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Abstrac® Uncertainty in digital service ecosystems (DSES)
can be attributed to several factors like the dynamic nare of the
ecosystem and unknown deployment environment, change and
evolution of requirements, and ceevolution among ecosystem
members. Managing uncertainties in DSEs is challenging, and
therefore, novel and solid software architecting methods,
techniques and tools are needed. Our research explores the
means to handle uncertainties at the software architecture level
of DSEs. In this regard, we apply valuable lessons learnt from the
models at runtime (M@RT) technique. This paper proposes a
novel, dynamic kiowledge engineering approach to handle
uncertainties in DSEs at runtime using M@RT.This uncertainty
handling approach aims to identify and solve two interrelated
research problems: reflexivity and evolution of the ecosystem
between the architecture and unning system of services.
Reflexivity means that the system must have knowledge of its
components to make intelligent decisions based on self
awareness. In addition, we provide tool support towards
automating reflexivity and evolution. Complex state machies of
M@RT that serve as a dynamic knowledgebase are modeled
using executable state machines, and generation of software
artifacts of the model is performed at execution time. Causal
connection is maintained between the runtime models and the
running system. We validate and illustrate our approach using a
DSE in an ambientassisted living environment for elderly
people.
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[.  INTRODUCTION
Today theentire industrial world is transforming from a

Eila Ovaska

Service and Information Architectures
VTT Technical Research Centre of Finland
Kaitovayla 1, 90570 Oulu, Finland

eila.ovask@gmail.com

novel and solid software architecting methods, techniques and
tools.

In traditional software architecting approaches, uncertainty
is addressed by identifying robust solutions at detige.
However, for DSEs which are deployed in highly dynamic
environments, identifying solutions at desigme is
impractical. It is difficult to anticipate all environmental
conditions they will encounter throughout lifetime. Recently,
models at runtime (M@RTor runtime models) have been
adopted in dynamically adaptive systems (DASSs) to cope with
uncertainty and resolve them at runtime. A runtime model
captures relevant information of the running system for
different purposes, which can be part of the systemtional
features or noffiunctional features providing quality assurance
and analysi$2].

In the past, the concept of uncertainty has been explored
extensively by researchers in different scientific disciplines,
such as economic$3], physics and psychologylhere is
extensive literature on modbhsed system reconfiguration
and on seHadaptive systems at the architecture level (f4%.,

[5]). Also, there are several related works on runtime models
to address uncertainties in DASs (e.@2], [6], [7], [8]).
However, most of these works have been limited to conceptual
frameworks or reference models. Also, to the best of our
knowledge, none of them provide concrete tool support and
case study validation especially in the context of digital
service engineeringlhis provides motivation for this study.
The contribution of this paper is twofold. First, this paper
proposes a novel, dynamic knowledge engineering approach
to handle uncertaties in DSEs at runtime using M@RT.

physical world to a digital one. In this context, a newSecond, it provides tool support towards automating the
paradigm has emerged called digital service ecosysten@ngineering approach.

(DSEs), which are open, loosely coupled, donirstered,
demanddriven, sefor gani z i remvirorangnesnwherée
each entity is proactive and responsive for its own befigfit

In DSEs, the business stakeholders provide the moigdlp
significant driving factor, which requires digital services

(DSs) to handleuncertainty. Uncertainty in DSEs can be

attributed to several factors, such as the dynamic nature of t

ecosystem and unknown deployment

In our approach, M@RT is dynamic knowledgebaga]
that abstracts important information about tegstem, its
erational context, and requirements. The approach aims to
entify and solve two interrelated research problems. They
are:reflexivity and evolutionof the DSE between architecture
running system of services (e.g., cloud services).

d
environment%ﬂexv'ty means that the system must have knowledge of its

composition and users; change and evolution of requirement
and ceevolution among ecosystem members. Therefor
managing uncertainties is a chafyen and there is a need for

omponents to make intelligent decisions based on self
warenesq9]. To supportreflexivity, we propose a set of

equality-driven, selfadaptive architearal patterns. Complex

state machines of M@RT that serve as a dynamic



knowl edgebase ar e model ed corgextwg intr&doncedetiePSEmgmethodadogy@lhwhicheix t ' s
executable state machingd®]. We supporevolutionbetween a novel, systematic service engineering methodology proposed
architecture and running system of cloud services usingor ecosystenbased engineering of autonomous DSs. This
generation of software artifact$é the modeht execution time. integrated and modebased methodology covers from
The runtime models and the running system are causallgquirements engineering to architecting, and running systems
(loosely) connected, so that the both abstractions evolve at té DSs. The current paper is based on tABSEng
same time. The apprdads validated using a DSE, which methodology. However, it is a significant step further,
describes an ambieassisted living (AAL) environment for presenting a dynamic knowledge engineering aggivas well

elderly people. as practical tool support and case study validation.
The rest of the paper is organized as follows. Section II,
provides background information to our work. In Section 1ll,  !ll. ENGINEERINGOF DYNAMIC KNOWLEDGEMODELS
we propose our knowledgengineering approach using In this section, we describe our dynamic knowledge

M@RT. The case study and the application of the approacéngineering approach using M@RT to handle uncertainties in
are described in Section IV. In Section V, we present keY)SEs at runtime. First, an overview oktingineering process

related work, and Section VI concludes this paper. (see Fig. 1) is provided followed by a description of each step.
We use the Sparx Systems’ En:
II. BACKGROUND tool towards automating the engineering process.
A. Definitions A. Approach Overview
1) Uncertainty: In our approach, a runtime model is dynanic

Uncertainty [11] is a system state of incomplete or knowledgebaséhat abstracts important information about the
inconsistent knowledge so that an adaptive system is unablesgstem, its operational context, and requiremeMsPE-K is
know which alternative environmental or systema reference model introduced by IBM for autonomic control
configurations hold at a specific point. It can be caused bipops[16]. Here, the basic moniteanalyzeplanexecute over
missing or ambiguml requirements, false assumptions,a knowledgebase (MARE) architecture[16] of the DSE is
unpredictable entites or phenomena in the executiogxtended at the architecture level to use models that evolve, so
environment, and unresolvable conditions caused bihat the software system is able to better manage uncertainty.
incomplete and inconsistent information. This information canfhis is realized by analyzing new properties about the
be obtained by potentially imprecise, inaccurate, andliable ~ execution environment and the system itself based on
sensors in its monitoring infrastructufil]. Uncertainty and monitoring information collected at runtime. The four key
variability are two separate, yet related notions, and in ouprocesses in tharchitecture- monitor, analyze plan and

research, we aim to deal with uncertainty. execute- cananalyze thesystem ad environmental data to
o _ refine and extend the information stored in the runtime
2) Reflexivity and Evolution: models.
Reflexivity is an important characteristic of a selinaged o
autonomic system, which means that the systenst have Towards supporing reflexivity, we propose a set of

knowledge of its components, current status, capabilitiegjuality-driven, selfaware and seiddaptive architectural
limits, boundaries and interdependencies with other systenitterns, which are extended MAREloops with quality
and available resourcé$2]. Also, the system must be aware asurancegsee Section [#B). The goal is to use the patterns
of its possible configurations and how they affect specific nont0 create and customize the dynamic knowledge models in
functional, quality requirementdn this study, we consider different domains. We model the complex state machines of
reflexivity as a technique that can be exploited to suppo! @R T using Enterprise Ar chi
evolution of the ecosystem. machinesEvolutionbetween echitecture and running system
. » of cloud services is supported using generation of software
By evolution we refer to the ability of the ecosystem togrtifactsof the modelat execution time. Causal connection is

evolve in dynamic situations (e.g., 98]). An ecosystem is  majintained between runtime models and the running system.
dynamic, evolving all the time as new members, services and

value netweks emergg14]. Therefore, to adapt to the needs  In this manner, the main steps in the dyfaknowledge

of the ecosystem, t henageneats §NgiReering psocess are (wee stefYidig. fa

model should evolve too. (1) create dynamic knowledge models of requirements and

o architecture in the example domain (see step 1b in Fig.

B. ADSEng Methodologgnd Contribution 1). At the architecture level, this is assisted by a
Previously in[15], we established several characteristics as  collection of seHaware andselfadaptive architectural

part of an evaluation framework to compare existing autonomic  patterns (step 1a, Fig. 1);

computing approaches in DSEs. They atep-down vs. (2) create an executable state machine artifact to run the

bottomup approachesdecentralized controkelf* properties knowledge models in architecture and then generate the

and contextawareness reflexivity, quality attributes and code and compile it (step 2, Fig. 1);

validation/case study Later, in [9], these characteristics (3) execute, simulate and validate the dynamic knowdedg

corresponded to several key requirements that are significant in  models (step 3, Fig. 1).

a service engineering method for andmous DSEs. In this



B. Step 1: Create Dynamic Knowledge Models (@)Architectural patterns| | Fatierm Templates

Collect ion for Digital
We use two types of knowledge models at the requiremen Seryiees (e}
and architecture levels, respectively. They are: (i) a KAOS

basedgoal modelthat represents the requirements; and (ii) :

modetbasedfinite state machinesFEMs)at the architecture (i)ynamic Knowledgebase with

level. For the goabased requirements model, a simplified = _____ ModelsatRuntime

KAOS metamodel is used to represent goals where each goa; outut (sewice Resporse) _ Feedback Loop i

. . .S . i Monitor Analyze !

associated with a name and a priority. FSMs, which ari ;

embodied in the architecturaltperns, describe the behavior of |  mon|  Dynamic Knowledgebase Inferadion !

the system with respect to the current goals and context. =% Qigtal =& b , ‘ - ik

FSM runtime model can show the current state information of | ..., Cnonent onvol _ i

component during its operation. | < | Element) eseror| [ L
1) Architectural Patterns Collection for DSEs: input servifeRbquesty | Execute Plan
The main step (sealso[9]) for supporting reflexivity is L1 |& Feedbockloor | | |

representing the uncertainty factors usiragchitectural N R

patterns The main goalis to use them for creating and B ble | ausal

customizing the knowledge models in different domains. Thi Statemachine| [

patterns have been modeled in Enterprise Architect usin Artifact | Exellited and Simulated

Runni
be instantiated to a particular domain usiglL 2.5 models system of

Here the traditional autonomic MAPK loops[16] have been Sf;rvi;:s €1
extended withquality guarantees to handle uncertainty at the emems
Context

software architecture level.

UML templates(lUML activity and state models), which can — Y gy 1
J

Both decentralized and centralized feedback loog
approaches have been suggested to facilitate autonon
behavior in adaptive systemfl7]. We integrate these
approaches in the patterns to exploit the benefits of bith.
this our approach aims to support both collective adaptatiothe MAPE elements of am\M interact with the quality
and adaptation by subpartlthough centralized approaches assurance conament to obtain or update information about the
allow global behawir control, they contain a single point of system states, environment, and quality assurance criteria.
failure and suffer from scalability issues. Conversely,
decentralized approaches do not require any a priori b) Centralized DS Pattern:
knowledge, nor do they contain a single point of failimethis This pattern (see Fig. 3) is characterized by a global
paper, we describe two main patterrenf the collectiod dhe  feedback loop, which manages a higleel adaptation of
autonomic DS patterand centralized DS patterigsee Fig. 2 behavior é multiple autonomic components (e.g., two DSs in
and Fig. 3). The former applies the decentralized feedback lodfig. 3). The adaptation in the centralized DS pattern is handled
approach while the latter applies the centralized approach. by a highlevel AM called a super AM. Like an AM, a super

. AM also has a qualitdriven, extended MAPIK adaptation
a) Autonomic DS Pattern: model. This is while theisgle DSs are able to seifiapt their

The autonomic DS patte(see Fig. 2), which is modeled as individual behavior using their own external feedback loops in
a UML template, is characterized by the presence of athe AMs (Fig. 3).
explicit, external feedback loop (Autonomic Manager / AM) to
direct the behavior of the DS, which is the managed element, Step 2: Create Executable State Machine Artifact,

This pattern exhibitselt* properties, suctas selawareness Generate and Compile Code

and seMadaptation.The DS has sensors, effectors and a
representation of goals. AAM handles the adaptation of the
DS. SeveraAMs can be associated with the DS, each closing

feedback loop devoted to controlling a specific adaptatio S ; . : .
: ; step 2 in Fig. 1). This artifact essentially describes the classes
aspect of the system, and adding different levelsAbfs nd objects involved in the DSs and their AMs in the patterns,

increases the autonomicity. Here, the novelty is that thﬁleirinitial properties and relationships. It acts as the binding

traditional autonomic MAPKK loop is extended with a quality . X ; ; .
assurance component at the architecture level for DSs. T'ﬁ%fé \t/t/]iﬁtclé)n;fnumnuigg)li?\ gbé?rﬁhslgggﬁtgte:u?]rt\i?ngetermlnes how

quality assuranceomponent implements a QoS model that
provides QoS guarantee$t corresponds to the dynamic The underlying technique we explore to supplution
knowledgebase ifig. 1. The quality assurance component canbetween the architeat and the running system of cloud
include three types of runtime models depending on theiservices is generation of service software at execution time. In
subject, such as system models (i.e., abistvemv of the DSEs, which are characterized by a high level of uncertainty,
running system), context models (e.g., environment), anthe generation of software needs to happen at runtime as it
quality requirements of the DBuring the adaptation process, cannot necessarily be foreseeningidesign timeln this study

Fig. 1.  Dynamic knowledge modelsased service engineering.

Next, in the knowledge engineering process, we design the
xecutable state machine artifaavhich is used to generate
e coddor the modethat can be compiled and executed (see



Digital Service
omponent

IV. APPLYING THEAPPROACH
After presenting the proposed approacbw we describe

interacti

] I

1 |

i [[Sensors ][ Effectors ][ Goals ] Quality | how we have applied it to the AAL case study. The scope of
feefiback loop ' Assurance - the knowledge engineering process is large. Therefore, as

Autonomic
Manager

applied next using the case study, this paper focuses on step 1
and step 2 to support reflexivity and evolution of DSEs
between aruitecture and running system of cloud services.
Simulating and validating of knowledge models (stein3je

case studwill be addressed in a futupaper.

Requirements

Context | System

lau

Legend

Fig. 2.  Autonomic digital service pattern. A. Problem Domain and Case Study

B The case study describes a DSE in digital health revolution,
| which povides an AAL environment for elderly peopje]
! (see Fig. 4). Advanced smart homes depend on adaptivity to
! function properly[9]. This can be associated witeveral
| uncertainty factors; e.g., sensors or devices can fail, and the
i behavior of the elderly person him/herself can be highly
| uncertain. Therefore, in such uncertainty situations, the system

Component 2

feedback loop

feedback loop

Autonomic Autonomic
Lyl Manager 1 [ Manager 2
(Blackbox (Blackbox -

component) component)

v

feedback loop S, needs to satisfy the requirement in some other way. In AAL,
oo }L the DSE includes two main clodwhsed services: (i) a

t monitoring and security service and (ii) a diagnosis service.
[ [ | The monitoring and security service utilizes different

Requirements

Context || System }

[ Monitor |-~ >{ Analyzer |-~~~ 24 Planner }----->| E"“lf‘_"[_t_‘_::‘_:‘___; monitoring devices to analyze
itz ~-- > and provides security séces. This service can include several
pp=samminmse 1 supporting cloud servicedor example, several sensoased
Fig- 3.  Centralized digital service pattern. monitoring services and an elderly care security service. The

service providers can bdifferent businesses that provide
hi ” revolution. b sensor services, and an elderly recasecurity service.
state machine artifact to support trevolution between — yiaanwhile, the diagnosis cloud serviceuied by a doctor or

architecture and running systeaf services. The automated 5nqther person (e.g., a nurse) to make a diagnosis based on
model transformations in the code generation process suppoy

X , bnitored data. This service can include several supporting
the causal connection between the runtime models and t&ﬁ)ud services provided by several service providéos;
running system. This means that when the model is modifiedhyampje. electric health records, health insurance and clinical
the running system is changed correspondingly. THestwo  .¢5-mation systems
abstractions synchronize and evolve at the same time. '

we use the dynamicode generatioffieature of theexecutable

In this context, we describe a scenario of an elderly person

D. Step 3: Simulate and Validate Knowledge Models calledPeter. Peter is 74 years old, and suffers from nocturnal
. . pileptic seizures; n% he.is also_agaholic. The main goal
Finally, we exploit Ent e o] et'erglseto méﬁﬁta nméa}thg(i?e?.{,@re uce tﬁgbtllig e?in% i t

perform simulations with its simulation feature which allowsseizures), which can be dependent on two factors: high

i;(e,:ﬂr?g é?(iguyg;l)mlZtlz(a?gvr\ﬂggﬁrn()edgfeg[ﬁgée?hgtr?aﬁ)e?/hﬁlcgs.t Jaohol level and lack of sleep due to disturbances to sleep
: ' % tern. Several devices can be associated with akventext

machine diagrams are displayed wheredabtve state for the . . . - .
: - S mensions, such as: a waisbrn fall detector; an intelligent
instance completing a step is highlighted and the other stat%%d with epileptic sensor to monitor seizures; gctivity
remain dimmed.The state machinesas be changed at '

runtime by user interactiorf.he simulation provides a visual monitors to monitor sleep level; an intelligent cellar with
y ' P RFIDs to monitor the locations of alcohol containers;

reflectlpn c_)f the real compile code as it is executing. When thﬁ] elligent mug with sensors to monitor the alcohol level
execution is completed the generated code can be deployed

the target system. This code can be further modejethe consumed.
engineer to derive theinning system of cloud services The deviced dhe intelligent cellar and intelligent méigd
are supporting cloud services. They are connected to the

We use thalebuggingfeatures of the Enterprise ArChlteCteambien{assisted home hub unit for a more highel handling

environment to validate the complex dynamic knowledg ; , X
models of state machines. These can be inserting simulati(% Sensor |nforme_1t|orar:d 3daptat_|on£f”the DSS: Thu;,Dtl?ere
breakpoints, firingwaiting triggers, tools to pause and run a&'® WO supporting cloud serviceiCellar —  (i.e.,
simulation, and tools to examine local variables and the caffacking sensor cloud service in Fig. 4) @mlg, and the

stack. Thus, it allows us to verify the correct behavior of th@mbient - assisted home hub unit can be considered

generated code. as a higHevel service. Here, a composite DS can be th
orchestration of théCellar ~ andiMug DSs. The goal of the
ambient - assisted home hub unit  service is to

monitor the alcohol volume of the containers in the cellar, and
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Fig. 4. Case study: ambieftssisted living (AAL) digital service ecosystem.

Service Consumers

alcohol volune consumed from the mug, so the maximumright configurations is in the priority level of théow
alcohol intake level is not exceeded. In this example, walcohol consumption softgoal where the right
assume that there is a single container in@edlar . Table configuration has a higher priority.

1 summarizes the main goals of these cloud services and their
associated uncertainty factors.

TABLE I. GOALS AND ASSOCIATED UNCERRINTY FACTORS OF

SUPPORTING CLOUD SERICES

B. Applying the Approach to Case Study Suppg(reting Cloud Goals Uncertainties
rvice
1) Create Dynamic Knowledge Models: Intelligent  cellar| Maintain alcohol| Alcohol containers car|
a) Requirements Model: (iCellar ) volume  consumed get misplaced or lost
from container
In the AAL case study, we use KAdfaisedjoal modeldo Inteligent  mug| Maintain alcohol| Alcohol content can b
represent the requirements, i.e., goals (functional) and softgoalévug) volume consumeq spilled; .
(nonfunctional) of the scenario. Fi§ provdes an excerpt of a from mug other dinking  objects

can be present

goal graph created to mitigate uncertaintidgerethe toplevel Ambient -
goal is refined as a goal lattice in which branches and goals argssisted home

Ensure that maximuni

Alcohol intake level is

alcohol intake level is exceeded which cal
refined into expectations and requirements. The mainfgoal | hub unit not exceeded; cause Peter to ge
Peter is to maintain his health by avaogli triggering of Raise an alarm if if intoxicated and &come
seizures. In the goal model, KAOS obstacles are used fto exceeds = a - ceraij unhealthy

threshold level

representhe uncertainty factors, e.g., Peter's behavior. Mo
specifically, it can happen that Peter forgets to control alcohol
intake. That is, it is uncertain whether Peter wilbid high
alcohol intake; he could forget to control drinking and the
effect could mean he exceeds alcohol intake, become
intoxicated and eventually unhealthy.

Obstacle

Legend

Maintain[Blood
Alcohol
Level]

As stated in Section HB, a simplified KAOS metamodel is
used to represent goals where egoll is associated with a
name and a priority. The goal priorities can be affected b
context changes, thereby affecting taskecution by the user
(e.g., Peter) or entity (e.gCellar , iMug or ambient -
assisted home hub unit ) at runtime. The system
depanding on the goal priority and the relation between the
goals weighs the requirements during task execution ar
selects a set of tasks to be performed. This goafiguration
graph for theambient - assisted home hub unit
service is shown in Fig. 6. The ftifence between the left and

[ Thesystem
| SHALL ensure As |
| cLoseas |
~ POSSIBLETOa |
= | maximum of |
| alcohol intake is

| _not exceeded

Low Alcohol High Service
Consumption Availability

Requirements: goal model to mitigate uncertainties in AAL.

Maintain[Healthy
Alcoholintake AS
CLOSE AS
POSSIBLE TO
ideal]

Alcahol
Intake
Exceeded

Fig. 5.
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riority = 5 | riority = 5 Location GyroSpilling
I
Namgzz: g‘lgaiétain I Namcéz—: E"Ioaairlwtain coals Effector_ Goals Effector_
Healthy Alcohol : Healthy Alcohol Location GyroSpilling|
Level Level
Priority =5 | Priority = 5
I
AND | AND Sensor_ Effector_ Sensor_ Effector_
T Coal v V% | —TTGeaT Vi % AlcoholVolume|AlcoholVolumg AlcoholVolume| AlcoholVolume
o G2.2: Goal ol - oea G2.2: Goal T Y T =
Name = Low N = High Name = Low Name = High
Alcohol Availabilit I'| . Alcohol Availability - L C =
ngf,‘;g‘f;“{" Priority = : CS;};‘;{{“’”E%” Priority = AugenomicManager_ICellpr AugonomicManager_IMug
Fig. 6.  Two goal configurations for the requirements of the ambient =Montior|, AExecute Montior 4Execute
assisted home hub unit service. \ ; AN I/
, . LA AV
b) Architecture Model:
. . . M@RT M@RT
We now describe the architectural models realized 7 : A N
applying our approach to simulate several feedback loop v ! v N,
structures in théCellar -iMug DSs composition of the Analyze »| Plan Analyze »| Plan
AAL case study (see Fig. 7). These models are created using

the patterns presented in SectionBllIn this study, UML 2.5 T ATtonoricIanageT
activity models and state machinkave been used as the AggpientAssistedHomeHubUnit
primary notation to model the behavior of the loops. A
feedback loop provides the interplay between flow (control or Montior AExecute
data) and actions on the flows. \‘ ,,' <
One of our main motivations of the present research is to M@RT
address uncertainty. Tohis end, the approach and the - -
simulation scenario add unexpected context information to A ARV \ T
model uncertainty using state machine3o address Analyze » Plan linteractions (== - 3!
uncertainty, the monitoring needs to be contemare.The = — [ Legend

analysis phase then reasons using new (unknown) context rig. 7.
information and interprets how the goals are affecthds
planning for the system to cope with such changes.

AAL Case study: digital services and autonomic managers.

data through sensors (e.gcollect alcohol volume in
Monitor of AutonomicManager_ICellar , Fig. 8)
about the current state and/or occurring events of the system,
Managed Elements and Autonomic ManagersThere are the context, and the requirements (goals). It checks for
two managed elements (DSs) in the AAL case study examplehanges of goals, which can be changed by the user or the

DigitalService_ICellar and  systemitself. The monitoringprocessupdates the runtime
DigitalSer  vice_IMug (Fig. 7). The two AMS modelthat representknowledge about the state, context, and
AutonomicManager_ICellar and requirements (change of goals).

AutonomicManager_IMug & &lose separate, — : ; : N
. — ) alyzing: There are two main tasks in this process: (i) it
decentralized feedback loops to handle the adaptation (%gthers runtime models and interprets data ceitedy the

alcohol volume in container and alcohol volume in mug (angyqnitoring process against goals and constraints; and (i
spilled volume), respectively. Also, tieeis a higHevel AM  jqtacts s%/sFt)em and gnvironr%ental changes that may nfegd
called 8 | Super AM adaptation. The analyze process decides that a behavior
(SuperAutonomicManager_AmbientAssistedHome adaptation is required to satisfy tetectedgoal changes. In
HubUnit ) that closes a separate, centralized feedback loop,e example this can be gathering and interpreting alcohol
Here, this super AM handles the adaptation of alcohol volumgg|yme data from the runtime model and checking against the

in both theiCellar  and theiMug . As stated in Sectiolll-  goals to detect changes that require adaptationAsekyze
B, a super AM can manage the adaptation of multiple SCgy AutonomicManager_ICellar , Fig. 8).

This example implements and integrates both decentralized _ _

and centralized feedback control loop techniques using thélanning: The planning process reads the runtimedel

two  patternd &utonomic DS  pattern and enhanced by the analysis process. Then some reasoning is
centralized DS pattern . In the exam, the runtime performed to identify how the running system should be best
model is now a goal model with constraints, an environmerftdapted to changes of the system, context, and requirements.

model, and an initial behavior model in the form of FSMs. ~ The planned changes can be in the form of a runtime model. In
] o . ) the examfe, the high availability softgoal of the
The resolving of uncertainties at runtime by the differentypient - assisted home hub  unit service

phases (i.e., monitoring, planning, analyzing and executing) Qi perautonomicManager_AmbientAssistedHome
the extended MAPK loop architecture is explained next. HubUnit ) has a much hi_gh priority than the softgdaiv

Monitoring: The monitoring process has two main tasks:alcohol consumption (see Fig. 6, left). Therefore, the
monitoring and updating of runtime moddlsmeasuresaw planning step for thatomponent can generate a new
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M@RT R do / callCarePerson,
Y do / issueReminderToControlDrinking
Update runtime
M@RT 4
model with alcohol o \\ NRU e
volume events - (Bl:;:ox moaer arter
machine) . ) . ~__ goals change
® 2. Fig. 9. M@RT of the ambienassisted home hub unitrsie in ?AAL.

Final

Read runtime model

Interpret volume
symptoms

and state machines on knowledge models then we design the

executable state machine artifact
(AALCaseStudy_ExecutableArtifact , Fig. 10). This

d

Update running
lem

artifact describes the classes and objects involved in the
example (i.e., the DSs and their AMs hmetpatterns). They
Fig. 8. Modeling iCellar service and autonomic manager in AAL.  can also describe their initial properties and relationships. We
behavioral model or adapt the existing one (see M@RT stagtefine initial state of instance by assigning property values to
machines in Fig. 9, top). Here, there is a reduced alcoh#he class attributes. For example, see property values assigned

consumed level safety margin where the ciiticehavior is to DS_ICellar DS_IMug and
entered only if the alcohol level is greater than 80. Th&AM_AmbientAssis tedHomeHub. Also, we define how
ambient - assisted home hub unit continues to each property can reference other properties by defining

perform its tasks according to the specialized state machirnelationships based on the class model that they are instances
until goals changed by the user or system ité@lf.us assume of.
that the goalghange to the situation as depicted in the second

conﬂgurat_lon (see Fig. 6, rlg_ht). NOV_V t_Hew alcohol_ . created in the example, we generate the doaddava and
consumption  goal has a higher priority. The mo”'tor'”g_compile it See Fig. 10 for system output with code
step of the loop senses this change of goals, and updates i[Rcessfully generated for all classes. The generation of code
the runtime model. The analyzetiaity decides that a behavior ¢om the executable state machine artifact supports causal
adaptation is necessary and the planning step tr.|es to fulfill ”}%nnection between the runtime models and the running
new constraints. In this case, the_MAPE loop will generate °§ystem thus bb evolvin t the same time. Next, the
adapt the existing state magimbdode st Bo L, nmilod dn valBAde Ocing

Fig. 9, bottom). The new behavidmodel uses a higher safety the simulation and debugging features of Enterprise Architect.
margin for alcohol consumed level (critical stage is entere

when it is greater than 90). In addition, it introduces a new state
called Error to handle the critical behavior of the state

Afterwards, using the executable state machine artifact

V. RELATED WORK AND DISCUSSION

machine by adding additional operatiofisnctions) through A key research area related to our studynsdetbased
error handling extensions in thambient - assisted system econfiguration Rainbowframework[4] is a seminal
home hub unit service. work on architecturdased selddaptation. It extends

) . , ) architecture styles to provide reusable infrastructure with
Executing: The Execution process directly applies a set ofyechanisms to specialize the infrastructure to thedsieof
changes for the running system stored in some runtime modelgecific systemsBraberman et al[5] proposed a three
by the planner. In this example, it cae botifications sent on |ayered reference architecture cal@®RPHfor architecture
over alcohol consumption and to control drinking. based adaptation that involves runtime change of system

2) Create Executable State Machine Artifact, Generate{:onﬂguratlonand behavior upate. Meanwhile, Morin et al.
and Compile Code: 18] proposed an approach th:_:\t _comblnes aspeented a_nd
As mentioned in Section KT, after creating the classes ~ Modetdriven techniques to limit the number of artifacts
' needed to realize dynamic variability. However, these works



Executable state machine artifa

knowledgebase. However, the MAHREextensions proposed
in their approach are only at the conceptual level.

DYNAMICO (Dynamic Adaptive, Monitoring and Control
Objectives model]7] is a reference model for engineering
contextbased selddaptive software composed of feedback
loops. It aims to guarantee the coherence of adaptation
mechanisms with respect to changes in adaptation goals and
monitoring mechanism& amura etal. [8] present a proposal
for including software validation and verification (V&V)
operations explicitly in MAPEK loops for achieving software
selfadaptation goals. They discuss runtime V&V enablers,
: i.e., regirements at runtime, models at runtime, and dynamic

PRSI oesmns s s oo T— : context monitoring, for providing effective support to

Fig. 10. Executable state machine artifact and code generation. materialize V&V assurances for salflaptation.

are neither based on M@RT explicitly nor target digital To summarize, extensive literature exist on mdmeed
service ecosystems. system reconfiguration and on satfaptive systems in the
. . . architecture level (e.g.[4], [5]). Also, there are several
Maes [19] described one of the pioneering works ongghinaches on runtime models to address uncertainties in
reflection with respect to pbjeemnented programming pagg (e.9..[2], [6], [7], [8]). However, most of these have
languages. The author defines a computational Systeffhen jimited to conceptual frameworks. Also, to the best of our
causally connected to its domain and a change in its domain owledge, none fothem provide concrete tool support and
reflected on it and vice versa. Thavin Peaksmodel [20] 556 study validation especially in the context of DSEs. We

deals with a simédr notion to reflexivity proposed here. Itis an oo presented an approach for supporting M@RT in DSEs
iterative process that develops progressively more detail at provide reflexivity and evolution.

software requirements and architectural specifications
concurrently. Requirement reflectiof21] supportsruntime
representation of requirements by making requirements VI. CONCLUSIONS AND FUTURE WORK

available as runtime objects for DASs. Bencorfiil] In this paper, wepresented a damic knowledge
classifies uncertainty and adaptations that a-adfptive engineering approach to handle uncertainties in DSEs at
system need to face. There to deal witicertainty, goal  runtime using the M@RT techniqu&he approach aims to
oriented requirements modeling has been extended with th®lve two interrelated research problems, i.e., reflexivity and
RELAX language. The goal of their work is to manageevolvability of the ecosystem betwethe architecture anthe
uncertainty primarily at the requirements level. running system of services. Complex state machines of M@RT

In [11], the authors have proposed adiaamy of potential tha_tt serve as a dynamic knowledgebase have peen modeled
sources of uncertainty and techniques for mitigating them i{sing executable state machines, and the generation of software

the requirements, design, and execution phases of DASs. ‘Wit'faCts has beenperformed at execution timeCausal

221, the authors presentgoatbased modelin roach to connection h_as been mtamed between the runtime models
E:ie\}elop requ'&mpents g?) an adaptive g;i)/gtem with and the running system to support evolutidfe presented an

environmental uncertainty. While our technique of handlinggxamplelnvo[V|ng a DSE in amAL environment for elderly
uncertainties using a KAOBased goaimodel follows[22], eoplefor validating the approach

our work differs from[22] in that we handle uncertainty using The aim of our work is not to enhance maedeien
M@RT at the architecture level as well. architecture buto create an approach that can be applied to

Adaptation patterns have been explored as a technique ?gg?ital service engineering and is based on service architecture.

provide selfadaptation in several works (e.[23]). However, e approach needs to be easy to understand as the target

the novelty is the patterns defined héoe DSEscontain a key audience is software engineers and not specialists in autonomic
: 0 ; omputing. Currently, by using the capability of Enterprise
guality assurance component for providing quality guarantee%rchitect, our approach can automate the forward

in addition to the adaptation handling MAPE elements. synchronization of the causal connection between the

There are several work®.g., [2], [6], [7], [8]) that use architecture and running system. At present, we are exploring
runtime modelsas a technique to manage uncertainties antechniques for supporting the backward synchroninaftiom
provide assurance in DASs. The authord2j [6] propose running system of cloud services to the architectural models.
extensions to the MARK loop architecture with runtime Our future work will include completing the building of the
models to cope with uncertainty at runtime[6h, the authors collection of qualitydriven adaptation patterns. Also, so,far
present a conceptual referenowdel calledMAPEMART,  our modeling has considered only a single user in the
which extends the traditional MARE model with quality ecosystem(i.e., elderly person). This needs to be applied to
assurance mechanisms for sadfaptation. The notion of multiple users of the ecosystem to further validate our
dynamic knowledgebase was originally motivated by the worlapproach. Finally, in order to provide a true assessment of our
in [2] where the atiors identify a runtime model as a dynamic knowledge engineering approach, developing industrial case

studies with empiricalases is significant.
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