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AbstractðUncertainty in digital service ecosystems (DSEs) 

can be attributed to several factors like the dynamic nature of the 

ecosystem and unknown deployment environment, change and 

evolution of requirements, and co-evolution among ecosystem 

members. Managing uncertainties in DSEs is challenging, and 

therefore, novel and solid software architecting methods, 

techniques and tools are needed. Our research explores the 

means to handle uncertainties at the software architecture level 

of DSEs. In this regard, we apply valuable lessons learnt from the 

models at runtime (M@RT) technique. This paper proposes a 

novel, dynamic knowledge engineering approach to handle 

uncertainties in DSEs at runtime using M@RT. This uncertainty 

handling approach aims to identify and solve two interrelated 

research problems: reflexivity and evolution of the ecosystem 

between the architecture and running system of services. 

Reflexivity means that the system must have knowledge of its 

components to make intelligent decisions based on self-

awareness. In addition, we provide tool support towards 

automating reflexivity and evolution. Complex state machines of 

M@RT that serve as a dynamic knowledgebase are modeled 

using executable state machines, and generation of software 

artifacts of the model is performed at execution time. Causal 

connection is maintained between the runtime models and the 

running system. We validate and illustrate our approach using a 

DSE in an ambient-assisted living environment for elderly 

people. 

Keywordsðdynamic knowledge; model-driven development; 

reflexivity; evolvability; uncertainty; digital ecosystems 

I.  INTRODUCTION  

Today the entire industrial world is transforming from a 
physical world to a digital one. In this context, a new 
paradigm has emerged called digital service ecosystems 
(DSEs), which are open, loosely coupled, domain-clustered, 
demand-driven, self-organizing agents’ environments where 
each entity is proactive and responsive for its own benefit [1]. 
In DSEs, the business stakeholders provide the most 
significant driving factor, which requires digital services 
(DSs) to handle uncertainty. Uncertainty in DSEs can be 
attributed to several factors, such as the dynamic nature of the 
ecosystem and unknown deployment environment, 
composition and users; change and evolution of requirements; 
and co-evolution among ecosystem members. Therefore, 
managing uncertainties is a challenge, and there is a need for 

novel and solid software architecting methods, techniques and 
tools.  

In traditional software architecting approaches, uncertainty 
is addressed by identifying robust solutions at design-time. 
However, for DSEs which are deployed in highly dynamic 
environments, identifying solutions at design-time is 
impractical. It is difficult to anticipate all environmental 
conditions they will encounter throughout lifetime. Recently, 
models at runtime (M@RT or runtime models) have been 
adopted in dynamically adaptive systems (DASs) to cope with 
uncertainty and resolve them at runtime. A runtime model 
captures relevant information of the running system for 
different purposes, which can be part of the system functional 
features or non-functional features providing quality assurance 
and analysis [2].  

In the past, the concept of uncertainty has been explored 
extensively by researchers in different scientific disciplines, 
such as economics [3], physics and psychology. There is 
extensive literature on model-based system reconfiguration 
and on self-adaptive systems at the architecture level (e.g., [4], 
[5]). Also, there are several related works on runtime models 
to address uncertainties in DASs (e.g., [2], [6], [7], [8]). 
However, most of these works have been limited to conceptual 
frameworks or reference models. Also, to the best of our 
knowledge, none of them provide concrete tool support and 
case study validation especially in the context of digital 
service engineering. This provides motivation for this study. 
The contribution of this paper is twofold. First, this paper 
proposes a novel, dynamic knowledge engineering approach 
to handle uncertainties in DSEs at runtime using M@RT. 
Second, it provides tool support towards automating the 
engineering approach. 

In our approach, M@RT is a dynamic knowledgebase [2] 
that abstracts important information about the system, its 
operational context, and requirements. The approach aims to 
identify and solve two interrelated research problems. They 
are: reflexivity and evolution of the DSE between architecture 
and running system of services (e.g., cloud services). 
Reflexivity means that the system must have knowledge of its 
components to make intelligent decisions based on self-
awareness [9]. To support reflexivity, we propose a set of 
quality-driven, self-adaptive architectural patterns. Complex 
state machines of M@RT that serve as a dynamic 



knowledgebase are modeled using Enterprise Architect’s 
executable state machines [10]. We support evolution between 
architecture and running system of cloud services using 
generation of software artifacts of the model at execution time. 
The runtime models and the running system are causally 
(loosely) connected, so that the both abstractions evolve at the 
same time. The approach is validated using a DSE, which 
describes an ambient-assisted living (AAL) environment for 
elderly people.  

The rest of the paper is organized as follows. Section II, 
provides background information to our work. In Section III, 
we propose our knowledge engineering approach using 
M@RT.  The case study and the application of the approach 
are described in Section IV. In Section V, we present key 
related work, and Section VI concludes this paper. 

II. BACKGROUND 

A. Definitions 

1) Uncertainty:  
Uncertainty [11] is a system state of incomplete or 

inconsistent knowledge so that an adaptive system is unable to 
know which alternative environmental or system 
configurations hold at a specific point. It can be caused by 
missing or ambiguous requirements, false assumptions, 
unpredictable entities or phenomena in the execution 
environment, and unresolvable conditions caused by 
incomplete and inconsistent information. This information can 
be obtained by potentially imprecise, inaccurate, and unreliable 
sensors in its monitoring infrastructure [11]. Uncertainty and 
variability are two separate, yet related notions, and in our 
research, we aim to deal with uncertainty. 

2) Reflexivity and Evolution:  
Reflexivity is an important characteristic of a self-managed 

autonomic system, which means that the system must have 
knowledge of its components, current status, capabilities, 
limits, boundaries and interdependencies with other systems 
and available resources [12]. Also, the system must be aware 
of its possible configurations and how they affect specific non-
functional, quality requirements. In this study, we consider 
reflexivity as a technique that can be exploited to support 
evolution of the ecosystem. 

By evolution we refer to the ability of the ecosystem to 
evolve in dynamic situations (e.g., see [13]). An ecosystem is 
dynamic, evolving all the time as new members, services and 
value networks emerge [14]. Therefore, to adapt to the needs 
of the ecosystem, the ecosystem’s knowledge management 
model should evolve too. 

B. ADSEng Methodology and Contribution 

Previously in [15], we established several characteristics as 
part of an evaluation framework to compare existing autonomic 
computing approaches in DSEs. They are: top-down vs. 
bottom-up approaches, decentralized control, self-* properties 
and context-awareness, reflexivity, quality attributes, and 
validation/case study. Later, in [9], these characteristics 
corresponded to several key requirements that are significant in 
a service engineering method for autonomous DSEs. In this 

context, we introduced the ADSEng methodology [9], which is 
a novel, systematic service engineering methodology proposed 
for ecosystem-based engineering of autonomous DSs. This 
integrated and model-based methodology covers from 
requirements engineering to architecting, and running systems 
of DSs. The current paper is based on the ADSEng 
methodology. However, it is a significant step further, 
presenting a dynamic knowledge engineering approach as well 
as practical tool support and case study validation. 

III.  ENGINEERING OF DYNAMIC KNOWLEDGE MODELS 

In this section, we describe our dynamic knowledge 
engineering approach using M@RT to handle uncertainties in 
DSEs at runtime. First, an overview of the engineering process 
(see Fig. 1) is provided followed by a description of each step. 
We use the Sparx Systems’ Enterprise Architect (13.0) case 
tool towards automating the engineering process. 

A. Approach Overview 

In our approach, a runtime model is a dynamic 
knowledgebase that abstracts important information about the 
system, its operational context, and requirements. MAPE-K is 
a reference model introduced by IBM for autonomic control 
loops [16]. Here, the basic monitor-analyze-plan-execute over 
a knowledgebase (MAPE-K) architecture [16] of the DSE is 
extended at the architecture level to use models that evolve, so 
that the software system is able to better manage uncertainty. 
This is realized by analyzing new properties about the 
execution environment and the system itself based on 
monitoring information collected at runtime. The four key 
processes in the architecture - monitor, analyze, plan and 
execute – can analyze the system and environmental data to 
refine and extend the information stored in the runtime 
models. 

Towards supporting reflexivity, we propose a set of 
quality-driven, self-aware and self-adaptive architectural 
patterns, which are extended MAPE-K loops with quality 
assurances (see Section III-B). The goal is to use the patterns 
to create and customize the dynamic knowledge models in 
different domains. We model the complex state machines of 
M@RT using Enterprise Architect’s executable state 
machines. Evolution between architecture and running system 
of cloud services is supported using generation of software 
artifacts of the model at execution time. Causal connection is 
maintained between runtime models and the running system.   

In this manner, the main steps in the dynamic knowledge 
engineering process are (see steps 1-3 in Fig. 1):  

(1) create dynamic knowledge models of requirements and 
architecture in the example domain (see step 1b in Fig. 
1). At the architecture level, this is assisted by a 
collection of self-aware and self-adaptive architectural 
patterns (step 1a, Fig. 1);  

(2) create an executable state machine artifact to run the 
knowledge models in architecture and then generate the 
code and compile it (step 2, Fig. 1); 

(3) execute, simulate and validate the dynamic knowledge 
models (step 3, Fig. 1). 



B. Step 1: Create Dynamic Knowledge Models 

We use two types of knowledge models at the requirements 
and architecture levels, respectively. They are: (i) a KAOS-
based goal model that represents the requirements; and (ii) 
model-based finite state machines (FSMs) at the architecture 
level. For the goal-based requirements model, a simplified 
KAOS metamodel is used to represent goals where each goal is 
associated with a name and a priority. FSMs, which are 
embodied in the architectural patterns, describe the behavior of 
the system with respect to the current goals and context. A 
FSM runtime model can show the current state information of a 
component during its operation. 

1) Architectural Patterns Collection for DSEs:  
The main step (see also [9]) for supporting reflexivity is 

representing the uncertainty factors using architectural 
patterns. The main goal is to use them for creating and 
customizing the knowledge models in different domains. The 
patterns have been modeled in Enterprise Architect using 
UML templates (UML activity and state models), which can 
be instantiated to a particular domain using UML 2.5 models. 
Here the traditional autonomic MAPE-K loops [16] have been 
extended with quality guarantees to handle uncertainty at the 
software architecture level.  

Both decentralized and centralized feedback loop 
approaches have been suggested to facilitate autonomic 
behavior in adaptive systems [17]. We integrate these 
approaches in the patterns to exploit the benefits of both. With 
this our approach aims to support both collective adaptation 
and adaptation by subparts. Although centralized approaches 
allow global behavior control, they contain a single point of 
failure and suffer from scalability issues. Conversely, 
decentralized approaches do not require any a priori 
knowledge, nor do they contain a single point of failure. In this 

paper, we describe two main patterns from the collectionððthe 
autonomic DS pattern and centralized DS pattern (see Fig. 2 
and Fig. 3). The former applies the decentralized feedback loop 
approach while the latter applies the centralized approach. 

a) Autonomic DS Pattern:  

The autonomic DS pattern (see Fig. 2), which is modeled as 
a UML template, is characterized by the presence of an 
explicit, external feedback loop (Autonomic Manager / AM) to 
direct the behavior of the DS, which is the managed element. 
This pattern exhibits self-* properties, such as self-awareness 
and self-adaptation. The DS has sensors, effectors and a 
representation of goals. An AM handles the adaptation of the 
DS. Several AMs can be associated with the DS, each closing a 
feedback loop devoted to controlling a specific adaptation 
aspect of the system, and adding different levels of AMs 
increases the autonomicity. Here, the novelty is that the 
traditional autonomic MAPE-K loop is extended with a quality 
assurance component at the architecture level for DSs. This 
quality assurance component implements a QoS model that 
provides QoS guarantees. It corresponds to the dynamic 
knowledgebase in Fig. 1. The quality assurance component can 
include three types of runtime models depending on their 
subject, such as system models (i.e., abstract view of the 
running system), context models (e.g., environment), and 
quality requirements of the DS. During the adaptation process,  

 
Fig. 1. Dynamic knowledge models-based service engineering. 

the MAPE elements of an AM interact with the quality 
assurance component to obtain or update information about the 
system states, environment, and quality assurance criteria. 

b) Centralized DS Pattern:  

This pattern (see Fig. 3) is characterized by a global 
feedback loop, which manages a higher-level adaptation of 
behavior of multiple autonomic components (e.g., two DSs in 
Fig. 3). The adaptation in the centralized DS pattern is handled 
by a high-level AM called a super AM. Like an AM, a super 
AM also has a quality-driven, extended MAPE-K adaptation 
model. This is while the single DSs are able to self-adapt their 
individual behavior using their own external feedback loops in 
the AMs (Fig. 3). 

C. Step 2: Create Executable State Machine Artifact, 

Generate and Compile Code 

Next, in the knowledge engineering process, we design the 
executable state machine artifact, which is used to generate 
the code for the model that can be compiled and executed (see 
step 2 in Fig. 1). This artifact essentially describes the classes 
and objects involved in the DSs and their AMs in the patterns, 
their initial properties and relationships. It acts as the binding 
script that links multiple objects together and determines how 
these will communicate in a simulation at runtime.  

The underlying technique we explore to support evolution 
between the architecture and the running system of cloud 
services is generation of service software at execution time. In 
DSEs, which are characterized by a high level of uncertainty, 
the generation of software needs to happen at runtime as it 
cannot necessarily be foreseen during design time. In this study 



 
Fig. 2. Autonomic digital service pattern. 

 
Fig. 3. Centralized digital service pattern. 

we use the dynamic code generation feature of the executable 
state machine artifact to support the evolution between 
architecture and running system of services. The automated 
model transformations in the code generation process support 
the causal connection between the runtime models and the 
running system. This means that when the model is modified, 
the running system is changed correspondingly. Thus, the two 
abstractions synchronize and evolve at the same time. 

D. Step 3: Simulate and Validate Knowledge Models 

Finally, we exploit Enterprise Architect’s ability to 
perform simulations with its simulation feature which allows 
executing the dynamic knowledge models created (step 3, Fig. 
1). As the executable state machine executes, the relevant state 
machine diagrams are displayed where the active state for the 
instance completing a step is highlighted and the other states 
remain dimmed. The state machines can be changed at 
runtime by user interaction. The simulation provides a visual 
reflection of the real compile code as it is executing. When the 
execution is completed the generated code can be deployed to 
the target system. This code can be further modeled by the 
engineer to derive the running system of cloud services. 

We use the debugging features of the Enterprise Architect 
environment to validate the complex dynamic knowledge 
models of state machines. These can be inserting simulation 
breakpoints, firing waiting triggers, tools to pause and run a 
simulation, and tools to examine local variables and the call 
stack. Thus, it allows us to verify the correct behavior of the 
generated code. 

IV.  APPLYING THE APPROACH 

After presenting the proposed approach, now we describe 
how we have applied it to the AAL case study. The scope of 
the knowledge engineering process is large. Therefore, as 
applied next using the case study, this paper focuses on step 1 
and step 2 to support reflexivity and evolution of DSEs 
between architecture and running system of cloud services. 
Simulating and validating of knowledge models (step 3) in the 
case study will be addressed in a future paper. 

A. Problem Domain and Case Study 

The case study describes a DSE in digital health revolution, 
which provides an AAL environment for elderly people [9] 
(see Fig. 4). Advanced smart homes depend on adaptivity to 
function properly [9]. This can be associated with several 
uncertainty factors; e.g., sensors or devices can fail, and the 
behavior of the elderly person him/herself can be highly 
uncertain. Therefore, in such uncertainty situations, the system 
needs to satisfy the requirement in some other way. In AAL, 
the DSE includes two main cloud-based services: (i) a 
monitoring and security service and (ii) a diagnosis service. 
The monitoring and security service utilizes different 
monitoring devices to analyze the elderly person’s activities 
and provides security services. This service can include several 
supporting cloud services; for example, several sensor-based 
monitoring services and an elderly care security service. The 
service providers can be different businesses that provide 
sensor services, and an elderly care security service. 
Meanwhile, the diagnosis cloud service is used by a doctor or 
another person (e.g., a nurse) to make a diagnosis based on 
monitored data. This service can include several supporting 
cloud services provided by several service providers; for 
example, electric health records, health insurance and clinical 
information systems.  

In this context, we describe a scenario of an elderly person 
called Peter: Peter is 74 years old, and suffers from nocturnal 
epileptic seizures; and he is also an alcoholic. The main goal 
for Peter is to maintain health (i.e., reduce the triggering of 
seizures), which can be dependent on two factors: high 
alcohol level and lack of sleep due to disturbances to sleep 
pattern. Several devices can be associated with several context 
dimensions, such as: a waist-worn fall detector; an intelligent 
bed with epileptic sensor to monitor seizures; activity 
monitors to monitor sleep level; an intelligent cellar with 
RFIDs to monitor the locations of alcohol containers; 
intelligent mug with sensors to monitor the alcohol level 
consumed.  

The devicesððthe intelligent cellar and intelligent mugðð

are supporting cloud services. They are connected to the 
ambient-assisted home hub unit for a more high-level handling 
of sensor information and adaptation of the DSs. Thus, there 

are two supporting cloud services: iCellar (i.e., RDF 

tracking sensor cloud service in Fig. 4) and iMug,  and the 

ambient - assisted home hub unit  can be considered 
as a high-level service. Here, a composite DS can be the 

orchestration of the iCellar  and iMug  DSs. The goal of the 

ambient - assisted home hub  unit service is to 
monitor the alcohol volume of the containers in the cellar, and 



 

Fig. 4. Case study: ambient-assisted living (AAL) digital service ecosystem. 

alcohol volume consumed from the mug, so the maximum 
alcohol intake level is not exceeded. In this example, we 

assume that there is a single container in the iCellar . Table 
1 summarizes the main goals of these cloud services and their 
associated uncertainty factors. 

B. Applying the Approach to Case Study 

1) Create Dynamic Knowledge Models: 

a) Requirements Model:  

In the AAL case study, we use KAOS-based goal models to 
represent the requirements, i.e., goals (functional) and softgoals 
(non-functional) of the scenario. Fig. 5 provides an excerpt of a 
goal graph created to mitigate uncertainties. There the top-level 
goal is refined as a goal lattice in which branches and goals are 
refined into expectations and requirements. The main goal for 
Peter is to maintain his health by avoiding triggering of 
seizures. In the goal model, KAOS obstacles are used to 
represent the uncertainty factors, e.g., Peter's behavior. More 
specifically, it can happen that Peter forgets to control alcohol 
intake. That is, it is uncertain whether Peter will avoid high 
alcohol intake; he could forget to control drinking and the 
effect could mean he exceeds alcohol intake, becomes 
intoxicated and eventually unhealthy. 

 As stated in Section III-B, a simplified KAOS metamodel is 
used to represent goals where each goal is associated with a 
name and a priority. The goal priorities can be affected by 
context changes, thereby affecting tasks execution by the user 

(e.g., Peter) or entity (e.g., iCellar , iMug  or ambient -

assisted home hub unit ) at runtime. The system 
depending on the goal priority and the relation between the 
goals weighs the requirements during task execution and 
selects a set of tasks to be performed. This goal configuration 

graph for the ambient - assisted home  hub unit 

service is shown in Fig. 6. The difference between the left and 

right configurations is in the priority level of the low 

alcohol consumption  softgoal where the right 
configuration has a higher priority. 

TABLE I.  GOALS AND ASSOCIATED UNCERTAINTY FACTORS OF 

SUPPORTING CLOUD SERVICES 

Supporting Cloud 
Service 

Goals Uncertainties 

Intelligent cellar 

(iCellar ) 

Maintain alcohol 
volume consumed 
from container 

Alcohol containers can 
get misplaced or lost 

Intelligent mug 

(iMug ) 

Maintain alcohol 
volume consumed 
from mug 

Alcohol content can be 
spilled;  
other drinking objects 
can be present 

Ambient -

assisted home 

hub unit  

Ensure that maximum 
alcohol intake level is 
not exceeded; 
Raise an alarm if it 
exceeds a certain 
threshold level 

Alcohol intake level is 
exceeded which can 
cause Peter to get 
intoxicated and become 
unhealthy 

 

 
Fig. 5. Requirements: goal model to mitigate uncertainties in AAL. 



 
Fig. 6. Two goal configurations for the requirements of the ambient-

assisted home hub unit service. 

b) Architecture Model:  

We now describe the architectural models realized 
applying our approach to simulate several feedback loop 

structures in the iCellar - iMug  DSs composition of the 
AAL case study (see Fig. 7). These models are created using 
the patterns presented in Section III-B. In this study, UML 2.5 
activity models and state machines have been used as the 
primary notation to model the behavior of the loops. A 
feedback loop provides the interplay between flow (control or 
data) and actions on the flows.  

One of our main motivations of the present research is to 
address uncertainty. To this end, the approach and the 
simulation scenario add unexpected context information to 
model uncertainty using state machines. To address 
uncertainty, the monitoring needs to be context-aware. The 
analysis phase then reasons using new (unknown) context 
information and interprets how the goals are affected, thus 
planning for the system to cope with such changes. 

 
Managed Elements and Autonomic Managers: There are 
two managed elements (DSs) in the AAL case study example: 

DigitalService_ICellar and 

DigitalSer vice_IMug  (Fig. 7). The two AMsð

AutonomicManager_ICellar  and 

AutonomicManager_IMug ððclose separate, 
decentralized feedback loops to handle the adaptation of 
alcohol volume in container and alcohol volume in mug (and 
spilled volume), respectively. Also, there is a high-level AM 
called a super AM 

(SuperAutonomicManager_AmbientAssistedHome

HubUnit ) that closes a separate, centralized feedback loop. 
Here, this super AM handles the adaptation of alcohol volume 

in both the iCellar  and the iMug . As stated in Section III-
B, a super AM can manage the adaptation of multiple SCs. 
This example implements and integrates both decentralized 
and centralized feedback control loop techniques using the 

two patternsððautonomic DS pattern  and 

centralized DS pattern . In the example, the runtime 
model is now a goal model with constraints, an environment 
model, and an initial behavior model in the form of FSMs. 

The resolving of uncertainties at runtime by the different 
phases (i.e., monitoring, planning, analyzing and executing) of 
the extended MAPE-K loop architecture is explained next. 

Monitoring:  The monitoring process has two main tasks: 
monitoring and updating of runtime models. It measures raw 

 
Fig. 7. AAL Case study: digital services and autonomic managers. 

data through sensors (e.g., collect alcohol volume in 

Monitor of AutonomicManager_ICellar , Fig. 8) 
about the current state and/or occurring events of the system, 
the context, and the requirements (goals). It checks for 
changes of goals, which can be changed by the user or the 
system itself. The monitoring process updates the runtime 
model that represents knowledge about the state, context, and 
requirements (change of goals).  

Analyzing: There are two main tasks in this process: (i) it 
gathers runtime models and interprets data collected by the 
monitoring process against goals and constraints; and (ii) 
detects system and environmental changes that may need 
adaptation. The analyze process decides that a behavior 
adaptation is required to satisfy the detected goal changes. In 
the example, this can be gathering and interpreting alcohol 
volume data from the runtime model and checking against the 

goals to detect changes that require adaptation (see Analyze 

of AutonomicManager_ICellar , Fig. 8). 

Planning: The planning process reads the runtime model 
enhanced by the analysis process. Then some reasoning is 
performed to identify how the running system should be best 
adapted to changes of the system, context, and requirements. 
The planned changes can be in the form of a runtime model. In 

the example, the high availability  softgoal of the 

ambient - assisted home hub unit  service 

(SuperAutonomicManager_AmbientAssistedHome

HubUnit ) has a much high priority than the softgoal low  

alcohol consumption  (see Fig. 6, left). Therefore, the 
planning step for that component can generate a new  



 

Fig. 8. Modeling iCellar service and autonomic manager in AAL. 

behavioral model or adapt the existing one (see M@RT state 
machines in Fig. 9, top). Here, there is a reduced alcohol 
consumed level safety margin where the critical behavior is 
entered only if the alcohol level is greater than 80. The 

ambient - assisted home hub unit  continues to 
perform its tasks according to the specialized state machine 
until goals changed by the user or system itself. Let us assume 
that the goals change to the situation as depicted in the second 

configuration (see Fig. 6, right). Now the low alcohol 

consumption  goal has a higher priority. The monitoring 
step of the loop senses this change of goals, and updates it in 
the runtime model. The analyze activity decides that a behavior 
adaptation is necessary and the planning step tries to fulfill the 
new constraints. In this case, the MAPE loop will generate or 
adapt the existing state machine (see M@RT’ state machines in 
Fig. 9, bottom). The new behavioral model uses a higher safety 
margin for alcohol consumed level (critical stage is entered 
when it is greater than 90). In addition, it introduces a new state 

called Error  to handle the critical behavior of the state 
machine by adding additional operations (functions) through 

error handling extensions in the ambient - assisted 

home hub unit service.  

Executing: The Execution process directly applies a set of 
changes for the running system stored in some runtime models 
by the planner. In this example, it can be notifications sent on 
over alcohol consumption and to control drinking. 

2) Create Executable State Machine Artifact, Generate 

and Compile Code:  
 As mentioned in Section III-C, after creating the classes 

 

Fig. 9. M@RT of the ambient-assisted home hub unit service in AAL. 

 

and state machines on knowledge models then we design the 
executable state machine artifact 

(AALCaseStudy_ExecutableArtifact , Fig. 10). This 
artifact describes the classes and objects involved in the 
example (i.e., the DSs and their AMs in the patterns). They 
can also describe their initial properties and relationships. We 
define initial state of instance by assigning property values to 
the class attributes. For example, see property values assigned 

to DS_ICellar , DS_IMug and 

SAM_AmbientAssis tedHomeHub . Also, we define how 
each property can reference other properties by defining 
relationships based on the class model that they are instances 
of. 

Afterwards, using the executable state machine artifact 
created in the example, we generate the code in Java and 
compile it. See Fig. 10 for system output with code 
successfully generated for all classes. The generation of code 
from the executable state machine artifact supports causal 
connection between the runtime models and the running 
system, thus both evolving at the same time. Next, the 
compiled code can be executed, simulated and validated using 
the simulation and debugging features of Enterprise Architect. 

V. RELATED WORK AND DISCUSSION 

A key research area related to our study is model-based 
system reconfiguration. Rainbow framework [4] is a seminal 
work on architecture-based self-adaptation. It extends 
architecture styles to provide reusable infrastructure with 
mechanisms to specialize the infrastructure to the needs of 
specific systems. Braberman et al. [5] proposed a three- 
layered reference architecture called MORPH for architecture-
based adaptation that involves runtime change of system 
configuration and behavior update. Meanwhile, Morin et al. 
[18] proposed an approach that combines aspect-oriented and 
model-driven techniques to limit the number of artifacts 
needed to realize dynamic variability. However, these works 

Runtime 
model before 
goals change   

Ω 
 

Ω 
 

Runtime 
model after 
goals change   

iCellar  
Digital Service 

(Managed 
Element) 

Autonomic 
Manager for 

iCellar 



 
Fig. 10. Executable state machine artifact and code generation. 

 

are neither based on M@RT explicitly nor target digital 
service ecosystems.  

Maes [19] described one of the pioneering works on 
reflection with respect to object-oriented programming 
languages. The author defines a computational system 
causally connected to its domain and a change in its domain is 
reflected on it and vice versa. The Twin Peaks model [20] 
deals with a similar notion to reflexivity proposed here. It is an 
iterative process that develops progressively more detailed 
software requirements and architectural specifications 
concurrently. Requirement reflection [21] supports runtime 
representation of requirements by making requirements 
available as runtime objects for DASs. Bencomo [21] 
classifies uncertainty and adaptations that a self-adaptive 
system need to face. There to deal with uncertainty, goal-
oriented requirements modeling has been extended with the 
RELAX language. The goal of their work is to manage 
uncertainty primarily at the requirements level. 

In [11], the authors have proposed a taxonomy of potential 
sources of uncertainty and techniques for mitigating them in 
the requirements, design, and execution phases of DASs. In 
[22], the authors present a goal-based modeling approach to 
develop requirements of an adaptive system with 
environmental uncertainty. While our technique of handling 
uncertainties using a KAOS-based goal-model follows [22], 
our work differs from [22] in that we handle uncertainty using 
M@RT at the architecture level as well.  

Adaptation patterns have been explored as a technique to 
provide self-adaptation in several works (e.g., [23]). However, 
the novelty is the patterns defined here for DSEs contain a key 
quality assurance component for providing quality guarantees 
in addition to the adaptation handling MAPE elements. 

There are several works (e.g., [2], [6], [7], [8]) that use 
runtime models as a technique to manage uncertainties and 
provide assurance in DASs. The authors in [2], [6] propose 
extensions to the MAPE-K loop architecture with runtime 
models to cope with uncertainty at runtime. In [6], the authors 
present a conceptual reference model called MAPE-MART, 
which extends the traditional MAPE-K model with quality 
assurance mechanisms for self-adaptation. The notion of 
dynamic knowledgebase was originally motivated by the work 
in [2] where the authors identify a runtime model as a dynamic 

knowledgebase. However, the MAPE-K extensions proposed 
in their approach are only at the conceptual level. 

DYNAMICO (Dynamic Adaptive, Monitoring and Control 
Objectives model) [7] is a reference model for engineering 
context-based self-adaptive software composed of feedback 
loops. It aims to guarantee the coherence of adaptation 
mechanisms with respect to changes in adaptation goals and 
monitoring mechanisms. Tamura et al. [8] present a proposal 
for including software validation and verification (V&V) 
operations explicitly in MAPE-K loops for achieving software 
self-adaptation goals. They discuss runtime V&V enablers, 
i.e., requirements at runtime, models at runtime, and dynamic 
context monitoring, for providing effective support to 
materialize V&V assurances for self-adaptation.  

To summarize, extensive literature exist on model-based 
system reconfiguration and on self-adaptive systems in the 
architecture level (e.g., [4], [5]). Also, there are several 
approaches on runtime models to address uncertainties in 
DASs (e.g., [2], [6], [7], [8]). However, most of these have 
been limited to conceptual frameworks. Also, to the best of our 
knowledge, none of them provide concrete tool support and 
case study validation especially in the context of DSEs. We 
have presented an approach for supporting M@RT in DSEs 
that provide reflexivity and evolution. 

VI.  CONCLUSIONS AND FUTURE WORK 

In this paper, we presented a dynamic knowledge 
engineering approach to handle uncertainties in DSEs at 
runtime using the M@RT technique. The approach aims to 
solve two interrelated research problems, i.e., reflexivity and 
evolvability of the ecosystem between the architecture and the 
running system of services. Complex state machines of M@RT 
that serve as a dynamic knowledgebase have been modeled 
using executable state machines, and the generation of software 
artifacts has been performed at execution time. Causal 
connection has been maintained between the runtime models 
and the running system to support evolution. We presented an 
example involving a DSE in an AAL  environment for elderly 
people for validating the approach.  

The aim of our work is not to enhance model-driven 
architecture but to create an approach that can be applied to 
digital service engineering and is based on service architecture. 
The approach needs to be easy to understand as the target 
audience is software engineers and not specialists in autonomic 
computing. Currently, by using the capability of Enterprise 
Architect, our approach can automate the forward 
synchronization of the causal connection between the 
architecture and running system. At present, we are exploring 
techniques for supporting the backward synchronization from 
running system of cloud services to the architectural models. 
Our future work will include completing the building of the 
collection of quality-driven adaptation patterns. Also, so far, 
our modeling has considered only a single user in the 
ecosystem (i.e., elderly person). This needs to be applied to 
multiple users of the ecosystem to further validate our 
approach. Finally, in order to provide a true assessment of our 
knowledge engineering approach, developing industrial case 
studies with empirical cases is significant. 

Classes 

System Output 
Generate Code 

Executable state machine artifact 
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