
ReMoDD Eclipse Plug-in: Collaborative Modeling
Using a Model Repository

Mohammed Al-Refai1, Andrew Jacobson1, Sudipto Ghosh1, James M. Bieman1, Betty H. C. Cheng2
1 Computer Science, Colorado State University, Fort Collins, CO, USA

Email: al-refai,akj,ghosh,bieman@cs.colostate.edu
2Computer Science and Engineering, Michigan State University, East Lansing, MI, USA

Email: chengb@cse.msu.edu

Abstract—The Repository for Model-Driven Development (RE-
MODD) is a community resource developed to support the
research and education activities of researchers and educators in
the Model-Driven Development (MDD) community. Researchers
and practitioners can use the repository as a vehicle for sharing
exemplar models, illustrative descriptions of modeling method-
ologies and techniques, detailed modeling case studies, modeling
success stories, and other forms of modeling experience and
knowledge. Recent extensions to REMODD support the seamless
integration of REMODD into existing modeling frameworks,
thereby improving the access to REMODD artifacts. In particular,
we have developed an Application Programming Interface (API)
to enable other repositories and existing modeling tools to directly
access REMODD search, browsing, and retrieval facilities. We
validate and demonstrate the API utility through an Eclipse plug-
in that allows a user to collaboratively work on modeling artifacts
that are available in REMODD.

Index Terms—collaborative modeling, Eclipse plug-in, MDE,
ReMoDD, version control

Link to Video Tutorial—http://remodd.org/v1/plugin-demo

I. INTRODUCTION

The Repository for Model Driven Development
(REMODD)[1] contains artifacts that researchers in the
Model-Driven Development (MDD) community can use to
guide and validate their research. REMODD artifacts include
detailed MDD case studies describing the use of models
(including graphical models, such as UML and Simulink, as
well as models expressed in formal specification languages
such as Z, Alloy, and Statecharts) throughout the development
lifecycle, source code describing implementations of design
models, examples of models reflecting good and poor
modeling practices, benchmark models that can serve as the
basis for evaluating model manipulation techniques, reusable
model transformations, and pedagogical materials that can
enhance the teaching of MDD concepts. The intent for
REMODD is to provide a community resource for storing
MDD artifacts that can be used to gain significant insights into
the use of models across the software lifecycle, as a source of
data for MDD experiments, as a source of models for testing
MDD tools, and to better understand relationships among
ongoing MDD research projects. In particular, educators
in academia and industry can use REMODD resources to
illustrate modeling concepts and approaches in the classroom.

We expect that the artifacts in REMODD will evolve as
researchers and educators use them in their work. Researchers

may need new versions of existing models to support exper-
imentation in studying approaches involving model evolution
and testing. Educators may require their students to extend
models to teach concepts in refactoring. The new versions
of models will need to be stored in REMODD to support
future research and education. Previously REMODD1 sup-
ported versioning capabilities via Drupal but did not support
access control and configuration management for simultaneous
collaborative modeling activities by contributors modifying
the same artifact. Modifications to artifacts are typically per-
formed in development environments that support modeling
tools, which require the availability of tools and Application
Programming Interfaces (API) to access REMODD, check out
artifacts, and push and commit changes to the artifacts.

In this paper we describe key elements of the REMODD
API and illustrate its use with the Papyrus Modeling environ-
ment2 and our REMODD plug-in. In the video tutorial, we
demonstrate several usage scenarios that are described below.

II. USAGE SCENARIOS

We developed an API for REMODD that defines the Java
interfaces, classes, and exceptions necessary to support (1) user
authentication, and login and logout processes, (2) new artifact
creation and submission, (3) search and browse, (4) retrieving
artifacts from REMODD, (5) modifying retrieved artifact
meta-data and content, and (6) pushing a modified artifact
back to REMODD. In order to facilitate access and support
configuration management, REMODD now makes use of the
git platform. We demonstrate the utility of the API using an
Eclipse plug-in. Usage scenarios of the plug-in are described
below and demonstrated in the video tutorial.

Scenario-1: This scenario takes the user through the ar-
tifact creation process (i.e., AirlineSystem artifact), using
REMODD’s web interface starting from the REMODD home-
page. The user can be the artifact’s author or someone up-
loading the artifact on behalf of the author. After providing
the author’s information and brief description of the artifact
as shown in Figure 1, the user submits the candidate artifact
for inclusion in REMODD.

1http://www.remodd.org/
2https://eclipse.org/papyrus/



Fig. 1. Scenario 1: Entering Metadata for Artifact Creation

Fig. 2. Scenario 2: Creating Class Diagram Using Papyrus

Scenario-2: Next, we show how the user can access RE-
MODD and its artifacts as an Eclipse plug-in. From Eclipse,
the user opens a new window and selects the REMODD view.
The user then logs in to REMODD using their REMODD
credentials and performs searches similar to how it is done via
the web-interface. The user can select the previously created
artifact (i.e., AirlineSystem) for editing. Figure 2 shows how
the user searches for the AirlineSystem project for cloning,
and then edits the project to include a class diagram containing
a single class (i.e., Flight), using the Papyrus modeling tool.

After completing the editing process, the user pushes the
changes back to REMODD by (1) selecting the "Team" option
from the Eclipse Project menu, (2) selecting the "Commit"
option to bring up a window to enter a commit message, and
(3) selecting the "Push and Commit" button to complete the
process of submitting the changes to REMODD. At this point,
the user clicks on the REMODD tab and logs out from the
REMODD website.
Scenario-3: As with many MDE projects, multiple collabo-
rators may work on a given artifact over a given time. This



Fig. 3. Scenario 3a: Adding Second User as Contributor to Project

Fig. 4. Scenario 3b: Class Diagram Modified by Second User

scenario illustrates how REMODD supports the feature of
adding and managing contributors for artifacts. The user starts
with the Artifacts page for a given artifact, and select the
"Contributors" tab. As shown in Figure 3, the user enters the
name of a new contributor and the corresponding privileges
("Edit Project", "Administer Maintainers", or "Administer Re-
leases"), and clicks the "Update" button at the bottom.

We next illustrate how the new contributor, user2 opens the
Eclipse project to access the AirlineSystem project, and then

opens the class diagram to add a new class called Airport.
Figure 4 shows the resulting class diagram. Upon saving the
class diagram, user2 repeats the process of saving the project
and pushing the revised artifact to the REMODD repository.

Scenario-4: This scenario represents a commonly occurring
situation where two or more modelers check out a version
and perform conflicting changes. These conflicts must be
resolved when the models are merged. This scenario starts



Fig. 5. Scenario 4: Merge Conflicts

Fig. 6. Scenario 5: Add Git Tag Release Number

after Scenario 3, when user1’s diagram only has the Flight
class, and user2’s diagram has both Flight and Airport, which
have been pushed to REMODD. First, user2 adds an operation
called book() to the Flight and commits the change but does
not push. Next, user1 pulls the changes that were pushed, and
thus, gets the Airport but not the book() operation. Next, user1
proceeds to add the cancel() operation to the Flight, and
commits and pushes the change. When user2 pulls changes
from REMODD, there is a conflict because of the book() and
conflict() operations. There is a built-in merge tool in e-git

that shows the conflicts to be merged as shown in Figure 5.
Scenario-5: This scenario is needed only when a contributor
wants to create a downloadable release of the artifact and make
it available to all REMODD users on the website, such as after
Scenarios 2, 3, and 4. We illustrate how this step is performed
after Scenario 4. After user2 pushes the revised artifact to
REMODD, they create a git tag for the pushed commit. The
tag number becomes the version number for the downloadable
release. Next, user2 opens the AirlineSystem artifact page
from the REMODD website, clicks on the "Add new release"



option, selects the tag number (see Figure 6), adds a short
description of the release, and finally clicks on "Save". The
created release contains the model files archived and attached.
REMODD users can view and download this artifact release.

Scenario-6: This scenario shows how REMODD users who
are not on the artifact’s contributor list can still search for
the artifact and download it via the plug-in so that they can
edit and store versions locally without committing changes
back to REMODD or creating new releases. This scenario
is demonstrated with user3, who is not a contributor for the
AirlineSystem artifact. User3 logs into REMODD via the
plug-in, searches for the AirlineSystem artifact, and then
clones it to a project in Eclipse. At this point, user3 is allowed
to edit the artifact files in the project (not shown in the video).

III. RELATED WORK

REMODD can potentially be used with other repositories
and complementary modeling environments through its new
API, a few of which we describe below. The Generic Modeling
Environment (GME) [2] allows users to create domain spe-
cific modeling languages and code generation environments.
GME provides a repository to store developed models in a
database or in XML format. GenMyModel [3] is a web-
based toolset that allows users to edit UML models in the
cloud. It enables users to share models with other users or
on social networks. The Model-Aware Repository and Service
Environment (Morse) [4] provides a service-based reposi-
tory for the storage and retrieval of models. Morse supports
versioning capabilities. MDEForge [5] is an extensible web-
based modeling framework that provides a community-based
modeling repository. It supports mechanisms to find artifacts,
and provides web access and other API-based services that
enable the management of the artifacts, metamodels, and
model transformations. The OCL repository3 contains exam-
ples of Object Constraint Language expressions, where it is
hosted by GitHub and allows users to contribute without
having to register. OOModels4 is an open library of object-
oriented modeling. Users can use OOModels to download and
discuss artifacts, develop modeling artifacts, and find software
compatible with their models.

IV. CONCLUSIONS AND FUTURE WORK

REMODD now includes an interface with git support and
an API to enable the MDE community to integrate their de-
velopment environments with REMODD. Users can download
artifacts from the repository and create new versions in their
respective development environments. An Eclipse plug-in uses
the API to implement this functionality. We plan to further
assess the usability and utility of these new features. We also
plan to collaborate with developers of other modeling tools
and repositories to enable them to interact with REMODD.

3https://github.com/jcabot/ocl-repository/
4http://oomodels.org/page/Main_Page/

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grants No. CNS 1305381 and
CNS 1305358.

REFERENCES

[1] R. B. France, J. M. Bieman, S. P. Mandalaparty, B. H. C. Cheng, and
A. C. Jensen, “Repository for model driven development (ReMoDD),”
in 34th International Conference on Software Engineering, ICSE 2012,
June 2-9, 2012, Zurich, Switzerland, 2012, pp. 1471–1472.

[2] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason,
G. Nordstrom, J. Sprinkle, and P. Volgyesi, “The generic modeling
environment,” in Workshop on Intelligent Signal Processing, Budapest,
Hungary, vol. 17, 2001, p. 1.

[3] M. Dirix, A. Muller, and V. Aranega, “Genmymodel: an online uml case
tool,” in ECOOP, 2013.

[4] T. Holmes, U. Zdun, and S. Dustdar, “Automating the management and
versioning of service models at runtime to support service monitoring,”
in Enterprise Distributed Object Computing Conference (EDOC), 2012
IEEE 16th International. IEEE, 2012, pp. 211–218.

[5] F. Basciani, J. Di Rocco, D. Di Ruscio, A. Di Salle, L. Iovino, and
A. Pierantonio, “Mdeforge: an extensible web-based modeling platform.”
in CloudMDE@ MoDELS, 2014, pp. 66–75.


