
Challenges and Research Directions for
Successfully Applying MBE Tools in Practice
Francis Bordeleau∗, Grischa Liebel†, Alexander Raschke‡, Gerald Stieglbauer§ and Matthias Tichy‡

∗CMind Inc., Canada, Email:francis.bordeleau@cmind.io
†Software Engineering Division, Chalmers | University of Gothenburg, Sweden, Email: grischa@chalmers.se

‡Institute of Software Engineering and Programming Languages, Ulm University, Germany,
Email: alexander.raschke@uni.ulm.de, matthias.tichy@uni-ulm.de
§AVL List Gmbh, Graz, Austria, Email: gerald.stieglbauer@avl.com

Abstract—Model Based Engineering aims to improve efficiency
and effectiveness of software engineering. Success in industrial
practice of MBE does not only depend on the modeling languages
and constructive or analytical approaches, like code generation or
model checking. It is also heavily influenced by the quality and,
particularly, usability of the selected tools. In this position paper,
we discuss challenges experienced in applying MBE in practice
both from academic as well as industrial viewpoints. Based on
the research challenges, we discuss future research directions to
improve the chances for the success of MBE in industrial practice.

I. INTRODUCTION

Model-Based Engineering (MBE) has been successfully
used in industrial domains and contexts, though mostly em-
bedded systems [1], over the last decades to manage the
increasing complexity of modern software intensive systems,
and increase developer productivity and product quality. Since
then, many different aspects of this field were addressed in
research and industry: creation and representation of models,
model transformation, code generation, and tool support to
mention only a few.

Several tools (commercial and open source) have been
developed to handle textual and/or graphical models. In the be-
ginning, the focus was on fixed modeling languages like UML
while in the last decade, the support for modeling domain
specific languages (DSL) raised. This resulted in frameworks
and tools to generate (textual and graphical) modeling tools
out of meta-models, like GMF, Sirius, MPS, and Xtext.

However, despite the undoubtable strengths of MBE, its
adoption in the industry, particularly outside the embedded
systems domain, often remains limited. A substantial body of
work has empirically investigated MBE adoption in industry,
both using quantitative methods [1], [2], [3] and qualitative
methods [4], [5], [6], [7]. Consistently, obstacles reported in
this context are related to modeling tools and their short-
comings. Commonly named shortcomings are, e.g., inadequate
usability [1], [8], [9], lack of interoperability [1], [3], [4], [5],
[10], high complexity [4], [6], [11], and high training effort
[1], [6].

In this position paper, we enumerate several obstacles that
are limiting the broad adoption of MBE in industry. From
different points of view (two industrial, three academic), we
present our experiences regarding the application and devel-
opment of MBE tools not only, but mainly in industry. In each

section, we describe the experienced challenges in specific
settings and propose research directions to overcome these
limitations.

Section 2 discusses challenges in industrial use while Sec-
tion 3 discusses challenges with respect to introduction of
modeling tools into industrial environments. Section 4 focuses
on use of modeling tools in education. Sections 5 and 6 discuss
technical challenges in developing modeling tools, particularly,
with respect to development of editors. We conclude with a
summary.

II. INDUSTRIAL USE OF MBE

In spite of the fact that MBE has been used in the industry
since the 90s, the tools have not significantly evolved over the
last decades. Existing MBE tools are still much too complex
to use and customize for domain specific needs. Moreover, the
lack of evolution of the MBE tools in the last years and the
fact that MBE tools still lack key capabilities has led several
development units to seriously re-consider the use of MBE in
spite of the all of the benefits it provides.

A. Experienced Challenges

From our industrial experience, we identify three main areas
that need to be improved to enable a broader adoption of MBE
tools.
Customization and DSL support. In order to enable the
increase of productivity, it is essential that MBE tools support
customization and Domain Specific Languages (DSL) to allow
adapting the tool to the specifics of the domain/context in
which they are used. MBE tools should also allow combining
graphical and textual modeling in a complementary manner in
a single DSL.

This is one aspect that essentially all commercial UML
modeling tools have failed to address. UML tools typically
present the whole UML language to the user with very little
capabilities to reduce the set of concepts and diagrams to the
subset the user needs, and essentially no support for textual
modeling. This means that the overall tool environment is
much more complex than it used to be. While most people
associate this problem with UML, it is not a problem with
UML but the UML tools. Team support and collaborative
modeling To enable efficient team collaboration, MBE tools



must provide first-class support for the following aspects:
versioning, model diff/merge, model review, and document
generation. While versioning is well supported, much better
support is required for model diff/merge, model review, and
document generation. If we compare to coding environments
where diff/merge and review are well supported, MBE tools
still lack proper support.
Tool capabilities. In spite of years of research in essentially
all technical aspects, existing MBE tools still lack capabilities
regarding a number of aspects that are considered key (or
essential) by software and system engineers, including model-
based tracing and debugging, model validation/verification,
model executability, and many others (as discussed in the other
sections).

While technical evolution is needed regarding many dif-
ferent MBE aspects, we believe that the most effective way
to get access to more and better capabilities is to increase
technology transfer. In spite of major investment in MBE
research over the last decades, very little has been made
available in industrial tools. If we want the MBE tools to
evolve and provide more capabilities, we need to increase
technology transfer. To achieve effective technology transfer,
the MBE community needs to collaborate together on the
development of an open source MBE tooling platform that
can be used by both industrial developers and researchers to
develop tools and capabilities. We believe that it is the only
pragmatic way to obtain the ever-evolving set of capabilities
that we need.

B. Proposed Research Directions

Regarding research directions, we believe that the following
three topics are key to broaden the use of MBE in the industry.

• DSL support. We need more research focused tool
support for DSL, in particular on UML-based DSL so
that we can get in the same MBE tools the full benefits of
UML as a standard modeling language and the strength of
DSL. Also, we need to research focus on how to combine
different DSLs in the same modeling environment/tools.

• Model diff/merge. We need to increase focus on model
diff/merge to address existing issues. In particular, we
need scalable model diff/merge support for DSL.

• Model review. MBE tools currently dont provide real
capabilities for model review. Typically, people do model
review by generating PDF documents from models and
providing comments in the PDF documents. Firstclass
model review is required to enable efficient use of MBE.
Finally, we need to better understand how to develop
and establish vibrant open source communities to foster
innovations and enable efficient technology transfer.

III. INCREMENTAL INTRODUCTION OF MBE

As one reaction to limited MBE tool capabilities, the indus-
try is favoring alternative development strategies such as ag-
ile development in combination with traditional development
technologies. This is despite a common agreement within the
modeling community that agility and the application of MBE

are not contradictory at all. However, there is an observed
difference between application (e.g. the act of modeling) and
introduction of MBE (e.g. learning a modeling language) and
according to some experiences, the latter is considered as much
more critical within agile environments.

Within agile environments, so-called development sprints
have shrunk the length of traditional development cycles
from months to weeks. The support of frequent product
updates, rapid prototyping and continuous integration became
an inherent part these sprints. In contrast, most established
MBE tools originate from MBEs first hype during the 90s
of the previous century when agile environments were less
prominent. Many traditional MBE introduction strategies are
thus not intentionally designed to comply with weekly sprints
and due to a limited tool evolvement, MBE tools do not
provide an inherent support for an agile-oriented introduction
strategy.

A. Experienced Challenges

In contrast to weekly sprints and their central paradigm
of a gradual change, traditional strategies for introduction
of MBE usually emphasize on a methodological paradigm
shift. It is argued that this shift needs extensive MBE training
programs for employees and investments in new tool suites
both supervised by experienced modeling advocates. These
programs are planned for a longer period and are promoted to
the management with the promise of a drastic improvement
of the development efficiency. The size of these programs,
however, turns out to be a classical showstopper in practice
for the following simple reason: Upcoming deadlines remain
demanding and the agile development team is moving forward,
while the modeling advocates are still focusing on various
long-term investigations. Once the modeling advocates are
presenting the initial MBE-based approach, they usually miss
the latest requirements of the next upcoming deadline. The
result will thus not be accepted by the development team and
prevents the MBE approach to achieve critical momentum.

B. Proposed Research Directions

Instead of a radical paradigm shift from traditional de-
velopment methods to MBE, there is a strong need for a
strategy about a gradual introduction of MBE. In [12], a
corresponding MBE introduction strategy is proposed by the
definition of so-called MBE micro injections. These MBE
micro injections are intended to go along agile development
processes and the related effort of one MBE micro injection
is manageable within one development sprint. Furthermore,
the benefits and drawbacks of a single MBE micro injection
have to be quantifiable in relation to a traditional approach to
convince the development team. If the concrete numbers favor
the MBE approach, it has to be capable of being integrated
to the main development trunk within the next development
sprint. To ensure sustainability, the development team takes
over responsibility from the modeling advocate during this in-
tegration. Adequate tool support is fundamental to support the



co-existence MBE micro injections and traditional approaches
during the gradual introduction phase.

Domain-specific languages (DSLs) are promising candi-
dates to fulfill the requirements of MBE micro injections.
However, a DSL design step and the development of a
related end-user tool to promote the DSL must be feasible
during a sprint to be accepted by the development team.
Rapid prototyping must thus come along with a high degree
of automation (e.g. DSL editor generation) besides further
aspects such as a high tool matureness (in terms of stability,
usability and documentation), straightforward integration in
existing industrial development tool chains (e.g. Visual Stu-
dio), sophisticated collaboration features and composability of
intermediate and distributed MBE approaches across working
groups and departments. Despite of promising candidates (e.g.
the Eclipse eco-system), none of the established MBE tools
are currently mature enough in all mentioned fields. A missed
deadline due to this, however, contradicts the vision of a MBE
micro injection and undermines the fragile trust between the
modeling advocate and the development team.

IV. USAGE OF MBE TOOLS IN EDUCATION

For MBE to be adopted successfully in industry, appropriate
university education on the topic is instrumental. Our experi-
ence is drawn from four years of teaching a Bachelor-level
course on model-based software development at Chalmers
University of Technology and Gothenburg University in
Gothenburg, Sweden. During each year, approximately 120 to
150 students took this 8-week long course. The course consists
of several lectures on the topic of modeling, in particular
UML, and a group project. While the syntax of several UML
diagrams is introduced, the course focus is on the semantics of
the produced models and several different purposes of using
models, from informal models for communication purposes to
models for code generation.

Three different tools have been used throughout the four
course years. In the first year, we used a commercial MBE
tool that supports executable models (the academic license
agreement prohibits us to name the tool). In the remaining
three years, we used Papyrus. In the fourth year, we addi-
tionally used Yakindu to allow students to explore executable
state machines. From the second year on, the students were
required to build a running system from the generated code.

We provided in all four years tool support through a dedi-
cated teacher instead of relying on official tool documentation.
However, the amount of support we could provide varied
depending on resources.

A. Experienced Challenges

Industrial MBE tools are often reported to contain many
bugs and have low usability. Additionally, we often observe
that students have difficulties to distinguish actual tool errors
from mistakes in their model. For example, when we used
code generation students would often attribute errors during
code generation to bugs in the modeling tool. When asking
the teachers for help, we discovered that the errors were rather

related to mistakes they had made in their models. In the
course project, students work in teams of 6 to 8 people. Due
to the weak support for collaboration, as discussed in Section
2, we observe that students typically resort to work on a single
computer or develop a complex manual process to deal with
changes on different computers.

Finally, a challenge we encountered regularly is a lack
of tool support. Official documentation is often outdated or
incomplete. Due to its rapid evolution during the last three
years, this is especially true for Papyrus. Additionally, in
official documentation for industry-grade modeling tools it is
usually assumed that the reader is a modeling expert, which
is clearly not the case for students. Similarly, in order to be
able to ask questions on a support forum, the students often
lack knowledge of how to phrase their questions, or even
to distinguish a tool-related question from a language-related
question. Therefore, we have during the last years resorted to
giving dedicated tool support during lectures and, recently, in
the form of short videos that introduce different topics in a
concise way.

B. Proposed Research Directions

Several of the challenges we encounter are identical to the
challenges in industry. For example, we also see the clear
need for customization and DSL support. While simplified,
education-specific tools are clearly a way to tackle the com-
plexity our students encounter with industrial MBE tools, we
often experience that these tools are built with a specific
course design in mind. Hence, they might be restricted to
a certain process and diagram types. Therefore, we believe
that to address complexity of MBE Tools, tool developers
and researchers should investigate how industrial tools can
effectively be customized in a quick fashion without expert
tool knowledge. In particular, it should be possible to adapt
a tools customization after it has been installed, e.g., to
re-distribute it to students or employees when changes are
necessary. Furthermore, we need better team support and
collaborative modeling to allow students to effectively work
in groups.

Additionally, we also see multiple directions for research
aimed specifically at modeling education. Based on the chal-
lenge to distinguish tool errors from mistakes resulting from a
lack in understanding, we propose to research how students
can be provided with feedback on their models in a con-
structive way. Similar work has been conducted in the area
of programming education, e.g., in [13], [14]. It is important
to note that this research is not only restricted to tool features
or automated feedback, but could also be in terms of novel
course designs or processes that ensure that students receive
sufficient and constructive feedback, such as in [14].

V. DEVELOPMENT OF MORE USABLE MODEL
TRANSFORMATION TOOLS

We discuss the challenges during development of model
transformation tools with a higher usability using Henshin as
a case. Henshin is an Eclipse-based Model Transformation



Language based on the Graph Transformation formalism. It
uses a declarative way to specify model transformations by
defining pre- and postconditions. Henshin and predecessors
have been around since 2009 and heavily use tooling of the
Eclipse Modeling Framework ecosystem, e.g., generation of
graphical and tree editors. Recently, we developed several
usability improvements with respect to syntax checks when
executing model transformations from plain Java code, a
textual syntax, and generation of transformation rules [15].

A. Experienced Challenges

A major challenge during the development of Henshin is a
rather big gap between the abstract syntax and the concrete
syntax. Graph transformation based model transformations de-
fine a precondition (called Left Hand Side) and a postcondition
(called Right Hand Side) on the to-be-transformed model
part. Henshin and most graph transformation languages use a
shorthand notation as concrete syntax, where the left hand side
and right hand side is combined and the changes to transform
the model from the pre-condition into the post-condition are
explicitly annotated. However, the abstract syntax of Henshin
is based on the explicit distinction between the left and the
right hand side. This leads to a big gap between the concrete
syntax and the abstract syntax and is out-of-the-box not well
supported by frameworks for graphical. Hence, we had to add
many manual changes to the generated code of the graphical
editor. First, these manual changes are difficult to correctly do
and require a rather big effort. Second, these manual changes
complicate further usage of the frameworks code generation
capabilities and, thus, hampers development.

Furthermore, one of our recurring experiences in MBE tools
is that they often focus on functionality. Particularly, we be-
lieve that we, as a community, much more value functionality
over usability. A researcher will get a paper on new language
features or performance improvement accepted, but work on
simply improving usability of existing tools is difficult to
measure and to publish. For example, the MODELS 2017
main program does only have 2 papers which cover usability, 7
mention it somewhere as something important or future work,
and 27 ignore it. Hence, we believe there is a systematic bias
against usability improvements to MBE tools. This has been
also our experience, while working in industry, developing
modeling tools.

With respect to model transformations, there have been
numerous papers on search plan optimization and other kinds
of automatic performance improvement. However, to the best
of our knowledge there does not yet exist an easy way
for developers of graph transformations to understand how
transformation rules are executed and the specific impact of
changes in their transformation rules have on the performance
of model transformation executions.

Similarly, often modeling tools do not provide easy to
use debugging capabilities. Particularly, for declarative model
transformation languages like Henshin, it is very difficult for
developers to understand why a model transformation rule
does not work as intended, particularly, since the declarative

nature makes it more difficult to understand how rules are
executed and the sequences of actions are not explicitly
expressed by the developer but automatically inferred and
optimized by the engine.

B. Proposed Research Directions

We see a need for a more systematic usability engineer-
ing support in MBE tool development. Particularly, we are
wondering whether existing usability engineering techniques
[16] can simply be reused, and are maybe often ignored,
or specific techniques for MBE need to be researched. For
example, there could be a significant difference in usability
requirements between the developer of MBE tools and expert
users on the one side and non-expert users and domain experts
on the other side.

Furthermore, while we developed a textual editor for Hen-
shin [15] for an easier specification of transformation rules, we
still see the value of graphical editors. However as discussed
in Section 2, we need both types of editors highly integrated,
as shown in an early prototype [17], and the corresponding
development frameworks which makes those editors easy to
develop.

VI. USER EXPERIENCE OF GRAPHICAL MODELING TOOLS

The user experience plays an important role in the accep-
tance of a tool. If the creation and editing of a model is painful
and time-consuming, the advantage of MBE by shortening the
development time can melt dramatically.

Besides MBE tools for fixed models like UML, a set
of frameworks were built to support development and/or
generation of graphical modeling editors for a DSL. These
frameworks (e.g. GMF, Sirius, MPS, and graphiti) reduce the
effort for the developer tremendously. Unfortunately, these
frameworks are optimized for fast development, and thus
helpful for the introduction of MBE (see Section 3), but not
for a comfortable and user-optimized usage. In the following,
we focus on our experiences with these generator frameworks.

A. Experienced Challenges

One of the main problems is the correct-by-construction
approach of the underlying GEF framework. This means that
any editing step must result in a (syntactically) correct model.
Obviously, this is useful from the developer view, because any
diagram is a representation of the model. It is not necessary
to deal with two kinds of models: one (possibly incorrect) for
the graphical editing and one for further processing.

Considering the users view, it is often painful to ensure
that any editing operation does not contain any intermediate,
incomplete model. In the simplest case, the tool enforces the
user to do some editing in a specific order. For example, if
an edge exists between two nodes and the user wants to add
another node in the middle of the edge, then, first, she has
to create the new node, attach the start or the end point of
the existing edge to the new node and then create a new edge,
correspondingly. It is not possible to first detach the edge from
one of the existing nodes.



Another example is to remove the surrounding state of a
hierarchical state in a state chart, i.e., to move the contained
states one level up. In most tools deleting the surrounding state
results in a deletion of the containing states as well. At least,
any edge to or from the surrounding state is removed, because
otherwise these edges are not connected to two nodes. In this
case, the user has to redraw the edges again or she has to move
all contained states to the same level as the surrounding state,
modify the edges, remove the surrounding (and now empty)
state, and rearrange the states to their original position.

Problems like these are the reason why simple drawing tools
like Microsoft Visio or even Powerpoint are often preferred
for creating graphical models. These tools do not restrict
the users in their workflow. The avoidance of incomplete
graphical representations of models is in contrast to the textual
representation. In a text editor, most of the time, the actual
text does not represent a correct model. Only at specific
times, when the text is parsed, it is necessary that the text
is syntactically correct.

The need for incomplete graphical models in MBE tools
becomes even larger, if textual and graphical models are used
in a hybrid view, where the underlying model can be edited
either by using a textual or graphical representation and it
should be possible to change between these views at any time
as discussed in Section 2.

B. Proposed Research Directions

In order to improve the user experience of graphical editing
tools, we propose the following three research directions:

• Comprehensive studies with industrial users have to be
conducted to gain more insight into the required features
enabling a faster editing of models.

• Based on the results of these studies, improved prototypes
of editors supporting different kinds of graphical editing
tasks have to be evaluated with industrial users.

• Finally, frameworks incorporating the results of the pre-
ceding studies have to be developed.

VII. CONCLUSIONS

In this position paper, based on our cumulative experience
in industry, research, and education, we present current chal-
lenges related to MBE tooling.

We discuss the introduction of MBE tools in industry, which
is often hindered by outdated assumptions on the process and
a slow return on investment. With respect to tool usage in
industry, we see that there are several key features currently
missing that effectively prevent the use of MBE tools. These
are, e.g., a lack of collaboration facilities and customization
support. Mirroring the industrial use of MBE tools, several
similar challenges can be seen in modeling education, which
suggests that the topic of MBE education should not only
be studied in isolation. Using and building MBE tools in an
academic environment, we observe that the user experience
and usability of existing tools and tool-building frameworks
are low, but at the same time that academic policies do not
effectively encourage improvements within academia.

To tackle existing challenges, we outline directions for
future work in the area of MBE tooling. These directions can
be separated into directions for research, e.g., improved model
diff/merge capabilities and novel MBE introduction strategies,
directions for industry and communities like improved tech-
nology transfer and initiatives to start and foster open source
communities around MBE, and directions for academic policy,
e.g., an increased focus on tool creation or improvements in
tenure procedures.

ACKNOWLEDGMENT

This work was partially funded by the German Research
Foundation (DFG) as part of the DFG Priority Programme
1593 (TI 803/2-2 and TI 803/4-1).

REFERENCES

[1] G. Liebel, N. Marko, M. Tichy, A. Leitner, and J. Hansson, “Model-
based engineering in the embedded systems domain - an industrial
survey on the state-of-practice,” Software & Systems Modeling, Mar.
2016.

[2] L. T. W. Agner, I. W. Soares, P. C. Stadzisz, and J. M. Simão, “A
brazilian survey on UML and model-driven practices for embedded
software development,” Journal of Systems and Software, vol. 86, no. 4,
pp. 997–1005, 2013.

[3] A. Forward and T. C. Lethbridge, “Problems and opportunities for
model-centric versus code-centric software development: a survey of
software professionals,” in International Workshop on Modeling in
Software Engineering, MiSE 2008, Leipzig, Germany, May 10-11, 2008,
J. M. Atlee, R. B. France, G. Georg, A. Moreira, B. Rumpe, S. Völkel,
and S. Zschaler, Eds. ACM, 2008, pp. 27–32.

[4] S. Kirstan and J. Zimmermann, “Evaluating costs and benefits of
model-based development of embedded software systems in the car
industry–results of a qualitative case study,” in Proceedings Workshop
C2M: EEMDD ”From code centric to model centric: Evaluating the
effectiveness of MDD” ECMFA, 2010.

[5] P. Baker, S. Loh, and F. Weil, “Model-driven engineering in a large
industrial context - motorola case study,” in Model Driven Engineering
Languages and Systems, 8th International Conference, MoDELS 2005,
Montego Bay, Jamaica, October 2-7, 2005, Proceedings, ser. Lecture
Notes in Computer Science, L. C. Briand and C. Williams, Eds., vol.
3713. Springer, 2005, pp. 476–491.

[6] J. E. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen,
“Empirical assessment of MDE in industry,” in Proceedings of the 33rd
International Conference on Software Engineering, ICSE 2011, Waikiki,
Honolulu , HI, USA, May 21-28, 2011, R. N. Taylor, H. C. Gall, and
N. Medvidovic, Eds. ACM, 2011, pp. 471–480.

[7] J. E. Hutchinson, M. Rouncefield, and J. Whittle, “Model-driven engi-
neering practices in industry,” in Proceedings of the 33rd International
Conference on Software Engineering, ICSE 2011, Waikiki, Honolulu ,
HI, USA, May 21-28, 2011, R. N. Taylor, H. C. Gall, and N. Medvidovic,
Eds. ACM, 2011, pp. 633–642.

[8] P. Mohagheghi, W. Gilani, A. Stefanescu, M. A. Fernández, B. Nord-
moen, and M. Fritzsche, “Where does model-driven engineering help?
experiences from three industrial cases,” Software and System Modeling,
vol. 12, no. 3, pp. 619–639, 2013.

[9] S. Karg, A. Raschke, M. Tichy, and G. Liebel, “Model-driven software
engineering in the openetcs project: project experiences and lessons
learned,” in Proceedings of the ACM/IEEE 19th International Confer-
ence on Model Driven Engineering Languages and Systems, Saint-Malo,
France, October 2-7, 2016, B. Baudry and B. Combemale, Eds. ACM,
2016, pp. 238–248.

[10] P. Mohagheghi and V. Dehlen, “Where is the proof? - A review
of experiences from applying MDE in industry,” in Model Driven
Architecture - Foundations and Applications, 4th European Conference,
ECMDA-FA 2008, Berlin, Germany, June 9-13, 2008. Proceedings, ser.
Lecture Notes in Computer Science, I. Schieferdecker and A. Hartman,
Eds., vol. 5095. Springer, 2008, pp. 432–443.

[11] A. Forward, O. Badreddin, and T. C. Lethbridge, “Perceptions of
software modeling: a survey of software practitioners,” in Proc. of
C2M:EEMDD, 2010.



[12] G. Stieglbauer and I. Roncevic, “Objecting to the revolution: Model-
based engineering and the industry - root causes beyond classical
research topics,” in Proceedings of the 5th International Conference on
Model-Driven Engineering and Software Development, MODELSWARD
2017, Porto, Portugal, February 19-21, 2017., L. F. Pires, S. Hammoudi,
and B. Selic, Eds. SciTePress, 2017, pp. 629–639.

[13] M. J. Lee and A. J. Ko, “Personifying programming tool feedback
improves novice programmers’ learning,” in Proceedings of the Seventh
International Workshop on Computing Education Research, ICER 2011,
Providence, RI, USA, August 8-9, 2011, K. Sanders, M. E. Caspersen,
and A. Clear, Eds. ACM, 2011, pp. 109–116.

[14] A. Vihavainen, M. Paksula, and M. Luukkainen, “Extreme apprentice-
ship method in teaching programming for beginners,” in Proceedings
of the 42nd ACM technical symposium on Computer science education,
SIGCSE 2011, Dallas, TX, USA, March 9-12, 2011, T. J. Cortina, E. L.
Walker, L. A. S. King, and D. R. Musicant, Eds. ACM, 2011, pp.
93–98.

[15] D. Strüber, K. Born, K. D. Gill, R. Groner, T. Kehrer, M. Ohrndorf,
and M. Tichy, “Henshin: A usability-focused framework for EMF
model transformation development,” in Graph Transformation - 10th
International Conference, ICGT 2017, Held as Part of STAF 2017,
Marburg, Germany, July 18-19, 2017, Proceedings, ser. Lecture Notes in
Computer Science, J. de Lara and D. Plump, Eds., vol. 10373. Springer,
2017, pp. 196–208.

[16] A. Seffah, J. Gulliksen, and M. C. Desmarais, Human-Centered Soft-
ware Engineering - Integrating Usability in the Software Development
Lifecycle, 1st ed. Springer Publishing Company, Incorporated, 2011.

[17] S. Maro, J. Steghöfer, A. Anjorin, M. Tichy, and L. Gelin, “On integrat-
ing graphical and textual editors for a UML profile based domain specific
language: an industrial experience,” in Proceedings of the 2015 ACM
SIGPLAN International Conference on Software Language Engineering,
SLE 2015, Pittsburgh, PA, USA, October 25-27, 2015, R. F. Paige, D. D.
Ruscio, and M. Völter, Eds. ACM, 2015, pp. 1–12.


