
Engineering a ROVER Language in
GEMOC STUDIO & MONTICORE:

A Comparison of Language Reuse Support
Thomas Degueule

Centrum Wiskunde & Informatica (CWI)
Amsterdam, Netherlands

degueule@cwi.nl

Tanja Mayerhofer
TU Wien

Vienna, Austria
mayerhofer@big.tuwien.ac.at

Andreas Wortmann
RWTH Aachen University

Aachen, Germany
wortmann@se-rwth.de

Abstract—Domain-specific languages (DSLs) improve engineer-
ing productivity through powerful abstractions and automation.
To support the development of DSLs, the software language
engineering (SLE) community has produced various solutions
for the systematic engineering of DSLs that manifest in language
workbenches. In this paper, we investigate the applicability of
the language workbenches GEMOC STUDIO and MONTICORE
to the MDETools’17 ROVER challenge. To this effect, we refine
the challenge’s requirements and show how GEMOC STUDIO
and MONTICORE can be leveraged to engineer a Rover-specific
DSL by reusing existing DSLs and tooling of GEMOC STUDIO
and MONTICORE. Through this, we reflect on the SLE state
of the art, detail capabilities of the two workbenches focusing
particularly on language reuse support, and sketch how modelers
can approach ROVER programming with modern modeling tools.

Index Terms—Software Language Engineering; Language
Reuse; Language Workbenches; Rover; GEMOC Studio; Monti-
Core

I. INTRODUCTION

Domain-specific languages (DSL) improve software engineer-
ing productivity and system quality through powerful domain
abstractions and increased automation. To support DSL develop-
ment, the software language engineering (SLE) [1] community
has proposed various solutions for the systematic development,
use, deployment, and maintenance of DSLs and related tools.
These solutions manifest in language workbenches [2] that
assist language engineers in all DSL engineering phases.

In this paper, we present the language workbenches GEMOC
STUDIO [3] and MONTICORE [4] to demonstrate and compare
their language engineering support on the MDETools’17
ROVER challenge [5]. GEMOC STUDIO is based on the Eclipse
Modeling Framework (EMF) [6] and provides support for
implementing executable DSLs and supporting tooling. This
includes meta-programming approaches for defining DSL inter-
preters and generic components for efficiently developing DSL
tools including model animators and debuggers. MONTICORE
offers support for implementing textual DSLs with context-free
grammars and provides a powerful infrastructure for developing
analyzers, transformations, and code generators.

We present implementations of the RASPIROVER DSL, a
DSL for defining the architecture and behavior of Raspberry Pi

operated rovers, with both language workbenches. In these
implementations, we aimed at reusing as many DSLs as
possible to ease and speed up the DSL engineering process for
the RASPIROVER DSL. We show (i) how to develop DSLs for
software-controlled rovers with both language workbenches
by reusing existing DSLs, (ii) the tool support that both
workbenches offer to engineers for using the developed DSLs,
and (iii) the individual strengths of GEMOC STUDIO and
MONTICORE with regard to their support for engineering DSLs
and supporting tools. We put a particular emphasis on language
reuse [7] techniques offered by both language workbenches to
facilitate DSL engineering.

In the following, Section II details the ROVER challenge
studied in this paper. Section III and Section IV describe the
solutions developed with GEMOC STUDIO and MONTICORE,
respectively. Section V compares the language engineering
support provided by the two studied language workbenches
focusing particularly on language reuse. Finally, Section VI
concludes.

II. ROVER LANGUAGE ENGINEERING CHALLENGE

Both GEMOC STUDIO and MONTICORE have been used
in the past for implementing DSLs facilitating the development
of software-controlled rovers. The ARDUINOML language [8]
has been implemented using GEMOC STUDIO for modeling
the architecture and behavior of Arduino-based systems, such
as Arduino-operated rovers. The MONTIARCAUTOMATON
(MAA) [9] architecture description language has been imple-
mented using MONTICORE for modeling the architecture and
behavior of robotics applications, such as the architecture and
behavior of LEGO NXT operated rovers as well as powerful
service robots [9]. While MAA is designed to be a platform-
independent DSL for developing robotics applications running
on any kind of platform, ARDUINOML is specific to the
Arduino platform.

In this paper, we present a case study on reusing these and
other existing DSLs to develop a new RASPIROVER DSL
customized for the development of Raspberry Pi operated
rovers, such as the Eclipse PolarSys Rover [10]. Our goal is to
showcase the language reuse support offered by MONTICORE

Rover

ffl

r

l

m mr

String

Boolean Boolean

Boolean

leftMotor :

Motor

rightMotor :

Motor

controller :

ControlUnit

inputChannel :

MessageSubscriber

frontSensor:

ObstacleSensor

Fig. 1. Example rover hardware architecture defined with RASPIROVER DSL

and GEMOC STUDIO as well as their benefits for facilitating
DSL engineering.

Before we present the implementations of RASPIROVER
DSL with GEMOC STUDIO and MONTICORE, we first
describe the requirements imposed on the development of
RASPIROVER DSL regarding desired language features, reuse
of existing DSLs, and DSL tooling.

A. Language Requirements

To set the language requirements for RASPIROVER DSL,
we investigated several DSLs that have been used in the
past to model rover systems. In particular, we investigated
ARDUINOML and MAA mentioned before, as well as the
UML-RT implementation of PAPYRUS-RT [11]. What the
investigated modeling languages have in common is that they
provide concepts for modeling both the hardware architecture
of a rover and the behavior of the rover’s control software.
There are however considerable differences, in particular in how
behavioral aspects are described. For instance, ARDUINOML
provides an action language for defining the behavior, while
PAPYRUS-RT relies on UML state machines with embedded
C++ code. Based on our investigations, we decide to include
in RASPIROVER DSL a hardware architecture description
language and an action language as detailed in the following.

Rover Hardware Architecture Description Language:
RASPIROVER DSL should enable the definition of the hard-
ware setup of a Raspberry Pi operated rover. This includes
defining hardware parts of the rover, such as the different
actuators and sensors, as well as their connection to the rover’s
control unit through describing the mapping of the rover’s
board’s pins to hardware modules. The primary rationale for
including the hardware mapping into the DSL is to make this
mapping explicit in a rover model, such that it can be leveraged
in code generation and for interacting with the rover when
executing a rover model.

Rover Control Language (RCL): For defining the behavior of
rovers, RASPIROVER DSL should provide an imperative rover
control language. We choose an action language because even
if other behavioral languages (such as UML state machines)
are used, an action language is still required to define fine-
grained behaviors. Furthermore, the action language should
abstract from a concrete programming language used to
implement rover control software by providing high-level
actions commonly supported by rovers. Therefore, RCL should
comprise (1) general control structures, such as blocks, loops,

01

02

03

04

05

06

07

08

09

program TravelBetweenObstacles() {

var step = 3 cm;
while (not message? = "stop") {
while (not obstacle-front?) {

forward step
}

turn 180 deg

}

}

number with unit

comparison of strings

primitive rover action

variable

primitive rover query

loop

Fig. 2. Example rover control program defined with RASPIROVER DSL

and conditional statements as well as variables, primitive values,
and variable assignments; (2) rover-specific queries and actions,
in particular, dedicated queries for retrieving the temperature
and humidity of a rover’s environment, for obstacles in front
of and behind the rover, and for messages posted to a central
message board (e.g., messages remotely sent to a rover), as
well as actions for moving forward and backward, turning,
stopping, logging, and sending messages; (3) units for defining
distances to travel forward or backward, as well as the rotation
angle for turning.

Fig. 1 shows an exemplary rover hardware description model
that should be definable with RASPIROVER DSL. It features
a control unit, two motors allowing the rover to drive forward,
backward, and turn, an obstacle sensor on the front of the
rover, as well as a message subscriber component allowing the
rover to receive input commands. Fig. 2 shows an example
of a rover control program written with RASPIROVER DSL
defining that the rover should travel between two obstacles. In
particular, it specifies that the rover should travel forward for
3 cm as long as no obstacle is detected in front of the rover
(ll. 4-6). When an obstacle is detected, the rover should turn
in the opposite direction (l. 7). This is repeated until a “stop”
command is received via the message board (l. 3).

B. Reuse Requirements

Since we focus in this study on a comparison of language
reuse support offered by the investigated language workbenches,
we require that existing DSLs previously engineered with
GEMOC STUDIO and MONTICORE should be reused wherever
possible.

For implementing RASPIROVER DSL as specified above, we
identify several DSLs that can be reused in GEMOC STUDIO
and MONTICORE as shown in Table I. In particular, we aim
to reuse ARDUINOML for the GEMOC STUDIO solution,
as well as MAA and Java/P for the MONTICORE solution.
The GEMOC STUDIO solution relies on a revised version
of the unit domain model proposed in [12], while the units
are implemented by hand in the MONTICORE solution. We
manually implement the rover-specific queries and actions from
scratch in both cases.

C. Tool Requirements

Regarding tooling support, we want to reuse any existing
tool of the reused languages for the resulting RASPIROVER

TABLE I
LANGUAGES REUSED FOR DEVELOPING RASPIROVER DSL

Sub-language GEMOC MONTICORESTUDIO

Architecture Description ARDUINOML MAA [9]

General Action Language ARDUINOML Java/P [13]

Units Reused Newly
from [12] implemented

Rover Actions Newly implemented

DSL language. This comprises, for instance, editors, model
animators, model debuggers and code generators available
for ARDUINOML and MAA. Other than that, we impose no
further requirements, as the set of tools that can be developed
with GEMOC STUDIO and MONTICORE is quite diverse.
For instance, GEMOC STUDIO mostly supports graphical
languages, while MONTICORE focuses on textual languages.
As another example, GEMOC STUDIO specializes in language
interpreters while MONTICORE specializes in code generators.

III. THE RASPIROVER DSL IN GEMOC STUDIO

The GEMOC STUDIO [3] is a language workbench for
designing and using executable DSLs. It is built atop various
modeling technologies of the Eclipse ecosystem (e.g., EMF,
Xtext, Sirius) and contributes new components, such as a model
animator and a model debugger [14], along with customizable
execution engines [15]. Following the GEMOC approach, the
abstract syntax of a DSL is specified in Ecore [6], its concrete
syntax in either Xtext or Sirius, and its execution semantics
using various meta-languages (e.g., K3 [16], ALE [17], or
xMOF [18]). By specifying these artifacts, users of GEMOC
STUDIO then enjoy various facilities, e.g., language-specific
debuggers and animators [15].

As one of the showcases of the GEMOC STUDIO, the
authors designed ARDUINOML, a DSL with simulation and
animation capabilities for designing programs that can be
deployed on a given configuration of an Arduino board. The
metamodel describing the abstract syntax of ARDUINOML
consists of two main parts: a description of the hardware
deployed on a given Arduino board (the set of modules
and their associated pins), and a description of the scenario
putting these modules into play with a simple action language
providing basic control structures, variables, and expressions.
The ARDUINOML language also comes with an associated
interpreter.

Rather than starting the development of a new DSL for the
PolarSys rover from scratch, one could reuse some parts of
ARDUINOML and customize them to the specificities of the
PolarSys rover, thereby obtaining a customized RASPIROVER
DSL. To achieve this, GEMOC STUDIO includes MELANGE,
a meta-language that allows language designers to reuse and
compose various DSLs in the creation of new ones [19]. Using
MELANGE, it is possible to prune the Arduino-specific parts
of the ARDUINOML language, merge new concepts specific to

Fig. 3. Using MELANGE to compose the ARDUINOML, RCL and UNITS
languages to form a new customized RASPIROVER DSL

the PolarSys rover (i.e., rover actions and units as described in
Section II-A), and customize the existing execution semantics
(i.e., override certain methods of the interpreter) to make the
different parts fit together. Fig. 3 depicts the definitions of the
various languages reused for implementing RASPIROVER DSL
in MELANGE, along with the definition of the RASPIROVER
DSL itself. The language implementations are available online.1

First, the rover control language RCL is defined (ll. 3-6).
It consists of its abstract syntax, defined in Ecore (l. 4),
along with its execution semantics defined in K3 (l. 5).
The Units and ArduinoML languages are defined in a
similar way (ll. 7-10 and 11-14). Finally, the RasPiRover
language composes the reused language components in a
meaningful way. First, it slices [19] the ArduinoML language
(l. 17) to extract the hardware-definition part and remove
the Arduino-specific parts that should not be reused in the
new language. Then, it merges the two other languages RCL
and Units into the RasPiRover DSL (ll. 20-21). Finally,
additional K3 aspects are woven to glue together the different
components both syntactically and semantically (l. 22). As
an example, Fig. 4 depicts the ProjectToProgramGlue
and OverridenProjectInterpreter aspects that, respec-
tively, insert a new containment reference from ArduinoML’s
Project (l. 1) to RCL’s RoverProgram (l. 3), and override
the execution semantics of Project to instead delegate to
the interpreter of RCL (ll. 7-9). The renaming clauses (Fig. 3,
ll. 18-21) simply ensure that all concepts of the three languages
end up in the same logical package.

Overall, the MELANGE meta-language allows us to compose
the three languages and reuse (parts of) their syntax and
semantics (interpreter). As a result, the model execution capa-
bilities of GEMOC STUDIO can be employed for executing
RASPIROVER DSL models. The main limitation of the reuse
support offered by MELANGE is that the composition operators

1https://github.com/tdegueul/gemoc-pirover/

https://github.com/tdegueul/gemoc-pirover/

Fig. 4. Syntactically and semantically gluing ARDUINOML’s Project with
RCL’s RoverProgram using K3 aspects

do not cope with concrete syntax, i.e., the concrete syntax of the
resulting language must be defined by hand to benefit from the
animation and debugging facilities of GEMOC STUDIO. For
more information on the reuse support offered by MELANGE,
we refer the interested reader to [19], [20].

IV. THE RASPIROVER DSL IN MONTICORE

MONTICORE [4] is a workbench for the development of
modular, textual languages based on extended context-free
grammars, Java context conditions and translational realizations
of semantics using template-based code generation. It enables
reusing (parts of) languages via inheritance, embedding, and
aggregation [21]. Inheritance enables reusing productions
from the inherited grammar for which MONTICORE generates
parsers, abstract syntax classes, context condition checking
infrastructures, and code generation infrastructures. This sup-
ports specializing or extending languages while reusing existing
tooling from the inherited language. With embedding, extension
points in the host grammar are filled with productions from
embedded grammars. This enables, for instance, reusing lan-
guages for well-defined concerns, such as expression languages.
Aggregation loosely combines languages for joint analysis.
To this effect, elements used in models of one language
that reference elements of models of another language (such
as references to data types in an architecture language) are
interpreted specific to the integration. This integration is
external to both languages and, hence, does not require
participating languages to be aware of the integration.

A. Reusable MONTICORE Languages

Many of the languages required for realizing RASPIROVER
DSL are already available in MONTICORE: MAA [9] enables
describing software components and can thus be reused for the
hardware architecture description language of RASPIROVER
DSL through language inheritance. For realizing the rover
control language RCL of RASPIROVER DSL, JAVA/P, the
action language of UML/P [22] can be refined and extended
as required. For this, we can first restrict JAVA/P to feature
only variable assignments, statements, conditionals, and while-
loops. This is achieved by inheritance, i.e., RCL inherits
from JAVA/P, and an adds additional context condition that
prevents instances of unsupported JAVA/P abstract syntax
classes from being used in RASPIROVER DSL models. Then
we add new primitives dedicated to movement, sensing, and
communication to RCL. Furthermore, the UNITS language

components and connectors,
messaging, scheduling

RasPiRover DSL

MontiArc

Automaton

Units

rover
programs

Java/P

RCL
embeds embeds

Fig. 5. Relationships of the languages reused to implement RASPIROVER
DSL in MONTICORE

01

02

03

04

05

06

07

08

grammar RCL extends JavaDSL {

ForwardAction implements BlockStatement = "forward";

BackwardAction implements BlockStatement = "backward";

LogAction implements BlockStatement = "log" (msg:String);

MessageQuery implements Literal = "receive?";

TemperatureQuery implements Literal = "temperature?";

// additional actions and queries

}

01

02

03

04

grammar RasPiRover extends MontiArcAutomaton, RCL {

start MACompilationUnit;

RCLEmbedding implements Element = "behavior" Name "{" Statement+"}";

}

from RCLfrom MontiArcAutomaton

Fig. 6. Grammars RCL and RasPiRover realizing the definition and integration
of RASPIROVER DSL into MAA

is embedded into RCL. Consequently, the overall language
composition of RASPIROVER DSL is as depicted in Fig. 5.
MONTICORE combines the parsers and abstract syntax classes
of the languages accordingly.

B. Combining Syntaxes for the RASPIROVER DSL

Leveraging JAVA/P through inheritance enables the integra-
tion of new primitives for rover actions and queries via its
various interfaces. To this end, rover actions, which resemble
statements in JAVA/P, are designed to implement JAVA/P’s
Statement interface. This enables the usage of the new actions
wherever statements are supported, e.g., loops and conditionals.
Queries, which resemble literals, are analogously designed to
implement MONTICORE’s Literal interface, enabling their
use wherever literals are supported. With this, the complete
RCL grammar is only 17 lines of code (15 new productions)
as illustrated in Fig. 6 (top). In MONTICORE, embedding is a
specific usage of grammar inheritance that links productions
of the grammar to be embedded into extension points of the
host grammar. For embedding RCL into RASPIROVER DSL,
we leverage MONTICORE’s multiple inheritance to realize
embedding as linking one interface from the host grammar
MAA to productions from the embedded grammar RCL. This
is depicted in Fig. 6 (bottom). With this, we obtain a textual
concrete syntax as illustrated in Fig. 7.

Well-formedness of RCL programs is checked by new
context conditions that ensure, for instance, that results of
receive? queries (which return strings) are not compared to
numbers. To this end, adapters between the abstract syntax
classes generated from MAA’s ports and RCL’s primitives
enable interpreting the latter as method calls of the appropriate
return types, i.e., whenever MONTICORE looks up what
receive? in the context of JAVA/P is, the adapters return

Rover

Obstacles(PINs)

frontSensor

Obstacles(PINs)

backSensor

Thermometer

(PINs)

thermo

HumitdySensor

(PINs)

humitidy

RoverController

ctrl

d d

f f

b

h

t

h

b

s

s

t

MessageSubscriber

sub

composed component atomic componentcomponent type name

typed outgoing
port of name h

int

String

Float

Float

Boolean

Boolean

instance name

e e

int
Movement

(PINs)

mov
component RoverController {

port in Boolean f, b;

port in Float t, h;

port out String p;

port out int d, e;

behavior rcl {

while (not message? = "stop") {

while (not obstacle-front?) {

send temperature?

send humitidy?

forward 10 cm

}

turn 180 deg

}

} // end of embedded RCL behavior

}

MessagePublisher

(PINs)

pub
p p

String

typed incoming
port of name p

textual representation of
component RoverController

with embedded RCL

component parameter for PIN mapping

e
m

b
e
d
d
e
d
 R

C
L

language
 e

le
m

e
nts

M
A

A
language
e
le

m
e
nts

Fig. 7. Example RASPIROVER DSL model defined in MONTICORE

a method of return type string. With this in place, all JAVA/P
well-formedness rules are applied automatically.

C. Combining Code Generators for the RASPIROVER DSL

Integrating the behavior of MAA (scheduling, message
passing) and RCL (commanding the rover to perform ac-
tions) requires (1) the integration of their template-based
code generators, and (2) a mapping from rover primitives to
sending/receiving messages in the architecture (e.g., mapping
the primitive forward to sending a messages to a motor).

The MAA code generator requires that for embedded
behavior models (in our case RCL programs), a Java class
is generated that implements a specific interface of MAA’s
common Java run-time environment [9]. This interface pre-
scribes a compute() method that takes a set of named values
(read from incoming ports) as input and returns another set
of named values (that are assigned to outgoing ports) as
output. Every time a component (e.g., a rover’s control unit)
should execute its behavior, this method is invoked by MAA.
The body of the compute() method is generated by the
code generator of RCL. For this, the RCL generator can
reuse the JAVA/P generator templates for translating control
structure, conditionals, etc. The translation of RCL primitives
into sending and receiving messages is specific to the RCL
generator and must be implemented accordingly. To take into
account the connection among rover components, the generator
takes as additional input a map from RCL primitives to port
names. Based on this, the generator translates actions to sending
messages, and queries to receiving messages.

D. Summary

Overall, MONTICORE facilitates reusing the syntax and
semantics of independently developed DSLs. The central
artifacts for this are MONTICORE grammars, Java context
conditions, the symbol table, and template-based code gen-
erators, out of which only the grammars require learning
a specific meta-language while the rest is implemented in

TABLE II
COMPARISON OF REUSE SUPPORT IN GEMOC STUDIO AND MONTICORE

Reuse Support GEMOC STUDIO MONTICORE

Language Components:

Abstract Syntax

Concrete Syntax #

Semantics
(interpreters) (generators)

Transformations

Mechanisms:

Removing Concepts G#
(slicing) (context condition)

Adding Concepts
(merging/inheritance) (inheritance)

Changing Concepts G# G#
(weaving/inheritance) (inheritance)

Language Embedding #

Java. Hence, MONTICORE focuses on programmatic language
engineering. This, however, confronts language engineers with
the complexities of Java. Moreover, there is no support for
producing graphical editors for MONTICORE languages. The
language implementations are available online.2

V. DISCUSSION

As illustrated, the language reuse capabilities of GEMOC
STUDIO and MONTICORE differ in the language constituents
that can be reused as shown in Table II. For both workbenches,
reusing abstract syntax, semantics, and transformations3 is
supported. MONTICORE also supports the reuse of concrete
syntax as the concrete syntax integrated into the grammars
defining the abstract syntax as well. However, the reuse
mechanisms of GEMOC STUDIO and MONTICORE differ
in their expressiveness (see Table II). While GEMOC STUDIO
supports removing abstract syntax elements through slicing,
MONTICORE only supports removing abstract syntax elements
through well-formedness rules that actively prevent their
instantiation. Adding new abstract syntax elements is supported
through inheritance by both language workbenches. GEMOC
STUDIO also supports merging two metamodels on joint classes.
MONTICORE also supports inheriting concrete syntax. Through
inheritance, both workbenches also support to change language
concepts, whereas embedding, i.e., specification and binding of
dedicated language extension points is specific to MONTICORE.

We also investigated the impact of reuse in GEMOC
STUDIO and MONTICORE with respect to the reuse that could
be achieved in the implementations of RASPIROVER DSL.
For GEMOC STUDIO, we measured the numbers of reused
metamodel elements (classes, features, operations) and lines
of code of the existing interpreters. For the new artifacts, we
considered the size of the new RCL language (metamodel

2http://www.se-rwth.de/materials/rcl/
3Please note that we did not explicitly discuss the reuse of transformations

in this paper.

http://www.se-rwth.de/materials/rcl/

TABLE III
COMPARISON OF REUSE ACHIEVED WITH GEMOC STUDIO AND MONTICORE (LOC: LINES OF CODE; PROD: PRODUCTIONS; ELEM: ELEMENTS)

Artifact GEMOC STUDIO MONTICORE
Size of New Artifacts Size of Reused Artifacts Size of New Artifacts Size of Reused Artifacts

Syntax 141 elem. (RCL metamodel) 361 elem. (metamodels) 21 LoC / 18 Prod. (grammars) 1,267 LoC / 246 Prod. (grammars)24 LoC (K3 glue) 4 LoC / 2 Prod. (glue)

Semantics 281 LoC (RCL interpreter) 643 LoC (interpreters) 439 LoC (generators) 1,266 LoC (generators)50 LoC (K3 glue) 1 LoC (Java glue)

Reuse-Specific 19 LoC (Melange) - - -

and interpreter), the glue code, and the MELANGE file. For
MONTICORE, we measured the lines of code in the new
grammars and in the reused grammars, as well as their size
in terms of new and reused productions. For MONTICORE’s
generators, we also measured the lines of code of new and
reused code. The results are depicted in Table III. As can be
seen from these results, we could reuse a large portion of
RASPIROVER DSL from existing languages and only needed
to implement RCL and some glue code from scratch in both
language workbenches.

VI. CONCLUSION

We presented the quintessential constituents and activities
required for implementing RASPIROVER DSL, a DSL for
defining the hardware architecture and control software behav-
ior of rovers, with GEMOC STUDIO and MONTICORE. For
both language workbenches, we could rely on existing DSLs to
build the new rover-specific DSL. Through both case studies,
we showed how the different language reuse mechanisms are
applied and highlighted how they differ. We hope that this
supports practitioners in creating custom DSLs with minimal
effort.

REFERENCES

[1] A. Kleppe, Software Language Engineering: Creating Domain-Specific
Languages Using Metamodels. Addison-Wesley, 2008.

[2] S. Erdweg, T. van der Storm, M. Völter et al., “The State of the Art
in Language Workbenches,” in Proceedings of the 6th International
Conference on Software Language Engineering. Springer International
Publishing, 2013, pp. 197–217.

[3] The GEMOC Initiative, “The GEMOC Studio,” 2017. [Online].
Available: http://gemoc.org/studio.html

[4] H. Krahn, B. Rumpe, and S. Völkel, “MontiCore: a framework for
compositional development of domain specific languages,” STTT, vol. 12,
no. 5, pp. 353–372, 2010.

[5] Model-Driven Engineering Tools Challenge (MDETools’17), “Rover
Challenge Problem.” [Online]. Available: http://mase.cs.queensu.ca/
mdetools/index.php?id=rover

[6] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework, 2nd ed. Addison-Wesley Professional, 2008.

[7] S. Erdweg, P. G. Giarrusso, and T. Rendel, “Language Composition Un-
tangled,” in Proceedings of the 12th Workshop on Language Descriptions,
Tools, and Applications. ACM, 2012, pp. 7:1–7:8.

[8] The GEMOC Initiative, “Arduino Modeling GitHub Project.” [Online].
Available: https://github.com/gemoc/arduinomodeling

[9] J. O. Ringert, A. Roth, B. Rumpe, and A. Wortmann, “Language and
Code Generator Composition for Model-Driven Engineering of Robotics
Component & Connector Systems,” Journal of Software Engineering for
Robotics, vol. 6, no. 1, pp. 33–57, 2015.

[10] PolarSys, “PolarSys Rover.” [Online]. Available: https://www.polarsys.
org/projects/polarsys.rover

[11] The Eclipse Foundation, “Papyrus Real Time.” [Online]. Available:
https://eclipse.org/papyrus-rt/

[12] T. Mayerhofer, M. Wimmer, and A. Vallecillo, “Adding Uncertainty and
Units to Quantity Types in Software Models,” in Proceedings of the 9th
International Conference on Software Language Engineering. ACM,
2016, pp. 118–131.

[13] M. Schindler, Eine Werkzeuginfrastruktur zur agilen Entwicklung mit
der UML/P, ser. Aachener Informatik-Berichte, Software Engineering,
Band 11. Shaker Verlag, 2012.

[14] E. Bousse, J. Corley, B. Combemale, J. Gray, and B. Baudry, “Support-
ing Efficient and Advanced Omniscient Debugging for xDSMLs,” in
Proceedings of the 8th International Conference on Software Language
Engineering. ACM, 2015, pp. 137–148.

[15] E. Bousse, T. Degueule, D. Vojtisek, T. Mayerhofer, J. Deantoni, and
B. Combemale, “Execution Framework of the GEMOC Studio (Tool
Demo),” in Proceedings of the 9th International Conference on Software
Language Engineering. ACM, 2016, pp. 84–89.

[16] Inria DiverSE, “K3 – Executable Metamodeling,” 2017. [Online].
Available: http://diverse-project.github.io/k3/

[17] M. Leduc, T. Degueule, B. Combemale, T. van der Storm, and O. Barais,
“Revisiting Visitors for Modular Extension of Executable DSMLs,” in
Proceedings of the 20th International Conference on Model-Driven
Engineering Languages and Systems. ACM, 2017.

[18] T. Mayerhofer, P. Langer, M. Wimmer, and G. Kappel, “xMOF: Exe-
cutable DSMLs based on fUML,” in Proceedings of the 6th International
Conference on Software Language Engineering, ser. Lecture Notes in
Computer Science, vol. 8225. Springer, 2013, pp. 56–75.

[19] T. Degueule, B. Combemale, A. Blouin, O. Barais, and J.-M. Jézéquel,
“Melange: A Meta-language for Modular and Reusable Development of
DSLs,” in Proceedings of the 8th International Conference on Software
Language Engineering. ACM, 2015, pp. 25–36.

[20] T. Degueule, B. Combemale, A. Blouin, O. Barais, and J. Jézéquel,
“Safe model polymorphism for flexible modeling,” Computer Languages,
Systems & Structures, vol. 49, pp. 176–195, 2017.

[21] A. Haber, M. Look, P. M. S. Nazari, A. N. Perez, B. Rumpe et al.,
“Composition of Heterogeneous Modeling Languages,” in Proceedings
of the 3rd International Conference on Model-Driven Engineering and
Software Development. Springer International Publishing, 2015, pp.
45–66.

[22] B. Rumpe, Modeling with UML: Language, Concepts, Methods. Springer
International, July 2016.

http://gemoc.org/studio.html
http://mase.cs.queensu.ca/mdetools/index.php?id=rover
http://mase.cs.queensu.ca/mdetools/index.php?id=rover
https://github.com/gemoc/arduinomodeling
https://www.polarsys.org/projects/polarsys.rover
https://www.polarsys.org/projects/polarsys.rover
https://eclipse.org/papyrus-rt/
http://diverse-project.github.io/k3/

	Introduction
	Rover Language Engineering Challenge
	Language Requirements
	Reuse Requirements
	Tool Requirements

	The RasPiRover DSL in GEMOC Studio
	The RasPiRover DSL in MontiCore
	Reusable MontiCore Languages
	Combining Syntaxes for the RasPiRover DSL
	Combining Code Generators for the RasPiRover DSL
	Summary

	Discussion
	Conclusion
	References

