
Edelta: an approach for defining and applying
reusable metamodel refactorings

Lorenzo Bettini
DiSIA - University of Florence, Italy

lorenzo.bettini@unifi.it

Davide Di Ruscio
DISIM - University of L’Aquila, Italy

davide.diruscio@univaq.it

Ludovico Iovino
Gran Sasso Science Institute - L’Aquila, Italy

ludovico.iovino@gssi.it

Alfonso Pierantonio
DISIM - University of L’Aquila, Italy

alfonso.pierantonio@univaq.it

Abstract—Metamodels can be considered one of the key
artifacts of any model-based project. Similarly to other software
artifacts, metamodels are expected to evolve during their life-
cycle and consequently it is crucial to develop approaches
and tools supporting the definition and re-use of metamodel
refactorings in a disciplined way.

This paper proposes Edelta, a domain specific language for
specifying reusable libraries of metamodel refactorings. The
language allows both atomic and complex changes and it is
supported by an Eclipse-based IDE. The developed supporting
environment allows the developer to apply refactorings both in
a batch manner and in a step-by-step fashion, which provides
developers with an immediate view of the evolving Ecore model
before actually changing it.

I. INTRODUCTION

Refactoring can be defined as the process of changing a
software system to improve its design, readability, and to
reduce bugs [1]. Metamodels play a key role in any model-
based approach and, similarly to any software artifact, they are
subject of evolutionary pressures that can arise for several rea-
sons. In particular, metamodels can be changed for perfective,
corrective, preventive and adaptive maintenance goals [2].

Metamodel refactorings can be expressed as a sequence of
additions, deletions and changes of elements [3]. Additionally,
metamodel refactorings can involve also complex operations,
which are obtained by mixing atomic changes [4], [5], [6],
[2], [7]. Existing approaches supporting the evolution of
modeling artifacts are mainly based on tedious and error-prone
manual activities [8]. Moreover, the possibility to organize and
reuse already defined refactorings is also limited in currently
available approaches [9].

In this paper we present a metamodel refactoring approach
based on the proposed Edelta domain specific language. Edelta
offers the basic mechanisms to express atomic metamodel
changes i.e., addition, deletion and changes. Moreover, Edelta
provides developers with an extension mechanism enabling the
use of already developed refactorings, which can be organized
in reusable libraries. The language is endowed with an Eclipse-
based IDE providing features that are typically expected from
mature development environments, i.e., syntax highlighting,
code completion, error reporting and incremental building, not

to mention debugging. Moreover, the supporting environment
allows the developer to estimate and evaluate the impact of
the refactorings being specified before actually changing the
evolving metamodel.

The paper is organized as follows: Section II introduces the
problem of metamodel refactoring and discusses requirements
that a metamodel refactoring approach should satisfy. Sec-
tion III presents the Edelta language, its implementation, and
the constructs for defining both atomic and complex changes.
Section IV makes an overview of the features provided the the
Eclipse-based IDE supporting the specification and execution
of Edelta specifications. Section V discusses the advantages
of the proposed approach with respect to the requirements
presented in Section II. Related works are discussed in Section
VI. Section VII concludes the paper and outlines some future
plans.

II. MASTERING METAMODEL REFACTORINGS

In order to satisfy unforeseen requirements or to better
represent the considered application domain, metamodels can
be subject to changes as for instance in the case of the simple
PersonList metamodel shown in Fig. 1.a. The metamodel
represents list of persons with the corresponding places where
they work or live. The metamodel includes the root metaclass
List that has a containment reference of type Person,
which in turn is characterized by the attributes firstname,
lastname, and gender. In particular, the gender attribute
is specified with an enumeration enabling the specification
of the literals Male and Female. A person is related to a
WorkPlace and a LivingPlace, both characterized by
the attribute address.

The new version of the metamodel shown in Fig. 1.b has
been modified by means of the following changes:
C1. the attributes firstname and lastname of the meta-

class Person have been merged into the new name
attribute;

C2. the metaclass Place has been added as an abstract super
class of WorkPlace and LivingPlace. Moreover,
their address attribute has been pulled-up in the new
metaclass;

(a) Initial version

(b) Evolved version

Fig. 1. Evolution of the simple PersonList metamodel

C3. the gender attribute of the metaclass Person has been
replaced by the new sub-classes Male and Female;

C4. the reference works of the metaclass Person has been
replaced by the new metaclass WorkingPosition
between the new version of Person and WorkPlace.
Note that works and persons are still bidirectional
in the refactored metamodel, as they used to be in the
original metamodel.

Even though such changes might appear specific for the
particular metamodel evolution at-hand, modelers might want
to define them so to similarly evolve other metamodels in the
future. In this respect, by borrowing concepts from object-
oriented programming [10] several works [11], [12], [13],
[14] have defined catalogs of possible metamodel refactor-
ings with the aim of dealing with specific issues, like the

coupled evolution of metamodels and models. Examples of
recurrent metamodel refactorings are ExtractSuperClass
and IntroduceSubclass [12]. Concrete instances of such
refactorings are changes C2 and C3 above, respectively.

Operating metamodel refactorings without a dedicated sup-
port can be an error-prone task. In particular, there is the
need for languages and tools supporting the specification and
application of metamodel refactorings in a disciplined way.
To this end, by taking inspiration from [15], we defined a
set of requirements that a language for specifying reusable
metamodel refactorings should implement as presented in the
following.

a) Conciseness and comprehensibility: Metamodel
refactorings should be expressed as concisely and
comprehensibly as possible for two main reasons: i)
unnecessarily voluminous code increases development costs
and this is particularly the case of metamodel manipulations
implemented with GPLs like Java; ii) the quality of
the implemented solutions can decrease in case of long
specifications since errors might not be easily detected.
Contrariwise, if the considered metamodel refactoring
language offers adequate constructs for specifying solutions
with terms that are closer to the problem at-hand, domain
experts can be involved in the development. In this way,
the number of bugs and errors introduced with traditional
manipulation techniques can be reduced.

b) Integration: It should be possible to integrate the
metamodel refactoring language with other tools e.g., for
dealing with bigger problems like the coupled evolution of
metamodels and models.

c) Static checks: The language should be statically typed.
In the considered context the elements on which refactorings
are applied are those of the meta-metamodeling language.
Thus, implementing a statically typed DSL in this context
means that all references to metaclasses, features of the
metaclasses, etc. have to be statically checked by the DSL
compiler and assignments between such elements have to be
checked for type conformance as well.

d) Refactorings Composability: It is important to support
the composition of refactorings into more complex ones. Some
of the composing refactorings might depend on other ones and
consequently the supporting tools should be able to analyze
the specified refactorings to determine which are mutually
independent, and which refactorings have to be applied se-
quentially [9].

e) IDE support: Nowadays a DSL should come with a
supporting tool in order to effectively use the language in
practice in a productive way. The IDE should integrate all
the useful features for the modeled domain, in this case the
refactoring of metamodels.

III. THE EDELTA LANGUAGE

This section presents Edelta, the domain specific language
we have defined for specifying and applying metamodel
refactorings. Edelta provides modelers with constructs for
specifying atomic refactoring i.e., additions, deletions and

changes, and to define complex reusable metamodel changes
by properly composing already defined ones.

Fig. 2. A simplified version of the Edelta metamodel

An overview of the concepts implemented by the language
are shown in Fig. 2. An Edelta specification (represented by
the EdeltaModule in the metamodel) can declare operation
definitions (which can be reused both by the same program and
by other Edelta program with the clause use ...as ... as
shown later) and sequences of basic refactoring operations (to
add, remove, and change metaclasses and structural features
therein). Such built-in operations are induced by the Ecore
metamodel [16] according to the approach defined in [12].

In the next section, the Xtext-based implementation of the
Edelta language is presented. Details about how atomic and
complex refactorings can be specified in Edelta are also given
in Section III-B and Section III-C, respectively.

A. Xtext-based implementation of Edelta

The Edelta DSL has been implemented with Xtext [17], a
popular Eclipse framework for the development of program-
ming languages and domain-specific languages. Given a lan-
guage grammar definition, Xtext generates the infrastructure
for the compiler and a complete IDE support based on Eclipse
(e.g., editor with syntax highlighting, code completion, error
reporting and incremental building).

Figure 3 shows the artifacts that are involved when evolving
a metamodel by means of Edelta. The Ecore Metamodel
subject of the evolution is imported in the Edelta program
being specified. The Edelta program contains all the Edelta
instructions describing the refactorings to be operated by re-
using operations already defined in available libraries. When
the Edelta program is saved and no errors are found by the
compiler, corresponding Java code is generated for manipulat-
ing the input metamodel with the refactorings expressed in the
Edelta program. The generated Java code uses the Edelta Java
runtime APIs, and it can be called from any Java program.
The Edelta project wizard creates a Java file with a main that
calls the generated Java code; this main file, which can be
seen as a starting point, is shown in listing 1. When running

Edelta project

Edelta Plugin

Edelta program

Edelta imported library

Ecore metamodel Ecore evolved metamodel

Java code using
Edelta API

Generated Main Java file

imports calls

producesreads

compiles to

uses

Fig. 3. Overview of the artifacts involved in Edelta-based metamodel
refactorings

the main file a new metamodel is generated in the modified
folder of the project.

1...
2public static void main(String[] args) throws Exception {
3 // Create an instance of the generated Java class
4 AbstractEdelta edelta = new Example();
5 // Make sure you load all the used Ecores
6 edelta.loadEcoreFile("model/My.ecore");
7 // Execute the actual transformations defined in the DSL
8 edelta.execute();
9 // Save the modified Ecore model into a new path

10 edelta.saveModifiedEcores("modified");
11}

Listing 1. Generated main file from Edelta projects

The generated Java class (Example in listing 1) extends the
Edelta Java runtime library base class AbstractEdelta,
which provides many methods for configuring reading and
writing refactored Ecore models.

The Edelta project is available at
https://github.com/LorenzoBettini/edelta.

Edelta uses Xbase [18] to provide a rich Java-like syntax
for its expressions. In order to make code snippets presented
in the paper comprehensible, in the following we sketch the
main features of Xbase. Afterwards, the typical structure of
Edelta programs is discussed.

1) Xbase in a nutshell: Xbase is an extensible and reusable
expression language that is completely interoperable with Java
and its type system, and is meant to be embedded in an
Xtext DSL. Xbase is Java-like, avoiding much of the “syn-
tactic noise” verbosity that is typical of Java. Xbase should
be easily understood by Java programmers. The complete
interoperability with Java implies that our language reuses the

https://github.com/LorenzoBettini/edelta

Java type system, including generics. All existing Java types
can be referred and used from within an Xbase expression,
that is, all existing Java libraries can be seamlessly reused in
Edelta. This also means that if one has existing refactoring
implementations for Ecore models written in Java, then this
existing code can be reused in an Edelta program out of the
box. This interoperability of Xbase DSLs with Java types
follows the standard Java classpath mechanisms, meaning that
all the Java libraries that are part of the current classpath can
be used seamlessly in Edelta programs. Also Edelta reusable
refactoring libraries are handled according to the same class-
path mechanism. Furthermore, Xbase handles the classpath of
standard Eclipse projects, including the Eclipse project created
by the Edelta project wizard itself. This means that in order to
reuse a refactoring library, which can be imported in an Edelta
program with the clause use ...as ... as shown later,
that library must be specified as a dependency of the Eclipse
project; no further custom registries for Java refactorings needs
to be implemented.

Terminating semicolons are optional in Xbase. Variable
declarations in Xbase start with val or var, for final and
non final variables, respectively, and do not require to specify
the type if it can be inferred from the initialization expression.
A cast expression in Xbase is written using the infix keyword
as.

Xbase extension methods are a syntactic sugar mechanism
to simulate adding new methods to existing types without
modifying them. For example, if m(Entity) is an extension
method, and e is of type Entity, you can write e.m()
instead of m(e), even though m is not a method defined in
Entity.

Xbase lambda expressions have a sim-
pler shape than Java lambda expressions:
[param1, param2, ... | body]. The types
of parameters can be omitted if they can be inferred from the
context. When a lambda is the last argument of a method call,
it can be moved out of the parenthesis; for example, instead
of writing m(..., [...]), one can write m(...)[...].

Xbase has special syntax for collections: #[e1, ...,
en] allows the programmer to easily specify a list with initial
contents. Operators such as +, -, +=, -= are available in
Xbase also on collections.

Xbase provides syntactic sugar for getters and setters:
instead of writing o.getName(), one can simply write
o.name; similarly, instead of writing o.setName("..."),
one can write o.name = "...".

Besides this, Xbase has another additional special vari-
able, it. Just like this, which has the same semantics as
in Java, it can be omitted as object receiver of method call
and member access expressions. Differently from this, the
programmer is allowed to declare any variable or method
parameter with the name it. Thus, the programmer can
define a custom implicit object receiver in any scope of the
program. Furthermore, when a lambda is expected to have a
single parameter, the parameter can be omitted and it will be
automatically available with the name it.

Xbase lambda expressions, thanks to all the syntactic sugar
mechanisms just mentioned, allow the programmer to easily
write statements and expressions that are compact and more
readable than in Java. For instance, assuming the method
newEClass takes a string and a lambda and returns an
EClass, one can simply write

1newEClass("aclass") [
2 name = "MyEClass"
3]

instead of
1newEClass("aclass",
2 [e | e.setName("MyEClass")])

2) Specifying and compiling Edelta programs: An Edelta
program consists of a bunch of function definitions, which
can be reused across Edelta programs (with the clause use
...as ..., as shown later in the examples), and a list
of Ecore refactoring instructions, which represent the actual
refactoring implemented by the Edelta program.

The EPackages that are used in the Edelta program must
be explicitly specified by their name, using the clauses
metamodel "..." at the beginning of the Edelta program
(these include both the EPackages under refactoring and the
EPackages that are simply referred to in the program, e.g.,
the Ecore metamodel, typically used to specify data types
such as EString, EInt, etc.). Content assist is provided by the
Edelta editor, proposing all the Ecore files that are available
in the current project’s classpath (using the standard plug-in
dependencies of Eclipse projects).

As mentioned above, the expression syntax of Edelta pro-
grams is based upon Xbase, thus Edelta provides the same
expressive power of Java, though in a “cleaner” and less
verbose way. Besides that, special Edelta expression syntax
has been introduced to make refactoring easier and statically
type-checked.

Edelta is based on the Java APIs that we implemented as
part of the Edelta runtime library. These APIs implement the
actual refactoring operations that are applied on an Ecore
model loaded in memory and also take care of saving the
changed Ecore model into a new file. The Edelta compiler
generates Java code that uses the Edelta runtime Java APIs.
Note that the generated Java code has no further dependency
on the Edelta compiler, nor on the Xtext framework itself: it
depends only on the Edelta runtime library, which weights only
a few mega bytes. This means that the generated Java code
that performs actual refactoring on Ecore files can be executed
independently from Eclipse and the whole Xtext infrastructure.

Edelta programs refer directly to Ecore model classes, thus
you do not need to access the Java code generated from
an Ecore model. This also means that our approach works
even in situations where the EMF Java model has not been
generated at all (e.g., in those contexts where EMF models are
created in a completely reflective way). References to Ecore
elements, such as packages, classes, data types, features and
enumerations, can be specified by their fully qualified name in
Edelta using the standard dot notation, or by their simple name
if there are no ambiguities (possible ambiguities are checked

by the compiler). Such Ecore model references can be used
directly from within an Edelta refactoring instruction (such as,
createEClass and changeEClass, explained later). On
the contrary, when used from within an Xbase expression, they
would conflict with Java type references and fully qualified
Java references (e.g., field and method calls). To avoid such
ambiguities, in Edelta Xbase expressions, references to Ecore
model elements are wrapped inside an ecoreref(...)
specification1.

In order to show the differences between Java type refer-
ences and Ecore model elements in Edelta Xbase expressions
we use the following artificial example of variable declara-
tions, where we use both references to the Java types of
the Ecore Java model classes and references to Ecore model
elements2:

1 va l org.eclipse.emf.ecore.EDataType d = ecore re f(ecore.
EString)

2 va l org.eclipse.emf.ecore.EClass c = ecore re f(ecore.
EDataType)

3
4// Type mismatch: cannot convert from EClass to EDataType
5 va l org.eclipse.emf.ecore.EDataType d2 = ecore re f(ecore.

EDataType)

Here, org.eclipse.emf.ecore.EDataType is the
reference to the Java interface EDataType defined in
the Java package org.eclipse.emf.ecore, while
ecoreref(ecore.EDataType) is the reference to the
Ecore model element EDataType, defined in the EPackage
with name ecore. Everything is statically type-checked in
Edelta, according to the Java type system. Thus, the first
two assignments are correct, since the Ecore model element
EString is a Java EDataType; similarly, the Ecore model
element EDataType is a Java EClass. For this reason, the
third assignment is rejected, since the Java interface EClass
(i.e., the type of the Ecore model element EDataType) is
not a subtype of the Java interface EDataType.

B. Built-in metamodel refactoring operations

Edelta provides a set of basic refactoring operations acting
on EClassifiers and on the features of the EClassifiers. For
example, one can introduce a new EClass in the Ecore package
that is being refactored with the following instruction:

1 createEClass <name> i n <package_reference> {
2 ... initialization block
3}

When creating a new EClass, one can specify also the super-
types with the extends clause. In the initialization block one
can set the properties of the newly created EClass and add fea-
tures with similar instructions (e.g., createEAttribute,
createEReference, etc.).

An existing EClass of the package that is being refactored
can be modified with the following instruction:

1We could have used a different separator for qualified references to Ecore
model elements, but the ambiguity would still be there for simple names.
Moreover, the use of ecoreref explicit specification allows us to provide
much better tooling support, especially content assist proposals.

2Fully qualified names for Java types would not be necessary here, since
Edelta supports Java-like imports; we use fully qualified names only for the
sake of the explanation.

1 changeEClass <package_reference>.<class_refererence> {
2 ... modification block
3}

The modification block can be used to modify proper-
ties, adding features (with the above mentioned instructions)
or changing existing features (e.g., changeEAttribute,
changeEReference, etc.).

In the initialization and modification blocks, the reference
to the created or changed Ecore element is automatically avail-
able through the special variable it, previously explained. To-
gether with the above mentioned syntactic sugar mechanisms
of Xbase, one can write compact refactoring expressions such
as

1 createEClass MyNewClass i n mypackage {
2 abstract = true // short for it.setAbstract(true)
3}

One of the main features of Edelta is that it automatically
keeps track of the refactoring operations that are specified in
the program and applies them to an in-memory loaded Ecore
model. This way, while the developer is editing an Edelta
refactoring specification, the new and modified elements are
immediately available and can be used for static type check-
ing. For example, let consider the following two refactoring
instructions:

1 createEClass MyNewClass i n mypackage extends AnotherClass {
2 ... initialization block
3}
4
5 changeEClass mypackage.AnExistingClass {
6 name = "AnotherClass"
7 createEReference aNewReference type MyNewClass { ... }
8}

The new EClass extends AnotherClass, which is ac-
tually an existing class that is being renamed in the second
instruction; the new reference created in the changed EClass
refers to the new EClass created in the first instruction. All
these references are type checked by the Edelta compiler, by
keeping track of the refactorings that are being specified in
the program. Note that the generated Java code that performs
the actual refactoring applies the refactorings in such a way
that mutual dependencies do not generate problems.

The above described mechanism is implemented by using
the interpreter provided by Xbase. In fact, Xbase provides an
interpreter that is able to interpret both the Xbase expressions
of your DSL programs (even if the corresponding Java code
has not been generated yet) and the possible calls to external
Java classes (both field accesses and method calls) by Java
reflection.3

The Edelta compiler invokes the interpreter on a copy,
which is kept in memory, of the Ecore files used in the
Edelta program. The validation and type checking of the
Edelta program (which also includes binding references to
Ecore elements) is implemented using the Ecore models kept
in memory, on which the interpretation of the refactorings

3The DSL implementor has to customize this interpreter concerning the
DSL’s specific additional expressions, like, in our case, createEClass,
changeEClass, etc.

is being applied. This allows the compiler to implement the
following features:

• The program can refer to Ecore model elements
(EClasses, EStructuralFeatures, etc.) that are created by
the refactoring operations specified in the program itself.
This includes also possible modifications to the Ecore
elements. For example, the Edelta compiler’s type check-
ing is able to know in a given part of the program if a
reference has been turned into an attribute or if a feature
has been renamed.

• Since the interpretation is applied sequentially on all
the refactoring operations, the Edelta compiler is able to
detect possible errors due to the order of the refactorings,
such as, e.g., referring to an Ecore element, in a part of
the program, which has been removed by a refactoring
operation specified before that part of the program. These
errors are detected by the compiler, thus the programmer
has an immediate feedback about the correctness of the
specified refactorings, so that when the actual refactoring
is applied to actual Ecore models, no bad surprises will
happen (and the refactored models will still be valid
Ecore models).

• The interpreter will rely on the same Edelta Java APIs
that are used by the generated Java code. This means
that the semantics of the interpretation will be the same
as the semantics of the Java code generated by the Edelta
compiler. Thus, if no validation errors are raised by the
Edelta compiler by relying on the interpretation, then
the Ecore models after the refactorings performed by the
generated code will still be valid Ecore models (see also
the previous item).

For example, in the previous code snippet,
AnExistingClass is renamed to AnotherClass
by calling the standard Ecore Java API4. Since the Edelta
compiler interprets on the fly the body of the changeEClass
operation, the AnotherClass can be immediately used in
the program (e.g., it is the base class of MyNewClass). Let
us stress that all of this is statically checked.5

The interpreter uses a configurable timeout (which defaults
to 2 seconds) when interpreting each refactoring Edelta opera-
tion. If the interpretation does not end within the timeout, the
interpreter is interrupted and a warning is issued by the Edelta
compiler (and a corresponding warning marker is put on the
Eclipse editor and Problems view). This avoids the interpreter
to block the IDE in case of possible endless loops in the
refactoring operations or in case of long running operations6.
This way, termination of the interpreter is always guaranteed,
either successfully or with a timeout warning reported on the
operation that caused the timeout. It is then up to the developer

4Recall that name = ... is equivalent to it.setName(...)
5Further details about the interplay between the interpreter and the compiler

require a deep knowledge of a few advanced mechanisms of the Xtext/Xbase
framework. For this reason, the full description of the static checks algorithm
will be provided in future works.

6In our experience, 2 seconds are more than enough to execute even
complex refactoring operations on Ecore models.

to either increase the timeout or fix the parts that do not
terminate. It would be interesting to keep track of the applied
refactorings and detect these cases; this is the subject of future
work.

C. Example of Edelta applied to the PersonList metamodel

In this section we show how complex metamodel refac-
torings can be specified in Edelta. The metamodel evolution
shown in Fig. 1 is considered throughout the section.

Listing 2 shows the specification of all the refactorings
applied on the initial version of the simple PersonList
metamodel. Line 4 of Listing 2 specifies the package name
for the evolving metamodel, i.e., PersonList. Line 7
defines the usage of an external Edelta specification called
refactoringslib, containing all the defined refactorings
previously identified in [19]. A fragment of the refactoringslib
library is shown in Listing 3.

At line 9 of Listing 2 the first refactoring is
performed and the metaclass Person is changed:
introduceSubclasses is called by passing as parameters
the type of the attribute gender, and the containing class
Person (specified using it, which refers to the metaclass
currently being refactored). Note the use of ecoreref
(Section II) to access metamodel elements of the EPackages
specified by the metamodel clauses at lines 4-5. The
definition of the refactoring introduceSubclasses is
in Listing 3: for each literal of the enumeration used as
attribute type a new EClass is introduced as subtype of the
containing class, e.g., in the example Male and Female as
subclasses of Person. At the end the attribute is removed
from the containing class and the EClass becomes abstract.
The effect of this first refactoring is shown in fig. 1.b, where
the Person metaclass is abstract and it has two subclasses
Male and Female.

1...
2 package gssi.personexample
3
4 metamodel "PersonList"
5 metamodel "ecore"
6
7 use MMrefactorings as refactoringslib
8
9 changeEClass PersonList.Person {

10 refactorings.introduceSubclasses(
11 ecore re f(Person.gender),
12 ecore re f(Person.gender).EAttributeType as EEnum,
13 i t);
14 EStructuralFeatures+=
15 refactorings.mergeAttributes("name",
16 ecore re f(Person.firstname).EType,
17 #[ecore re f(Person.firstname),ecore re f(Person.lastname)]
18);
19}
20
21 createEClass Place i n PersonList {
22 abstract = true
23 refactorings.extractSuperclass(i t ,
24 #[ecore re f(LivingPlace.address), ecore re f(WorkPlace.

address)]);
25}
26
27 createEClass WorkingPosition i n PersonList {
28 c r e a t e E A t t r i b u t e description type EString {}
29 refactorings.extractMetaClass(i t ,
30 ecore re f(Person.works),"position","works");
31}

32
33 changeEClass PersonList.List {
34 EStructuralFeatures+=
35 refactorings.mergeReferences("places",
36 ecore re f(Place),
37 #[ecore re f(List.wplaces),ecore re f(List.lplaces)]
38);
39}

Listing 2. Snippet of the Edelta program for PersonList metamodel example

Line 14 of Listing 2 enriches the structural features of
Person with the result of the mergeAttributes refac-
toring defined in Listing 3. Such a refactoring is responsible
of merging a list of attributes into a single one, if they have
the same type. In this example the attributes firstname and
lastname are merged into the new one name.

The refactorings specified at lines 21-25 of Listing 2 are
responsible of the extraction of a superclass Place from the
attributes address of LivingPlace and WorkPlace, by
calling extractSuperclass, defined in Listing 3. This
refactoring is called when there are two metaclasses with
similar features: a new super-metaclass is created and the
common features are moved to the superclass [10]. The newly
created metaclass Place is passed as implicit parameter
it to the method definition call at line 23. The effect of
this refactoring is shown in Fig. 1.b, where a new abstract
metaclass Place is introduced and the address attribute is
moved up in the hierarchy.

Line 29 of Listing 2 invokes the extract metaclass refactor-
ing on a newly created metaclass WorkingPosition. This
refactoring creates a new metaclass representing a feature of
the owner metaclass. In the example the reference works
is a simple association between the metaclass Person and
the WorkPlace. We also pass as parameters the in and
out references from and to this new metaclass from the old
one (in this example, position and works, respectively).
The result of this refactoring is shown in Fig. 1.b where the
WorkingPosition metaclass is linked to Workplace and
Person with the references position and works. A new
attribute description of the job position that will be used
to characterize the person, is also created at line 28.

Since the metaclass List has two different references for
the metaclasses LivingPlace and WorkPlace, having
now a common superclass, they can be merged into a single
reference having the same common supertype. This is the case
of the mergeReferences refactoring specified at lines 33-
38 of Listing 2.

1...
2 def introduceSubclasses(EAttribute attr,EEnum attr_type,

EClass containingclass){
3 containingclass.abstract = true;
4 f o r(subc : attr_type.ELiterals){
5 containingclass.EPackage.EClassifiers+=newEClass(subc.

literal)[
6 ESuperTypes+=containingclass;
7];
8 containingclass.EStructuralFeatures-=attr;
9 }

10}
11...
12 def mergeAttributes(String newAttrName, EClassifier etype,

List<EAttribute> attrs): EAttribute{
13 va l newAttr=newEAttribute(newAttrName)[
14 EType=etype;

15]
16 f o r(a:attrs){
17 a.EContainingClass.EStructuralFeatures-=a;
18 }
19 r e t u r n newAttr;
20}
21...
22 def mergeReferences(String newAttrName, EClassifier etype,

List<EReference> refs): EReference{
23 va l newRef=newEReference(newAttrName)[
24 EType=etype;
25]
26 f o r(r:refs){
27 r.EContainingClass.EStructuralFeatures-=r;
28 }
29 r e t u r n newRef;
30}
31...
32 def extractSuperclass(EClass superclass, List<EAttribute>

attrs){
33 va l extracted_attr=attrs.head;
34 f o r(attr: attrs){
35 attr.EContainingClass.ESuperTypes+=superclass;
36 attr.EContainingClass.EStructuralFeatures-=attr
37 }
38 superclass.EStructuralFeatures+=extracted_attr;
39}
40...
41 def extractMetaClass(EClass extracted_class, EReference f,

String _in, String _out) : vo id {
42 va l ref_in=newEReference(_in)[
43 EType=extracted_class;
44 lowerBound=f.EOpposite.lowerBound;
45 upperBound=1;
46];
47 va l old_ref=newEReference(f.name)[
48 lowerBound=1;
49 upperBound=1;
50 EType=f.EType;
51 EOpposite=ref_in;
52];
53 extracted_class.EStructuralFeatures+=old_ref;
54 ref_in.EOpposite=old_ref;
55 f.EOpposite.lowerBound=1;
56 f.EOpposite.upperBound=1;
57 extracted_class.EStructuralFeatures+=f.EOpposite;
58 f.EReferenceType.EStructuralFeatures+=ref_in;
59 f.EType=extracted_class;
60 f.containment=true;
61 f.name=_out;
62}
63...

Listing 3. Fragment of the existing refactoringlib library

It is worth noting that the same refactoring example can
be applied to other metamodels presenting the same structural
elements, obtaining the same improvements of this running
example. This is possible thanks to the reusable common
refactoring definitions that can be used in Edelta.

IV. THE EDELTA EDITOR

The Edelta editor provides typical Eclipse tooling mecha-
nisms, including content assist and navigation to definitions.
This is implemented both for Java types and for Ecore model
elements. For example, in Fig. 4 we show the content assist
for references to EClasses of the imported Ecore models. Nav-
igating to such an element automatically opens the standard
EMF Ecore tree editor.

Besides allowing our compiler to perform static type check-
ing, keeping the in-memory Ecore model continuously updated
by interpreting the specified refactoring operations also allows
us to provide the developer with a immediate view of the
modified Ecore model in the Outline view. This is shown in

Fig. 4. Content assist for Ecore model elements.

Fig. 5. The Edelta DSL editor, showing the synchronized Outline with
the Ecore model being refactored and the original Ecore model that can be
navigated from the Edelta DSL editor.

Fig. 5: in the program we created a new EClass and a new
EAttribute and this is immediately reflected in the Outline
view. New elements created by the refactoring operations
and elements modified by the refactoring operations are also
immediately available in the content assist. By referring to the
running example, the Outline view shown in Fig. 6 represents
the modified metamodel, which is computed by the Edelta
compiler on-the-fly through the interpretation of the Edelta
specification given in Listing 2.

Finally, one of the advantages of using Xbase is that Edelta
specifications can be directly debugged in Eclipse: when
running the generated Java code in the Eclipse debugger, the
original Edelta source code can be debugged (all the standard
Eclipse debugging features are available, i.e., variables view
and breakpoints).

V. DISCUSSION

In this section we will stress the advantages of having a
metamodel refactoring tool instead of using traditional code
based techniques, e.g., Java code for metamodel evolution. In
the following we briefly recall the requirements identified in
Section II and discuss how the proposed approach addresses
them.

Fig. 6. Evolution result of the interpretation of the Edelta program in the
Outline view .

a) Conciseness and comprehensibility: If we compare
the Edelta specification of the running example with the
generated Edelta Java code in terms of lines of code, the result
would be 42 vs 225 (81+144). We only considered the Edelta
program since the refactoring library is defined once and then
imported in the Edelta program. The mechanism of importing
already defined refactorings increases the understandability of
the Edelta program if we compare this with reading the full
Java code. At the same level a comparison with other model
transformation frameworks used as a metamodel refactoring
mechanism can be proposed and will be part of future plans.

b) Integration: An important application of this require-
ment concerns the integration of the proposed approach with
tools supporting the coupled evolution of metamodels and
models. We designed Edelta in order to enable its integration
with EMFMigrate [20]. Edelta will be used to specify the pat-
terns that have to be matched to trigger model migrations [21].

c) Static checks: The proposed language refers to actual
meta-elements of the Ecore metamodel. This means that Edelta
is able to catch possible refactoring errors at compilation
time, so that the generated Java code implementing the actual
refactor will not misbehave when executed on the Ecore model
being refactored. In order to reduce possible problems when
executing the generated Java code, the Edelta compiler also
performs an on-the-fly interpretation of the refactoring and
uses such information to perform further static checks.

d) Refactorings Composability: Such a requirement is
satisfied by the possibility of defining reusable refactoring li-
braries that can be included when specifying Edelta programs.

e) IDE support: Edelta is distributed with a complete
Eclipse IDE tooling support, as shown in Section IV, by
making the metamodel refactoring a supported methodology
with all the related features.

VI. RELATED WORK

The analysis of the existing refactoring tool made in [9]
highlights that there are still a lot of open issues that remain to
be solved. They conclude that there is the need for formalisms,

processes, methods and tools that address refactoring in a more
consistent, generic, scalable and flexible way. In [22] authors
explored the concept of model refactoring using a UML class
diagram as metamodel. Some concrete experiments have been
used to show how graph transformations can be used to support
model refactoring. The proposed approach is implemented in
the Fijaba tool. This paper shows in concrete experiments
how graph transformation technology can be used to support
model refactoring. A refactoring plug-in can be developed
to refactor UML class diagrams, where each refactoring is
expressed as a graph production. The similarity with the
presented approach is based on the fact that class diagrams
are customary used as simplified representation for metamodel
languages. The approach in [22] uses graph transformations to
apply the refactoring and in Edelta the refactoring is directly
translated into Java code. Model refactoring, with a very
similar intent, is also explored in [23], where an Eclipse
incubation project providing specification and application of
refactorings on models is proposed.

In [24] refactoring is described as one of the most important
and commonly used techniques of transforming a piece of
software in order to improve its quality. They analyzed source
code version control system logs of popular open source
software systems to detect changes marked as refactorings and
examine how the software metrics are affected by this process,
in order to evaluate whether refactoring is effectively used as
a means to improve software quality. This kind of applications
are possible future improvements that can be introduced with
the complete Edelta environment, since the refactoring can
be simulated in order to understand if metamodeling quality
attributes can be improved applying it.

In [4] authors developed an approach to automate the detec-
tion of source code refactorings using structural information
extracted from the source code. This approach takes as input
a list of possible refactorings as an external library, a set of
structural metrics and the initial and revised versions of the
source code. It generates as output a sequence of detected
changes expressed as refactorings. This refactoring sequence
is determined by a search-based process that minimizes the
metrics variation between the revised version of the software
and the version yielded by the application of the refactoring
sequence to the initial version of the software. This work is
very close to our final aim, i.e., use the language we presented
as automatic refactorings detection and application, where
metrics calculation returns an improvement in metamodel
quality [25].

Concerning the catalog of refactorings in object oriented
programming presented by Fowler [10] there is a strong
correlation with the library of refactoring we defined by using
the proposed Edelta language. For the running example in
section III-C a library of reusable metamodel refactorings has
been implemented following the definitions in http://www.
metamodelrefactoring.org/. The proposed metamodel refactor-
ing catalog presents many similarities with the one maintained
by Fowler for the reasons already exposed above.

The work in [3] presents a metamodel called Change

Metamodel for specifying atomic operations specification with
a related classification. A metamodel change is seen as a
transformation of one version of a metamodel to another. The
changes are then classified by their impact on the compatibility
to existing model data and this classification is formalized
using OCL constraints. The metamodel presented in that
paper is quite similar to the Edelta metamodel, even if the
implementation is not cited in [3]. The derived classification
can be in the future included in Edelta with the intent to
estimate the impact of metamodel refactorings on existing
artifacts, as we already proposed in [26].

The Wodel domain specific language is presented in [27]
with the intent of facilitating the specification and creation
of model mutations by means of a meta-model independent
approach. The language offers primitives for model mutations
(e.g., creation, deletion, reference reversal), item selection
strategies, and composition of mutations. As in Edelta, Wodel
specifications are compiled into Java, and can be extended
with post-processor steps for particular applications. The dif-
ferences with Edelta are in the abstraction layers in which
the refactoring / mutation is applied, but Edelta can be easily
adapted and extended in order to support also instances
refactorings, and this is part of the future plans.

VII. CONCLUSIONS

In Model Driven Engineering metamodels play a key role
since they underpin the definition of different kinds of artifacts
including models, transformations, and code generators. Simi-
larly to any kind of software artifacts, metamodels can evolve
under evolutionary pressure that arises when clients and users
express the need for enhancements. Metamodel refactorings
are typically operated in ad-hoc manners and by means of
manual and error-prone editing processes.

In this paper we proposed Edelta, a domain specific lan-
guage for specifying and applying reusable metamodel refac-
torings. The language allows the developer to specify both
atomic and complex changes. The implementation of Edelta
is based on Xtext and the language is endowed with an
Eclipse-based development environment providing also early
evaluation of the refactoring being applied. As future work we
plan to extend the language and the supporting environment by
introducing the notion of quality models. Essentially, modelers
will have the possibility to assess the refactoring impact on the
quality attributes that might be defined and associated to the
metamodel being changed.

REFERENCES

[1] K. O. Elish and M. Alshayeb, “A classification of refactoring methods
based on software quality attributes,” Arabian Journal for Science
and Engineering, vol. 36, no. 7, pp. 1253–1267, Nov 2011. [Online].
Available: http://dx.doi.org/10.1007/s13369-011-0117-x

[2] M. Herrmannsdoerfer, “COPE - A workbench for the coupled evolu-
tion of metamodels and models,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 6563 LNCS, pp. 286–295, 2011.

[3] E. Burger and B. Gruschko, “A Change Metamodel for the Evolution of
MOF-Based Metamodels.” Modellierung, vol. 161, pp. 285–300, 2010.

http://www.metamodelrefactoring.org/
http://www.metamodelrefactoring.org/
http://dx.doi.org/10.1007/s13369-011-0117-x

[4] R. Mahouachi, M. Kessentini, and M. Ó. Cinnéide, Search-Based
Refactoring Detection Using Software Metrics Variation. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 126–140. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-39742-4 11

[5] L. M. Rose, D. S. Kolovos, R. F. Paige, F. A. C. Polack, and S. Poulding,
“Epsilon Flock: a model migration language,” Software and Systems
Modeling, pp. 1–21, 2012.

[6] B. Gruschko, “Towards synchronizing models with evolving metamod-
els,” in In Proc. Int. Workshop on Model-Driven Software Evolution held
with the ECSMR, 2007.

[7] A. Narayanan, T. Levendovszky, D. Balasubramanian, and G. Karsai,
“Automatic domain model migration to manage metamodel evolution,”
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5795
LNCS, pp. 706–711, 2009.

[8] B. Meyers and H. Vangheluwe, “A framework for evolution of
modelling languages,” Science of Computer Programming, vol. 76,
no. 12, pp. 1223–1246, 2011. [Online]. Available: http://dx.doi.org/10.
1016/j.scico.2011.01.002

[9] T. Mens, S. Demeyer, B. D. Bois, H. Stenten, and P. V. Gorp,
“Refactoring: Current research and future trends,” Electronic Notes
in Theoretical Computer Science, vol. 82, no. 3, pp. 483 – 499,
2003. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1571066105826246

[10] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:
improving the design of existing code. Addison-Wesley, 1999.

[11] M. Herrmannsdoerfer, S. Benz, and E. Juergens, “Cope - automating
coupled evolution of metamodels and models,” in Proceedings
of the 23rd European Conference on ECOOP 2009 — Object-
Oriented Programming, ser. Genoa. Berlin, Heidelberg: Springer-
Verlag, 2009, pp. 52–76. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-03013-0 4

[12] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio, “Automating
co-evolution in model-driven engineering,” in 12th International IEEE
ECOC 2008, 15-19 September 2008, Munich, Germany. IEEE Com-
puter Society, 2008, pp. 222–231.

[13] A. Cicchetti, D. Di Ruscio, and A. Pierantonio, “Managing Dependent
Changes in Coupled Evolution,” in ICMT, ser. LNCS. Springer, 2009,
vol. 5563, pp. 35–51.

[14] D. Di Ruscio, L. Iovino, and A. Pierantonio, “Evolutionary Together-
ness: How to Manage Coupled Evolution in Metamodeling Ecosystems,”
in ICGT, vol. 7562. Springer, 2012, pp. 20–37.

[15] B. G. Humm and R. S. Engelschall, “Language-oriented programming
via dsl stacking,” in Proceedings of the 5th International Conference on
Software and Data Technologies, 2010, pp. 279–287.

[16] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework 2.0, 2nd ed. Addison-Wesley Professional, 2009.

[17] L. Bettini, Implementing Domain-Specific Languages with Xtext and
Xtend, 2nd ed. Packt Publishing, 2016.

[18] S. Efftinge, M. Eysholdt, J. Köhnlein, S. Zarnekow, W. Hasselbring, and
R. von Massow, “Xbase: Implementing Domain-Specific Languages for
Java,” in GPCE. ACM, 2012, pp. 112–121.

[19] M. D. Univaq, “Metamodel refactorings catalog,” http://www.
metamodelrefactoring.org, 2011, accessed: 2016-09-30.

[20] D. Di Ruscio, L. Iovino, and A. Pierantonio, “What is needed for
managing co-evolution in mde?” in Proceedings of the 2nd IWMCP’11.
ACM, 2011, pp. 30–38.

[21] D. Wagelaar, L. Iovino, D. Di Ruscio, and A. Pierantonio, “Translational
semantics of a co-evolution specific language with the EMF transforma-
tion virtual machine,” in ICMT, ser. LNCS. Springer, 2012, vol. 7303,
pp. 192–207.

[22] T. Mens, On the Use of Graph Transformations for Model Refactoring.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 219–257.
[Online]. Available: http://dx.doi.org/10.1007/11877028 7

[23] T. Arendt, F. Mantz, and G. Taentzer, “Emf refactor: specification
and application of model refactorings within the eclipse modeling
framework,” in Proceedings of the BENEVOL workshop, 2010.

[24] K. Stroggylos and D. Spinellis, “Refactoring–does it improve
software quality?” in Proceedings of the 5th International Workshop
on Software Quality, ser. WoSQ ’07. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 10–. [Online]. Available: http:
//dx.doi.org/10.1109/WOSQ.2007.11

[25] J. Di Rocco, D. Di Ruscio, L. Iovino, and A. Pierantonio, “Mining
metrics for understanding metamodel characteristics,” in Proceedings of

the 6th International Workshop on Modeling in Software Engineering,
ser. MiSE 2014. New York, NY, USA: ACM, 2014, pp. 55–60.
[Online]. Available: http://doi.acm.org/10.1145/2593770.2593774

[26] L. Iovino, A. Pierantonio, and I. Malavolta, “On the Impact Significance
of Metamodel Evolution in MDE,” JoT, vol. 11, no. 3, pp. 3:1–33, Oct.
2012.

[27] P. Gómez-abajo, E. Guerra, J. D. Lara, P. Gomeza, and E. Guerra,
“Wodel : A Domain-Specific Language for Model Mutation,” pp. 1–
6, 2016.

http://dx.doi.org/10.1007/978-3-642-39742-4_11
http://dx.doi.org/10.1016/j.scico.2011.01.002
http://dx.doi.org/10.1016/j.scico.2011.01.002
http://www.sciencedirect.com/science/article/pii/S1571066105826246
http://www.sciencedirect.com/science/article/pii/S1571066105826246
http://dx.doi.org/10.1007/978-3-642-03013-0_4
http://dx.doi.org/10.1007/978-3-642-03013-0_4
http://www.metamodelrefactoring.org
http://www.metamodelrefactoring.org
http://dx.doi.org/10.1007/11877028_7
http://dx.doi.org/10.1109/WOSQ.2007.11
http://dx.doi.org/10.1109/WOSQ.2007.11
http://doi.acm.org/10.1145/2593770.2593774

	Introduction
	Mastering Metamodel Refactorings
	The Edelta Language
	Xtext-based implementation of Edelta
	Xbase in a nutshell
	Specifying and compiling Edelta programs

	Built-in metamodel refactoring operations
	Example of Edelta applied to the PersonList metamodel

	The Edelta editor
	Discussion
	Related Work
	Conclusions
	References

