
An Example Application of a Multi-Level Concrete
Syntax Specification with Copy-and-Complete

Semantics
Jens Gulden

Information Systems and Enterprise Modeling
University of Duisburg-Essen

Essen, Germany
jens.gulden@uni-due.de

Abstract—This paper describes an example application of
the Topology Type Language (TTL) to define visualizations for
conceptual models with multiple type levels. Based on a multi-
level example model about the domain of bicycle products, a
formal specification for a diagram visualization is developed
which visually displays characteristics of bicycles and their
components according to the domain model.

The result is an example specification of a diagram visual-
ization that incorporates characteristics of model elements from
different type-levels of a domain-specific conceptual multi-level
model into one consistent visualization specification that can be
reused to visualize entities on different abstraction levels in the
domain model.

Index Terms—Multi-Level Modeling, Domain-Specific Model-
ing Language, Diagram, Topology, Visualization, Concrete Syntax

I. A VISUAL FORMALISM FOR SPECIFYING
VISUALIZATIONS

A. Visual Model Representations as Building Blocks of Infor-
mation Systems

Conceptual models are known as essential means for de-
scribing and constructing information systems. Expressing
conceptual aspects of information systems, such as involved
entities, operations, relationships, etc., is widely regarded as
an appropriate construction technique to design and implement
supporting software systems.

User interfaces (UIs) allow human users to operate software
systems. Unlike the known importance of conceptual modeling
of information systems, however, the modeling of user inter-
faces is far lesser developed. Contemporary concrete syntax
declaration languages for conceptual model representation are
typically either restricted to text-based structures that make
model content accessible to humans [20], [13], or are limited
to a small set of visual means, which mostly are graph-
based diagrams [8], [21] in which graphical symbols that
represent entities are interconnected with lines that show
relationships. Other kinds of visual representations have to
be specified using primitive implementation-level techniques
with programming languages or visual instance editors that
provide no abstractions with regard to efficient representation
and re-usability of model representations [14], [15].

The research presented in this article demonstrates initial
parts of a specification mechanism for visual representation of
conceptual model content that aims to provide a higher-level
declaration mechanism for concrete model syntax. The pre-
sentation focuses on an example application, that demonstrates
parts of the language without offering a complete description
of all language features.

The remainder of Section I introduces selected language
features of the approach, which are subsequently applied in
Section II to an example that specifies a visual representation
for a given conceptual model about the bicycle product do-
main. Other scientific work which is related to the presented
considerations is considered in Sect. III, and a conclusion in
Sect. IV summarizes the discussed ideas.

B. A Visual Language for Specifying Complex Model Repre-
sentations

The Topology Type Language (TTL) is being developed to
serve the purpose of specifying visualizations of diverse kinds
for models. It is intended to describe model representations of
various visual forms, such as diagrams or graphical user inter-
faces, together with corresponding human interactions. Espe-
cially, the TTL is being developed as an advanced specification
formalism for concrete syntaxes of domain-specific modeling
languages. Among others, it offers three central characteristics
which go beyond the state-of-the-art of conventional concrete
syntax specification mechanisms:

1) The description of a visualization happens entirely in-
dependent from a model, i. e., the visualization can be
defined without restrictions imposed by the meta-model
of the visualized language.

2) The specification mechanism can refer to meta-models
with multiple type levels. It describes a notion of instan-
tiating topology types in multiple refinement steps which
can be mapped to the conceptual type-level hierarchy of
a multi-level meta-model.

3) The approach provides a visual formalism to describe
topologies. Although the description of topologies is an
abstraction over a visualization and does not describe
the visualization itself, the use of a visual language to



specify topologies appears appropriate as it promises a
higher level of cognitive efficiency and advanced ease-
of-use than a textual formalism.

The term “topology” has been chosen as part of the name
to indicate a level of conceptual abstraction, which on the one
hand uses visual constructs that express meaning with spatial
patterns and locations, and on the other hand does not denote
the resulting visualization itself, but a reflective abstraction
about it.

Figure 1 shows an example TTL model which will further
be introduced in the use case demonstration in Section II.

Fig. 1: Example visualization specification for a bike product
type

Some central considerations that have guided the develop-
ment of the TTL are briefly described in the following.

1) Decoupling Visualization Description from Conceptual
Description: It is a major shortcoming of existing approaches
such as the Eclipse Graphical Modeling Framework (GMF)
[8], that the use of different types of conceptual elements
can pre-determine the visual structure and composition of the
graphical syntax. Some line connectors, or nesting elements
inside each other, can only be used in combination with
fixed meta-model concepts. For example, a visual nesting,
in which elements are placed inside an outer element, re-
quires the meta-model to contain a composition relationship
between the nested concepts. To the contrary, the use of line-
connectors demands for non-containment associations between
the classes of the connected elements in the meta-model. Such
connectors thus cannot be used to visualize associations that
are considered to be compositions from a conceptual point of
view – although the decision whether to model a relationship
as an association or as a composition may be contingent in
the modeled domain, and should not influence the shape of
possible visualizations that can be specified as concrete syntax.

As a consequence, it turns out to be necessary for a
specification mechanism for model visualizations, to introduce
a layer with intermediary specification concepts, which serves
to decouple the structure of the described visualizations from
the structure of the meta-model that is underlying to the
(domain-specific) conceptual language the concepts of which
are visualized. The approach provided with the TTL does
so by abstracting visualizations to topologies, which can
initially be described without any references to a modeling
language and its instances, and only at a later stage during the
specification of the visualization are bound to concrete model
instances. This binding happens by specifying conceptual
relations that query content from model instances and may
feed back modified content into the model. A default way to
specify conceptual relations can be realized by incorporating
an existing expression language into the TTL specification
approach.

2) Instantiation by Copy-and-Complete Semantics: The
specification language supports a notion of Abstract Areas
versus Concrete Areas, and in addition allows to specify a
sequence of Completion Steps that constrain how an Abstract
Area is supposed to be transformed to a Concrete Area, in
order to make it visually renderable. Among other linkages to
multi-layer or multi-step application contexts, these constructs
in combination allow to reflect a notion of topology types
which over multiple levels of abstractions get instantiated to
a concrete topology. As this procedure is applied to a visual
formalism, it makes sense to describe the differences between
types and instances in terms of missing versus provided
elements, which is why an operational copy-and-complete
semantics seems appropriate to describe a visual type system.

Following such a copy-and-complete procedure, the trans-
formation from abstract to concrete topology type descriptions
happens in an n-step transformation process, in which under-
specified parts of the topology type description are completed
step by step, until no more underspecified parts exist. Figures
1 and 7–9 show the example copy-and-complete procedure
that is applied to create the topology type description for the
example domain model.

C. Language Elements

Those language elements of the TTL that are used in the
example in Section II are briefly explained in the following.

1) Area: The Area concept is the central model element
to specify topologies. It provides the fundamental structure
element to describe visualizations. Areas are assumed to have
a spatial extension and can be nested into each other. Every
area has a location that may be relative to other areas, and
to its parent area (if it exists). Areas are notated by slightly
rounded squares with a dashed line border (see Fig.2).

Areas provide templates for renderers. Areas do not define
their visual appearances by themselves, but they provide space
for renderers to work in. Renderers use the topology type
description and bound values from the domain model as input
to actually display visualizations on top of a concrete graph-
ics rendering technology. From a conceptual point of view,



renderers can be implemented using any arbitrary technology,
e. g., they can be created directly as program code. Different
renderers may be responsible for displaying the same topology
type description via different document formats, or on different
devices. The wide range of realization options for renderers
is not in the main focus of this paper and will further be
discussed elsewhere.

An area can be associated with a type. Visually, types are
distinguished by different colors of the dashed area borders.
The definition of available types is indicated by small squares
in the top section of the parent area.

Figure 2 shows Area notation elements nested inside each
other, with the parent area defining two distinct types, that are
applied to the nested areas.

Fig. 2: Notation of Area elements

Further details on the specification of Areas are out of the
scope of this paper and will also be discussed elsewhere.

2) Locator: A Locator serves the purpose to formally de-
scribe spatial relationships between Areas. The visual presence
of a Locator, that connects two or more areas with each other,
semantically only means that there is an explicit statement on
how the respective areas are related to each other. The actual
kind of spatial relationship is non-visually specified via the
properties-sheet of the Locator. There are multiple options to
actually implement a formal description scheme for spatial
relations. One possibility is to recur to a 2D spatial version
Allen’s interval algebra, as it is elaborated in [22], which list
all possible kinds of spatial relations that bodies can have on
a diagram plane, e. g., overlapping, touching containing, etc.

The spatial placement of a Locator inside an area and in
relation to its connected areas, as it appears in a TTL diagram,
is a pure visual hint for the topology modeler that may or
may not visually resemble the actual placement the Locator is
expressing.

For the purposes of the example presented in Section II, a
simple notion of locators that specify an absolute distance and
direction between two connected areas is sufficient.

The visual notation of a Locator is exemplified in Fig. 3.
3) Abstract Areas versus Concrete Areas: In order to pro-

vide a notion of instantiability of abstract topology types to
concrete ones, the notion of regarding an incomplete specifica-

Fig. 3: Notation of a Locator element (middle circle) with
Locator Links to two areas (dashed lines)

tion of a topology as abstract, and a fully specified topology as
concrete which can serve as input to a renderer, can be broken
down to individual Areas. An Area which is not yet fully
specified to serve as input to a renderer is considered abstract,
while an Area which provides all necessary information to be
rendered is concrete.

There are three ways to make sure an Area can be rendered,
i. e., to concretize an Abstract Area to a Concrete Area:

• Children Areas are added (every Area that contains at
least one child Area is considered to be concrete, because
a default renderer can be applied that hands over the
rendering of the nested areas to their respective renderers)

• Conceptual Relation Specifications are added to all Con-
ceptual Relation placeholders that an Area contains
(Conceptual Relation Specifications bind elements from
the data population of an area to parameters of renderers)

• An Area Reference to a Concrete Area is added, which
has the effect that the referenced Area is used to replace
the referencing one

The first two options can be combined, given that the con-
figured renderer both processes children Areas and Conceptual
Relations. In the special case that a Renderer which has no
parameters at all is assigned (e. g., a visual decorator), an Area
is also considered to be concrete.

The notation of Conceptual Relations and Conceptual Rela-
tion Specifications is shown in Fig. 4.

(a) (b)

Fig. 4: Notation of the Conceptual Relation element inside
an Area element, (a) abstract requirement, (b) filled in with
concrete Conceptual Relation Specification

4) Completion Step: Abstract Areas can be assigned with
Completion Step tags, that allow to specify a minimum and / or
maximum number of concretization steps, until the Abstract
Area either has be made concrete, or optionally is removed.
In general, Completion Step tags allow to specify any finite
sequence of modes that subsequent concretization steps have
to conform to.

The three distinguishable modes of how to perform a single
completion step on an Abstract Area are:

• Preserve: the Abstract Area is not completed and remains
abstract in the current completion step



• Optional: the Abstract Area may be completed, remain,
or be deleted in the current completion step

• Complete: the Abstract Area must be completed with
a concrete topology description, either by assigning a
renderer to the area, describe a sub-topology in the area,
or by referencing another area which is concrete

Figure 5 shows the notation of Completion Step tags as
a sequence of differently drawn small circles in the upper
right top part of an area symbol, together with a brief legend
explaining the three different modes of appearances of the
circles.

Fig. 5: Notation of Completion Step tags (shown as circles in
the upper-right corner of an area)

The sequence of Completion Step tags, from left to right,
represents the upcoming concretization steps that the topology
type description will undergo. The very next step is configured
by the left-most Completion Step tag in the sequence. When a
topology type description is transformed to a next concretion
step, all Areas get copied, and the left-most Completion Step
tag is removed from the sequence in any of the areas.

The ability to impose constraints on anticipated future
concretization steps provides a mechanism which stands in
analogy to the specification of intrinsic features in a multi-
level modeling language [10]. This means, the sequence of
concretization steps can be defined along the instantiation
levels of entities from a multi-level conceptual domain model.
Using Completion Step tags, the demand for when to fill
in Conceptual Relation specifications can be delayed in a
controlled way. A topology type definition can make use of
this to define Conceptual Relations on the basis of intrinsic
attributes on higher levels of conceptual abstractions in the
domain model, for which the concrete values will later be
derived from slot values of entities on lower levels. This makes
the TTL a visualization specification approach that integrates
the description of visualizations for conceptual entities on
different levels of conceptual abstractions into one unified
specification mechanism for model visualizations. It allows
for an efficient declaration of concrete syntaxes for domain-
specific type models, together with concrete syntaxes for their
instance models across multiple type levels.

II. EXAMPLE APPLICATION OF A BIKE PRODUCT
VISUALIZATION BASED ON A MULTI-LEVEL CONCEPTUAL

DOMAIN MODEL

The example domain model that conceptually describes the
bicycle product domain is displayed in Fig. 6. It has been

created with the multi-level modeling language FMMLx [10],
originally as a contribution to the MULTI 2017 Challenge [4].

The model is composed of four type levels. The top-
most level, indicated by entities with red header backgrounds,
models the general idea of a bicycle, by defining the basic
components a bicycle is made of. These are BikeFrame,
BikeFork, BikeHandlebar, and BikeWheel. The fact that an
entire bicycle is composed of these parts is expressed by the
use of a composite pattern, which provides the abstract class
Component from which the individual part entities inherit,
and the abstract class CompositeComponent, which is a parent
class of Bike.

The second upper level, which consists of entities with
a blue header background, introduces a type level which
distinguishes between different kinds of bicycles, such as
MountainBike, CityBike, or RacingBike in the example. It also
provides some entity types that describe a refined notion of
general bicycle parts, such as RacingFrame and RacingFork,
which are particularly intended to be used for RacingBikes.

On the third level, a refined notion of bicycle kinds from the
above level is intended to be modeled. The example demon-
strates this by introducing the bicycle kinds ProRaceBike and
ProRaceFrame on this level.

Finally, the lowest level shown in the example model
contains bicycle product types as they could appear in the
catalog of a bicycle vendor. The example model contains the
product types ChallengerA2XL, which is a ProRaceBike, and
the RocketA1XL bicycle frame as an instance of ProRace-
Frame. From these product type, concrete instances of physical
bicycle entities can be instantiated, which would resemble the
notion of concrete bicycles such as “Peter’s yellow racing
bike”. Instances of this kind are considered to be created
during runtime use of the model, and are not included in the
example.

The model in the TTL shown in Fig. 1 is the result
of a multi-step transformation from a more general TTL
model to a concrete visualization description for “Pro Racing
Bikes”. The procedure of the transformation is described in the
following, starting with the initial TTL model shown in Fig. 7
that generally describes the notion of any bike visualization
without a connection to concrete data to be rendered.

A. Initial Topology Type Model

The TTL model in Fig. 7 provides a general description
of what a visualization of a bike product could be composed
of. The description is independent from any binding to model
content yet, but by specifying several empty Conceptual Rela-
tionship elements in its area elements, it already suggests what
domain characteristics should influence a resulting rendered
visualization.

The Completion Step elements in the upper-right corners of
each area part suggest how to further complete this topology
type description in the next concretization step. The outer
“Bike” area specifies a single further Completion Step, which
demands to concretize this area specification in the next
subsequent step. The other areas each define three subsequent



Fig. 7: Example visualization specification for the generic
notion of a bike, as modeled on the highest abstraction level
in the domain model

concretization steps, with the first demanding to leave the area
untouched in the next step.

B. First concretization step

As a consequence, in the next step the outer “Bike” area is
made concrete by filling in the previously empty Conceptual
Relation element “background” with a binding that provides
input data from the visualized model as input for the renderer
that is configured for the “Bike” area. In case of the example
at hand, this could mean that either based on the class name
of a bike entity to be displayed, or as a result of combining
the suitedForToughTerrains and suitedForRaces slot values, a
suitable name for a background image is calculated. E. g., a
renderer could be configured which displays a background
image of a mountain scenery for mountain bikes, a street
scenery for city bikes, and a racing track for racing bikes.
There are diverse options for realizing such a binding on the
implementation level, further details are not discussed here.

Figure 8 shows the topology model after the first concretion
step has been performed.

If at this point also renderers are attached to the other
areas, which could render a generic visualization of the
respective elements they are to display even without concrete
input values (e. g., by using pre-defined default values as
long as the Conceptual Relations for the respective area are
not fully specified), then the visualization description could
already be used for rendering a generic, product-independent,
visualization of a bike.

C. Second concretization step

To provide a further refinement of the visualization speci-
fication, the next concretization step reuses the topology type

Fig. 8: Example visualization specification distinguishing the
notion of general types of bikes (racing/mountain/city), as
modeled on the second-highest abstraction level in the domain
model

description in Fig. 8 and enhances it in order to visualize
specific characteristics of racing bikes described in the domain
model. To do so, additional Conceptual Relations are added to
the “Frame” area which represent the domain fact that the
frames of racing bikes are described by three lengths values.
Adding further Conceptual Relations is possible, because the
Conretization Step specifications for the current step allows
optional modification to the area. The resulting topology type
description after this step is displayed in Fig. 9.

D. Third concretization step

The remaining Concretization Step elements in the model in
Fig. 9 all demand for a completion of the yet underspecified
areas. As a consequence, the final modifications to the model
in the third concretization step consist of filling in the empty
Conceptual Relation placeholders with bindings to concrete
input value that can be derived from domain model entities on
abstraction level 1. According to the declarations of intrinsic
attributes in the domain model, this is the level where the
information is present that distinguishes visual characteristics
of different bike products.

Figure 1 shows the resulting concrete renderable topology
type description for “Pro Racing Bikes”, as described in the
domain model.

III. RELATED WORK

Specifying concrete syntaxes for visual diagram languages
is pivotal to the design of domain-specific languages (DSLs).
As a consequence, most of the DSL creation approaches
and tools available offer means for defining concrete diagram
syntaxes. Three well known representatives of the category



Fig. 9: Example visualization specification incorporating char-
acteristics of “Pro Racing Bikes”, as modeled on level 2 in the
domain model

of meta-modeling environments which offer support in vi-
sual language creation are METAEDIT+ [16], the ECLIPSE
GRAPHICAL MODELING FRAMEWORK (GMF) [8], and SIR-
IUS [7]. These tooling environments offer mechanisms to
specify conceptual features of a domain, e. g., with a meta-
model, together with functionality to define visual represen-
tations for the domain concepts. METAEDIT+ includes a
simple graphical icon editor that allows to paint graphical
symbols to represent domain concepts. GMF also supports
the definition of graphical symbols composed out of drawing
primitives, however, the specification of the symbols happens
non-visually in a tree-view editor. SIRIUS also uses a tree-
view configuration editor for all parameters of its diagram
definitions, with the significant difference to GMF that the
concrete syntax definition is interpreted at run-time without
the need for code generation. Any changes that are made to
a SIRIUS diagram definition become immediately visible in a
corresponding editor.

The general approach in these tools is to enhance the
conceptual description in the meta-model with additional infor-
mation about the visualization that gets attached to the meta-
model elements. This happens either by directly attaching
information about how to visualize a concept in the meta-
model (e. g., by the use of annotations), or by employing a
mapping model that externally attaches additional information
to meta-model elements. In both cases, one has to be aware
that a direct annotation of meta-model elements limits the
range of possible visualizations to describe, as the meta-model
structure pre-forms the possible structure of visualizations
[14], [15]. None of the approaches embedded in existing
tools has been developed from the very beginning based
on theoretical considerations about the demands towards an

optimal visualization specification mechanism. The TTL aims
to overcome these limitations.

The specific task of defining visual representations for
multi-level conceptual models has been addressed by a few
contributions. The multi-level modeling environment OMME
[28] combines conceptual multi-level modeling capabilities
with the ability to visually specify a graph-based diagram lan-
guage. This allows to define visual domain specific languages
for multi-level models, however, the specification mechanism
for the visual syntax does not specifically adhere to conceptual
multi-level features, and thus does not provide reusability and
extensibility of visual language specifications across multiple
type levels in the underlying conceptual models.

The DPF workbench [18] also offers an integrated approach
for multi-level modeling together with the specification of
visual diagram representation of models. DPF’s specifica-
tion mechanism for visualizations offers a formalism that
incorporates the notion of graph homomorphisms and type
homomorphisms to check the conformance of a visualizations
across multiple type levels. However, the expressiveness of the
visualizations themselves is fairly limited, and the specification
formalism is restricted to graph-based diagrams only, like
many of contemporary concrete syntax specification mecha-
nisms.

In XMODELER [5], [6], conceptual multi-level modeling ca-
pabilities are combined with a non-visual specification mecha-
nism for model representation and interaction called XTOOLS.
While this approach gives flexibility over specifying model
representations of various types, which are not necessarily
restricted to graph diagrams, the current version of XTOOLS
does not specifically take into account multi-level capabilities
of the underlying conceptual models.

The MELANEE [1] domain-specific language workbench is
a representative of a multi-level modeling environment, which
incorporates a visual language design approach that allows to
take into account multiple type levels. The approach makes
use of an aspect-oriented declaration mechanism, by which
parts of a visualization specification can be equipped with
join-points for elements that are to be specified or modified
later in a refined version of the visualization [12]. This way,
basic characteristics of reusability and refinement of existing
visualizations for more specific type levels are made available.
The visual paradigm of the diagrams languages that can be
defined, however, remains limited to a be represented by a set
of graph-nodes and corresponding line connectors.

Despite the prominent role of diagram languages in In-
formation Systems, theoretic research about concrete syntax
specification is just about to be established as a relevant
perspective on the core objectives of the discipline. Considera-
tions about the “Physics of Notation” [21] provide one source
in Information Systems science that summarizes fundamental
principles of designing visual diagram languages. Diverse
points of critique have been brought forward against the
narrow perspective taken in by [21]. Especially the potential
for leveraging the capabilities of the human visual perception
apparatus, which allows for fast, parallel, and scalable cogni-



tive processing of visual pattern structures, is not sufficiently
taken into account [26], [27].

Beyond the Information Systems discipline, a wider range
of scientific contributions about information visualization can
be found. Classical work about diagrams from before the age
of computers has been contributed by [2], [24], [25]. More re-
cent work about the effectiveness of interactive visualizations
originates from fields such as interaction design and journalism
[3], [17], [19], [23], or information dashboard design [9]. The
research demand for incorporating the perspective on cognitive
efficiency into Information Systems research has been pointed
out as well [14], [15].

IV. CONCLUSION

The example developed in this paper has given an impres-
sion of how a visual formalism for specifying visualization
types that can represent model content on multiple levels of
abstraction can work. Core elements of the visual Topology
Type Language (TTL) have been introduced, without, however,
going too much into details to keep the example description
appropriately compact.

The TTL integrates the description of visualizations for con-
ceptual entities on different levels of conceptual abstractions
into one unified specification. This allows for an efficient reuse
of existing concrete syntaxes, and makes it possible to specify
visual languages for domain-specific type models as well as
their instance models across multiple levels in the same place.

Other aspects of the TTL with respect to its applicability
to presentation and interaction schemes beyond mere diagram
visualizations, toward describing entire applications’ user in-
terface presentation and interactions, will be part of future
work. The TTL might as well be suited for use in self-
referential enterprise system scenarios [11], where dynami-
cally configurable views on instance models serve both as tools
for control and analysis. The TTL could play a role in such a
setting by providing a visual specification mechanism which
allows to define instance visualizations at run-time based on
existing reusable specifications of type-level visualizations.

REFERENCES

[1] Colin Atkinson and Ralph Gerbig. Flexible deep modeling with melanee.
In Stefanie Betz Ulrich Reimer, editor, Modellierung 2016, 2.-4. März
2016, Karlsruhe - Workshopband, volume 255, pages 117–122, Bonn,
2016. Gesellschaft für Informatik.

[2] J. Bertin. Semiology of Graphics: Diagrams, Networks, Maps. Walter
de Gruyter, Berlin, 1974.

[3] Alberto Cairo. The Functional Art. Voices That Matter. Pearson
Education, New York, 2010.

[4] Tony Clark, Ulrich Frank, and Manuel Wimmer. The bicycle challenge
of the multi 2017 workshop on the models 2017 conference, austin,
texas, sept 17-22, 2017.

[5] Tony Clark, Paul Sammut, and James Willans. Applied Metamodelling:
A Foundation For Language Driven Development. Ceteva, 2nd edition,
2008.

[6] Tony Clark and James Willans. Software language engineering with
XMF and XModeler. In Marjan Mernik, editor, Formal and Practical
Aspects of Domain-Specific Languages: Recent Developments, pages
311–340. IGI Global, 2012.

[7] Eclipse Foundation. Eclipse sirius. https://eclipse.org/sirius/.

[8] Eclipse Foundation. Graphical modeling framework (gmf). http://www.
eclipse.org/modeling/gmf/.

[9] Stephen Few. Information Dashboard Design: The Effective Visual
Communication of Data. O’Reilly, Sebastopol, CA, 2006.

[10] Ulrich Frank. Multi-level modeling - toward a new paradigm of
conceptual modeling and information systems design. Business &
Information Systems Engineering (BISE), 6(3), 2014.

[11] Ulrich Frank and Stefan Strecker. Beyond erp systems: An outline of
self-referential enterprise systems. Technical Report 31, ICB Institute
for Computer Science and Business Information Systems, University of
Duisburg-Essen, Essen, April 2009.

[12] Ralph Gerbig. Deep, seamless, multi-format, multi-notation definition
and use of domain-specific languages, 2017.

[13] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and
Steven Völkel. Textbased modeling. CoRR, abs/1409.6623, 2014.

[14] Jens Gulden and Hajo A. Reijers. Toward advanced visualization
techniques for conceptual modeling. In Janis Grabis and Kurt Sandkuhl,
editors, Proceedings of the CAiSE Forum 2015 Stockholm, Sweden, June
8-12, 2015, CEUR Workshop Proceedings. CEUR, 2015.

[15] Jens Gulden, Dirk van der Linden, and Banu Aysolmaz. Requirements
for research on visualizations in information systems engineering. In
Proceedings of the ENASE Conference 2016, April 27-28 2016, Rome,
2016.

[16] Steven Kelly and Juha-Pekka Tolvanen. Domain Specific Modeling:
enabling full code-generation. Wiley, 2008.

[17] Andy Kirk. Data Visualization: a successful design process. Packt
Publishing, Birmingham, 2012.

[18] Yngve Lamo, Xiaoliang Wang, Florian Mantz, Wendy MacCaull, and
Adrian Rutle. DPF Workbench: A Diagrammatic Multi-Layer Domain
Specific (Meta-)Modelling Environment, pages 37–52. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.

[19] Isabel Meirelles. Design for Information. Rockport Publishers, Beverly
(MA), 2013.

[20] Bernhard Merkle. Textual modeling tools: Overview and comparison
of language workbenches. In Proceedings of the ACM International
Conference Companion on Object Oriented Programming Systems Lan-
guages and Applications Companion, OOPSLA ’10, pages 139–148,
New York, NY, USA, 2010. ACM.

[21] Daniel L. Moody. The “physics” of notations: Toward a scientific
basis for constructing visual notations in software engineering. IEEE
Transactions on Software Engineering, 35(6):756–779, 11/12 2009.

[22] Mohammad Nabil, John Shepherd, and Anne H. H. Ngu. 2D projection
interval relationships: A symbolic representation of spatial relationships,
pages 292–309. Springer Berlin Heidelberg, Berlin, Heidelberg, 1995.

[23] Robert Spence. Information Visualization (2nd edition). Prentice Hall,
Upper Saddle River, 2007.

[24] E. R. Tufte. The Visual Display of Quantitative Information. Graphics
Press, Cheshire, Connecticut, 1983.

[25] E. R. Tufte. Envisioning Information. Graphics Press, Cheshire,
Connecticut, 1990.

[26] Dirk Van Der Linden and Irit Hadar. Cognitive effectiveness of
conceptual modeling languages: Examining professional modelers. In
Empirical Requirements Engineering (EmpiRE), 2015 IEEE Fifth Inter-
national Workshop on, pages 9–12. IEEE, 2015.

[27] Dirk van der Linden, Anna Zamansky, and Irit Hadar. A framework
for improving the verifiability of visual notation design grounded in the
physics of notations. In Proceedings of the 25th IEEE International
Requirements Engineering Conference (RE 2017), Lisboa, Portugal,
2017.

[28] Bernhard Volz and Stefan Jablonski. Omme – a flexible modeling
environment. In Proceedings of the SPLASH 2010 Workshop on Flexible
Modeling Tools, Reno, Nevada, USA, 2010.



Fig. 6: Example Conceptual Model of a Bike Product Domain


