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Abstract—Model-Driven Engineering (MDE) promises an in-
crease in the maintainability and extensibility of modern software
systems. Furthermore, it encourages the usage of multiple models
of the same system to simplify the involvement of different
stakeholders, tools, and domains. The concurrent engineering of
such multiple models requires, however, support for consistency
management including consistency restoration and consistency
checking of and between existing models. Bidirectional trans-
formation (bx) approaches are able to address these challenges
with various paradigms that come along with different dis-
/advantages. Rule-based techniques, as one of these paradigms,
provide a declarative approach to implementing such consistency
management solutions. However, rule-based approaches rely on
finding an appropriate sequence of rule applications, e.g., such
that the transformation process does not lead to a dead-end.
In case of a wrong choice of rule applications, backtracking
(of arbitrary depth) is in general not a satisfactory solution as
it has exponential runtime in the number of rule applications.
We, therefore, propose a novel look-ahead strategy for rule-
based bx approaches that governs the rule application process by
generating additional application conditions based on the current
and possible future state of relevant edges in the model. We
demonstrate and evaluate our approach on a compact yet non-
trivial scenario that requires careful decision making among rule
applications.

Index Terms—Model-driven development

I. INTRODUCTION

Model-Driven Engineering (MDE) has become an
important technique to cope with the increasing complexity
of modern software systems. Its consequent use is said to
improve both the quality of developed software as well as
the effectiveness of the development process. However, as
a software system evolves and becomes more complex, so
do the underlying models that represent different views onto
the system. While each view has its own characteristics
and priorities, they normally share information that may
be altered and changed such that it no longer complies
with other related models. To cope with these changes and
keep those related models consistent to each other is of
particular interest for an integrated development process.
Hence, tools are needed that analyse models for compliance
with their correlated counterparts and, in case consistency
has been violated, are able to transform the models into
an updated consistent version without incurring unintended
loss of information. As different models are maintained by

different stakeholders, model transformations often have
to be ”bidirectional”, i.e., executable in either direction.
In general, a pair of transformations in reverse directions
(usually referred to as forward and backward transformations)
as well as consistency checking between two given models
are needed to tackle consistency challenges in an MDE
landscape. These tasks are addressed by bidirectional model
transformation (bx) approaches. Bx implementations can
be categorized into three paradigms, namely, bidirectional
programming languages (e.g., BiGUL [1]), constraint-based
approaches (e.g., JTL [2]) and rule-based approaches (e.g.,
TGG [3]). Bidirectional programming languages are powerful
with respect to expressiveness and provide more fine-grained
control over the transformation process. However, they
usually entangle high-level transformation goals with the
low-level (e.g., computation-focused) instructions of the
underlying programming language. In contrast, constraint-
based approaches are based on relationship specifications
that are then checked and enforced with constraint solving
techniques which in general yields good results but suffers
from performance issues due to large search spaces as
compared to the other two techniques [4]. Rule-based
approaches, finally, offer a compromise as their performance
is better than constraint-based approaches, and transformations
are implemented in a more declarative way as compared to
bx programming languages. In general, they rely on finding
an appropriate sequence of rule applications to perform a
transformation. This, however, can lead to dead-ends and
undesired transformation results due to wrong choices when
applying the rules. A naive but expensive solution is to use
backtracking to find the valid sequence or to correct a ”wrong”
rule application. It is, however, in general too expensive and
scales poorly to use such brute-force methods. Thus, the
amount of available choices of rule applications must be
limited by applying advanced static analysis techniques.

In this paper we will focus on Triple Graph Grammars
(TGGs), which is a declarative, rule-based bx-approach to
define consistency between two correlated models. However,
as a rule-based technique, TGGs also have to avoid dead-ends.
To cope with this, we propose in this paper a look-ahead
strategy for rule-based model transformations on the example
of a TGG specification. It was inspired by look-ahead



techniques of string parsing approaches which were early
adapted to improve graph grammar parsers. Furthermore,
we conduct experiments with our look-ahead strategy and
evaluate its added-value with respect to reliability of model
transformations, i.e., if dead-ends are reliably avoided. Last
but not least, the performance of our approach is compared
to an existing look-ahead strategy based on so-called ”filter
NACs” [5] with rather limited search space reduction
capabilities and a naive TGG implementation without any
look-ahead at all.

The rest of the paper is organized as follows: In Chapter II
we will introduce our running example and TGGs. Chapter
III introduces a novel look-ahead strategy that brings a
minor overhead for forward (and analogously backward)
transformations for the sake of more reliable transformations.
In case of more rule application-intensive tasks such as
consistency checking, the strategy even yields a substantial
performance gain by reducing the search space of rule
applications. In Chapter IV we present the results of our
approach with respect to success rates and performance.
Subsequently, in Chapter V we will discuss related work.
Finally, in the last chapter we will summarize the results and
give an overview over future work.

II. RUNNING EXAMPLE AND FUNDAMENTALS

Our running example is depicted in Figure 1. It is
inspired by an example from the example zoo provided
by [6] and is concerned with the consistency between class
diagrams (metamodels) in the Eclipse Modeling Framework
(EMF) and a custom documentation structure. On the
left side, an EMF class diagram model consisting of two
EPackages and four EClasses is depicted while on the right
side, we have two Folders and four Doc-files. The blue
dotted connections between the EMF and documentation
model represent traceability relationships between related
elements in different models. In detail, the example consists
of an EPackage which contains two interfaces, namely
Serializable and Observable that are of type EClass
(note the attribute values interfaces = true). Furthermore,
the EPackage contains additionally a sub-EPackage with the
two EClasses Person and Employee which are concrete
classes. There exist multiple inheritance relations from
Person to Serializable and Observable where
Employee inherits from Person. The point of interest
in this example is the definition of multi-inheritance which
may be defined in two ways, namely as generalization or
as realization. EMF does not differ between generalization
and realization and represents both relations uniformly. To
still be able to differ between both, we have to take a look
at the target of such an edge to see if it is defined as an
interface or a concrete class. The documentation model on
the right side represents the same information as the left side
with the minor difference that there are two explicit types of
inheritance links, namely realizes and generalizes. Both links
are visualized in conformance to UML syntax. Generally

speaking, it is highly beneficial to be able to automatically
extract a meaningful documentation from an existing project
and furthermore, to keep it consistent. It might also make
sense to first define a documentation structure and to extract
an EMF skeleton that conforms to the documentation so that
developers may work more purposively. Last but not least,
for given projects and documentations in ongoing software
projects it is often not clear which parts are still consistent to
each other and which are not. To discover (in-)consistencies
and return a valid mapping, that covers as many elements
of both sides as possible, is sometimes crucial when the
alternative would be to start the documentation from scratch.
These scenarios may be handled by bx approaches in general;
however, we will focus on Triple Graph Grammars (TGGs)
as our tool of choice which is a rule-based bx technique.

EPackage

Serializable:
EClass

interface = true

Observable :
EClass

interface = true

Employee :
EClass

interface = false

Person :
EClass

interface = false

EPackage

Employee Person

Serializable Observable

Fig. 1. Running example

TGGs [3] are a declarative, rule-based bidirectional
transformation approach which was initially proposed
by Schürr. While ”meta-models” define the structure of
models in a MDE context, a TGG specification defines
consistency between instances of two meta-models. A TGG
consists of a finite set of transformation rules that define how
consistent pairs of both source and target model co-evolve.
Consistency is defined between structural features of the
source and target meta-model via a third one which is called
the correspondence meta-model. Each rule defines a pattern
where elements are said to be in source, correspondence or
target domain if they belong to the corresponding meta-model.

Figure 2 depicts the TGG rules of our running example.
We focus on an excerpt including structural features of and
between EPackage and EClass. The target side consists
of Folders and Doc(-Files) which ideally should document
the structure of Ecore packages and classes with their
inheritance relations. Each TGG rule consists of two kinds
of structural features, namely nodes and edges. Every node
and edge has a state which determines if it is a context
or created element. The first state is depicted as black
nodes and edges of a pattern, in the following referred
to as context elements, that are taken as pre-requisite for
each rule application. Green nodes and edges, additionally
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R3: Inherits-To-Realization Rule

Fig. 2. EMF To Doc Example: TGG Rules

marked by ’++’, define which structural features are to
be created in conformance to the pattern in case that the
pre-requisite of the pattern is fulfilled. A major goal of
defining patterns is to find matches, where a match is defined
as a valid mapping of pattern elements to model elements.
Thus, a match defines an occurrence of the pattern in a model.

In the following, we will explain each of the five rules
in detail: 1) The first rule R1 is axiomatic, due to the lack
of context elements. It does not define any pre-requisites but
creates an instance of type EPackage and a corresponding
instance of type Folder. This correspondence is expressed as
an instance of type E2F which is visualized by a hexagon
and connects both of EPackage with Folder. 2) Given an
existing correspondence between elements as defined in R1,
R2 creates a sub-EPackage with a corresponding sub-Folder
under the pre-requisite that a parent EPackage and Folder
have been found previously. 3) The other rules can be read
analogously, where R3 creates an inherits link on the source
domain and a corresponding realizes link on the target domain
if the target EClass of the inherits link is an interface. 4) R4
creates an EClass and a corresponding Doc given already
processed EPackage and Folder instances. 5) Last but not
least, R5 defines that an EClass and an inherits link on source
side are created together with a corresponding Doc and a
generalizes link on target side, under the condition that the
context EClass node is not an interface.

Note that the distinction between R3 and R5 is made
due to the EMF specification of EClass that internally
describes whether it is an interface or a real class. In Java
a class may generalise only one other class which prohibits
multiple inheritance using the extends directive. It is, however,
possible to mimic multiple inheritance using interfaces and
the implements directive which is extensively used by EMF.
For this reason R3, in combination with R1, is able to define
correspondence of multiple inherits links originating from

one EClass. In contrast, R5 also defines correspondence for
an inherits link but together with the EClass from which
it origins. In summary, we demand that generalization can
only be translated once together with the originating node.
Furthermore, we allow multiple realizations as long as the
targeted EClass is an interface.

A TGG is a consistency specification for which operations
such as forward and backward transformations or even
consistency checks can be derived. This means that in order
to perform those operations, we have to operationalize the
TGG rules first. In the following we will explain how to
operationalize TGG rules to perform forward transformations;
backward transformations are handled analogously. For a
forward transformation, the source side is given as an input
model and the target side is to be derived. Hence, in contrast
to model generation, we do not create new elements on the
source side, but rather mark those elements that have already
been translated. This implies that elements on the source
side of a TGG rule are all context elements for a forward
operationalization. Figure 3 depicts all ”forward rules” for
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Fig. 3. EMF To Doc Example: Forward Rules

our given TGG. Note that all former created nodes on source
side have been converted to context elements. The difference
between those elements that are context in the plain TGG
rule and those we converted is depicted as marking signs
on each node and edge on source side. X� indicates that this
element has to have a marking which in turn means that it
must be already translated. � → X� indicates that this rule
marks an unmarked element to be translated if it is applied.
These forward rules are able to transform a given source
model into a corresponding target model in accordance with
the original TGG rules.

With the given forward rules this process is not deterministic
as is demonstrated in Figure 4. It depicts a source model
with two EPackages, namely root and sub where sub is
a sub-package of root. Given this model and our forward
rules, there are two rule application sequences that are



root:EPackage

sub:EPackage

subpackage

F1@root
F1@sub

F1@root
F2@sub

:Folder

:Folder

:Folder

:Folder

subfolder

Fig. 4. The upper model may be translated with two rule application
sequences. The left sequence ends in a state where the subpackage edge
can not be translated with any forward rule. The right sequence translates
all elements.

possible and are depicted at the bottom of the Figure. The
sequence of the left is an application of the axiomatic F1 rule
on both EPackages; however, this results in a state where
the subpackage edge can no longer be translated with any
forward rule. The reason for this is that there are no forward
rules that will enable us to translate the edge after we applied
F1 to sub. The second sequence on the right depicts a
valid rule application sequence that does indeed translate all
elements. It translates both EPackages plus the subpackage
link between them if we apply F1 to root and F2 to sub
and the link. The choice of which rule application sequence to
use is not trivial, but may be solved through backtracking by
revoking former application, if a dead-end has been detected.
However, backtracking can result in exponential runtime in
model size which quickly becomes infeasible [5]. A standard
approach (inspired from string parsing) is to use a look-ahead
to reduce the cases in which backtracking is required.

Last but not least, we need to operationalize the rules
such that for a given source and target model we find
correspondences between both which is often referred to as
consistency check. In the context of TGGs this means that
we have to construct the correspondence model given both
source and target models. In general, this means that we
have to collect matches of the source and target sides of
each TGG rule, respectively. Given these two sets, we have
to find correspondences if possible and in an optimal way.
This means that a pairing has to be determined between
matches coming from the source side of a rule to those of
the target side. The challenge is the complexity of this task
regarding possible pairing candidates and that certain pairs
of matches contradict each other. This problem can be solved
efficiently with constraint solving techniques as was proposed
by Leblebici et al. [7] as long as the search space of possible
pairing candidates remains moderate.

III. LOOK-AHEAD STRATEGY

For forward and backward transformations, the challenge is
how to find a sequence of rule applications that does not lead
to a dead-end where certain elements remain untranslatable.
To cope with this, advanced static analysis techniques [5], [8]
can be used to filter sequences such that ideally all applicable
rules avoid dead-ends by construction. Let us assume that
the TGG rules of Figure 2 have been operationalized for
forward transformations as explained in the previous chapter.
Furthermore, we assume that our input model is equivalent
to the one presented in Figure 4. It consists of two instances
of EPackage where sub is a subpackage of root. In the
left case we translate both EPackages using F1; however, this
lets the subpackage edge remain untranslated as there is no
forward rule that translates a single subpackage edge. The
right case represents a viable sequence of rule applications.
The root element still gets translated using F1 but sub and
subpackage are both translated using F2, leaving no element
or edge untranslated. Summarizing, the conflict arises from a
local choice of applicable rules where one choice leads to a
dead-end.

To prevent this, Herman et al. [5] proposed a static
analysis with the goal to guide the transformation process
towards a control flow that avoids untranslated edges. The
analysis consists of three steps which are explained in the
following: 1) First, we analyse those situations where a node
gets translated taking into account the possibility of other
rules being able to translate all adjacent edges. 2) For every
detected node and for every possible edge, the analysis tries
to find a forward rule which might be applied in the future
to translate this edge. In general this means that a rule has
to be found where the current to-be-translated element is a
context element and the problematic edge is translated. If we
find such a rule the analysis terminates. 3) If such a ”saving”
rule can not be found then the current rule is extended
by a negative application condition (NAC) that forbids the
existence of such an edge for the given node.

These NACs are called ”filter NACs” as their intention
is to filter those rule applications that would otherwise
certainly lead the model transformation process into a dead-
end. An example of this is given in Figure 5. It depicts the F1
rule which is extended by a NAC that prohibits the existence
of an incoming subpackage edge for the p1 element, such an
edge would always remain untranslated in case that this rule
is applied. This solves the previously encountered problem as
for now there will never be an F1 match that translates sub
leaving the only translating forward rule to be the one that
does not lead to a dead-end.

Now, if we extend our example model as depicted in
Figure 6, we will very likely encounter a new dead-end
case. The example consists of the sub EPackage plus
two EClasses in sub, namely Employee and Person.



F1: Package-To-Folder Rule

++
++

++
++

p1:EPackage :P2F :Folder

p1:EPackage

:EPackage

subpackage

Fig. 5. Package-To-Folder - NAC

Additionally, Employee inherits from Person. Translating
this model requires translating the EPackage first which is
handled the same way as before and may be disregarded,
which leads us to the translation of both EClasses. Now,
we have to use F3, F4 and F5 to translate the remaining
elements and the inherits edge between them but, as in the
previous example, we may end up in a dead-end depending
on which forward rules we apply. A valid rule sequence
would be to apply F4 to Person following the application
of F5 to Employee and the remaining inherits edge. But,
starting with F4 applied to Employee would lead to an
untranslated inherits edge as there would never again be any
rule able to process the edge. The reason why the previous
analysis does not hold in this case is that the F3 rule is
theoretically able to translate an inherits edge wherever it
originates from. Thus, there won’t be any NAC generated
for the F4 rule that would guide the translation process safely.

F4@Person
F4@Employee

F4@Person
F5@Employee

sub:EPackage

Person
:EClass

interface=false

classesclasses

inherits

:Folder

Person:Doc Employee:Doc

files

:Folder

Person:Doc Employee:Doc

files

generalises

Employee
:EClass

interface=false

Fig. 6. The upper model may be translated with two rule application
sequences. The left sequence ends in a state where the inherits edge can
not be translated with any forward rule. The right sequence translates all
elements.

To rule out these cases we propose a more sophisticated
look-ahead strategy which also takes into account that context
and attribute constraints might prevent a false ”saving” rule

from later application, thus, leaving elements untranslated.
The steps are described in the following: 1) Similar to the
previous analysis we extend the given rules such that for
every created element we search for existing edges that are
not translated by this rule. 2) If such an edge does not exist,
the rule may be applied directly. 3) However, in case there
are such potential edges, the analysis demands that there also
exists a valid match of the source1 side of a saving rule.
Hence, we demand that after applying this rule, the edge is
still translatable in the future. This concept of demanding
the existence of a certain pattern C, that extends a match
of another pattern P, is called positive application condition
(PAC) which intuitively represents an ”if-then” relationship.

F4: EClass-To-Doc Rule

:EPackage :P2F :Folder

ec1:EClass :C2D :Doc
++

++
++

++++

classes files

ec2:EClass

ec1:EClass

inherits

ec1:EClass :C2D :Doc

:C2D :Doc
ec2:EClass

interface==true

realizesinherits

Inherits-To-Realization Rule - Source

Premise

Conclusion

Fig. 7. EClass-To-Doc - PAC

Figure 7 depicts the approach applied to F4. Analogously
to the former analysis, we inspect ec1 as a node whose
translation might lead to an untranslated inherits edge. In
contrast to the former approach, the possibility that the edge
might be translated by F3 no longer suffices. We, thus,
demand that in case the inherits with ec2 as target exists,
there must also exist a concrete match of the source side of
the F3 rule. This ensures that the edge can be translated by
F3 in the future, which means that we have a real look-ahead
for specific edges to prevent them from not being translatable
later on.

1target for backward translation



In case there are no such saving rules, this approach is
equivalent to the former static analysis because the Premise
may be true but the Conclusion will always be false.
This means that the resulting Premise and Conclusion are
reduced to a (filter) NAC forbidding the existence of a
certain edge as it would remain untranslatable. Hence, if no
saving rules are found, the PAC-based look-ahead strategy
falls back to filter NACs. This means, however, that filter
NACs are a subset of our new PAC-based look-ahead strategy.

The PAC-based look-ahead strategy can also be used to
improve the performance of consistency check. As was
explained in the previous chapter, consistency checking relies
on the discovery of matches of the source and target side
of each rule. By applying our strategy on both source and
target side, we can filter matches analogously to the forward
transformation case. Hence, by decreasing the number of
possible matches, we decrease the search space of possible
pairings. This, finally, increases the efficiency as the number
of possible candidates increases quadratically in the number
of matches. The experimental results that support this
conclusion are presented in the next chapter.

The implementation of this strategy appears computationally
more expensive at a first glance as for every rule which is
applied, we have to find also occurrences for those patterns
that have been added by the analysis. However, given a
closer look specifically at the generated PAC, the matches
for all saving rules must have already been collected before,
which is in general the bottleneck of rule-based bx tools.
Thus, before applying a certain match, we only have to check
for the existence of these pre-calculated matches regarding
possible saving rules.

There are cases when this analysis does not suffice and
the translation process still ends up in a dead-end. Any
scenario which requires an analysis of a sequence of future
rule applications of length greater than one to avoid a
dead-end is not considered here. Handling these scenarios
requires a look-ahead greater than one; however, this requires
the generation of nested application conditions. For a look-
ahead of k, a nesting level of k+1 is needed, which is not
covered by our implementation that only supports simple
application conditions with a Premise and a Conclusion
pattern for a look-ahead of one. Nonetheless, the extension to
nested application conditions can be handled analogously by
generating PACs for every Conclusion.

Another scenario is connected to our assumption that
dead-ends in a transformation process correspond to single
untranslatable edges. This means that we always identify such
cases when there is a possibly untranslatable edge; however,
the current implementation may underestimate the rule
application sequence needed to translate all adjacent edges.
It does not incorporate that there are dependencies between
Conclusion patterns (saving rules) where the translation of

one remaining edge contradicts the translation of another, yet,
untranslated edge.

IV. EXPERIMENTAL RESULTS

In the preceding chapter we presented both filter NACs and
our novel PAC-based look-ahead strategy. Both approaches
were shown on a TGG specification based on our running
example. In the following, we will evaluate the new approach
by comparing it to filter NACs and an implementation that
does not use any context analysis techniques. We, therefore,
state three research questions that are investigated with our
experiments: RQ1: For each approach, how does consistency
check scale with increasing model size? RQ2: Does the new
approach introduce an advantage to model transformations
regarding success rates? RQ3: How is the performance of
model transformations comparing all three approaches and
does the new analysis technique introduce any noticeable
overhead?

As our tool of choice we use eMoflon [9] a graph
transformation tool that supports TGGs. In the current version
it is based on an incremental pattern matcher [10] and an ILP
solver [11]. The experiments are executed on a machine with
an Intel Core i5-3550, 16GB memory and Ubuntu 16.04.

The models used for forward transformation and consistency
check are generated in conformance to the previously
introduced TGG specification. Thus, by applying the original
TGG rules directly, we are able to simultaneously build up
all three domains. Consequently, we can create models of
arbitrary size from scratch that are consistent with respect
to our TGG specification by applying rules this way. Hence,
we define the model complexity as the number of rule
applications that were used to generate a model. Note,
however, that this model size is not equal to the number of
nodes since R3 does not create a node but rather an edge
between two existing ones; thus, the model size is an indicator
for the complexity that results not only from nodes but also
from inheritance relationships. For both tested scenarios we
generate 20 variations for each examined model size and
repeat execution of each variation five times. The resulting
times are the average values over the median times of each
variation.

For consistency check, we will measure the time to
highlight performance differences between a naive approach,
filter NACs and our PAC-based look-ahead strategy. Since
consistency check is handled as a constraint solving problem,
we do not have to measure the success rate because even if
irrelevant matches are processed, the optimal solution of the
problem does not change.

RQ1: Figure 8 depicts the measured times for consistency
check, including the search for rule occurrences on both
source and target model and the constraint solving to find an
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Fig. 8. Consistency Check - Measured times

optimal mapping. The biggest model size2 using the naive
approach is 360 with a runtime of ~6 minutes. Using filter
NACs, consistency check is able to process a maximal model
size of 3000 in slightly more than 6 minutes. Finally, the
PAC-based look-ahead enables consistency check to process
a maximal model size of 10000 within approximately one
minute.

The results show a significant performance gain of the
PAC-based look-ahead and filter NACs compared to an
implementation without analysis. The naive approach tends
to be impractical for even moderate model sizes as the
runtime increases too steeply. The filter NACs perform better
in comparison to the naive approach; however, for models
bigger than 2000 the runtime increases substantially. Finally,
the runtime of PAC-based look-ahead rises very slightly
and stays close to one minute for model sizes of 10000.
These measurements show that both filter NACs and our
PAC-based look-ahead are able to decrease the complexity
of the consistency check task. Regarding the PAC-based
look-ahead, we can even further increase the performance and
process a multiple of the maximal model size of filter NACs.

Regarding forward transformation, we are interested in two
measurements. First, the success rate of the transformation
where an execution is considered as failed if not all elements
were translated3. Second, pattern matching is usually the
bottleneck of modern rule-based tools and both filter NACs
and our PAC-based look-ahead strategy introduced new
patterns that have to be found in the input model. Thus, we
are interested in how expensive the new approach is with
respect to the runtime performance.

RQ2: Figure 9 depicts the success rate of each experiment.
All three plots start at a success rate of 100 percent for
a model size of one as this is equivalent to a model with
one single package and dead-ends are not to be expected.
However, after adding a sub-EPackage or a new EClass the
success rate for the naive approach drops to 60 percent and it

2Equivalent to the number of rule applications used to generate the model
3Note that each input model is by construction fully translatable
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almost reaches 0 percent for model sizes bigger than 30. In
comparison to the former plot, filter NACs tend to perform
much better as long as we transform solely EPackages, since
filter NACs can not cope with dead-ends that occur during
translation of an EClass hierarchy. The success rate drops
from almost 100 percent to 80 for a model size of 6 and
rapidly falls down to almost 0 percent for model sizes 10 to
40. In contrast, the PAC-based look-ahead strategy is always
able to translate all elements such that no nodes or edges stay
untranslated.

The success rates of filter NACs and an implementation
without analysis drop rapidly until they reach ~0 percent at
a model size of 40. In contrast, the PAC-based look-ahead
strategy remains constantly at 100 percent. This means that
the transformation does not end up in a dead-end and that all
elements were translated.

RQ3: Given those results, we now want to take a look
at the runtime performance which is depicted in Figure 10.
As can be seen, all three plots are not easy to keep apart
as they lie very closely. The maximum times for a maximal
model size of 4500 are 89 seconds for the naive approach, 97
seconds for filter NACs, and 97 seconds for the PAC-based
look-ahead strategy.
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Fig. 10. Forward transformation - Measured times

The measurements indicate that all three approaches
have a very similar performance. The naive implementation



using no analysis tends to be slightly faster; however, the
performance gain comes at the price of a very low success
rate. Comparing filter NACs with the PAC-based look-ahead,
there is no considerable difference of performance. Note,
however, that the naive approach and filter NACs leave certain
elements untranslated. This means that the runtime may be
affected such that it appears slightly faster than it would if all
elements were processed. Nonetheless, since the runtime of
our PAC-based look-ahead strategy does not differ noticeable
from the other approaches, we conclude that the introduced
overhead is not relevant and may be disregarded.

Threads to Validity. External validity is of major interest but
it requires investigation of further non-trivial case studies.
We argue, however, that the presented example represents a
significant challenge that emerges frequently with increasing
case complexity. Furthermore, the results are based on an
incremental pattern matching framework and a constraint
solver. It remains to be investigated if the performance
changes considerably with the use of other frameworks and
solvers. Internal validity has to be investigated further as the
generation of test cases was not deterministic. This means
that, despite of the number of repetitions and variations for
each model size, the results have a certain variance of around
+/- 15 percent.

V. RELATED WORK

In this paper we proposed a PAC-based look-ahead strategy
for rule-based bx approaches. This strategy was inspired by
predictive string parsing techniques which use a variable
look-ahead to resolve issues that arise while parsing. Early
approaches that tried to adapt string parsing techniques to
graph grammars were inspired by the Early-Style-Parser [12]
which is a top-down-parser that uses dynamic programming
to determine rule application entry points. As such it is
related to our TGG approach; however these parsers were
restricted to context-free grammars and suffered from a high
computational complexity [13], [14]. Nonetheless, recent
work also shows that predictive parsing yields promising
results for graph grammar parsing, by substantially reducing
the runtime complexity for specific scenarios [15]. To our
knowledge, we are the first to elevate the idea of using a
look-ahead for rule-based bx approaches to reduce the space
of conflicting rule applications.

Our implementation is based on eMoflon as our tool of
choice; however, there are other TGG tools such as TGG
Interpreter [16] or MoTE [17]. MoTE is restricted to conflict-
free TGG specifications, implying that for any translatable
element there is only one applicable rule at any time.
Using this restriction, MoTE does not need backtracking
or a look-ahead to resolve issues as they forbid ambiguous
specifications in general [18]. TGG Interpreter is not limited
to conflict-free TGG specifications; however, the tool is
not able to use any backtracking or look-ahead to avoid
conflicts. Hence, it does not guarantee that its results are

correct and that all elements were successfully translated [18].

Our implementation of filter NACs is based on the work of
Klar et al. [8] and Hermann et al. [5]. Both papers analysed
TGGs with negative application conditions and introduced
a strategy to avoid several rule application sequences that
would leave elements untranslated. Klar et al. focussed on the
identification of dangling edges, i.e., edges that may remain
untranslated if a node is translated using a specific rule. If
such an edge is detected, the analysis reacts as was explained
in Chapter VI and tries to generate a NAC that forbids the
application of the rule in this particular case. In contrast,
Hermann et al. used the critical pair analysis [19] to argue on
how to avoid several critical pairs of rules that conflict with
each other; however, both yield similar results using NACs
and can not cope with scenarios in which it is necessary to
use PACs.

VI. CONCLUSION AND FUTURE WORK

In this paper we introduced a novel PAC-based look-ahead
strategy for rule-based bx techniques. Although the approach
was explained and exemplary implemented for a TGG
specification, it is not limited to TGGs. In fact, it offers
a strategy for rule-based approaches in general to govern
the transformation process in order to avoid dead-ends or
even enhance the performance. To evaluate our approach, we
chose a compact excerpt of the Eclipse Modeling Framework
together with a corresponding documentation structure as our
running example. We conducted experiments using a naive
TGG implementation, an existing statical analysis called filter
NACs and our PAC-based look-ahead strategy. In the case of
forward transformations, we showed that the new approach is
able to avoid dead-ends that both other approaches encounter.
Furthermore, the results indicate that the costs of the new
strategy do not raise significantly regarding the performance.
For consistency check we showed that the new approach
is able to greatly increase the performance with respect to
runtime and maximal model size as it reduces the overall
number of possible rule applications in the search space.

For future work, it remains open to investigate more
challenging scenarios, e.g., more complex models and
consistency specifications with intensive look-ahead
requirements. Another important topic is the extensibility
of this approach. Examples for such extensions might be, a
look-ahead factor of more than one, or a generalisation of this
approach to also handle conflicts that do not only arise from
adjacent edges of nodes but also from nodes themselves. Last
but not least, the evaluated implementations are based on an
external incremental pattern matcher framework and an ILP
solver. For future work, we would like to investigate how the
performance changes with respect to other frameworks.
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