constraint type. In our running
example, we first check the type (Client in our example)

and then attribute constraints like name == *‘Bob’’. Unfor-
tunately, the current candidate has the name ‘‘Charles’’.
Hence, the attribute constraint is not fulfilled and stepping
further leads to considering the next candidate (Bob). Here,
the type and attribute constraints are satisfied. Executing the
reference constraint ensures that the set of candidates for the
account variable from:Account is restricted to the candidate
2:Account as this is the only account Bob has. However, we
see later that this account does not have enough credit. The
final candidate for the :Client variable also does not satisfy
all constraints.

While step into covers all states, step over usually stays on
the same “call stack” level, e.g., iterating over all candidates
for a variable or iterating over all constraint types. Step return
simply executes all other activities until a higher level is
reached, e.g. if the current debug state is investigating the
candidate Charles, step return executes all steps until the
matching process of the variable from:Account starts.

Finally, run until executes all steps until a certain activity
takes place, e.g., until a certain candidate is investigated,
a certain constraint is checked, or a matching of a certain
variable starts.

IV. CONCLUSION AND FUTURE WORK

Currently, we have implemented the debugging steps
outlined in Section III in Henshin and refactored the
interpreter in order to enable step-wise execution of the
matching process. We are currently working on integrating
the different step actions into the standard Eclipse debugging
environment and are developing specific visualizations for
the variable view as well as the call stack. Whether and
how much our approach actually improve efficiency and
effectiveness will be a focus of future user studies.
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