
Multilevel Modelling with MultEcore
A Contribution to the MULTI 2017 Challenge

Fernando Macías∗†, Adrian Rutle∗, Volker Stolz∗†
∗Deparment of Computing, Mathematics and Physics

Western Norway University of Applied Sciences
P.O. Box 7030, 5020 Bergen, Norway

Email: {fmac,aru,vsto}@hvl.no
†Department of Informatics

University of Oslo
P.O. Box 1072 Blindern, 0316 Oslo, Norway

Abstract—In the context of MULTI 2017, and as a means
of fostering discussion and test the limits of the paradigm,
the Bicycle Challenge [1] was proposed to tackle the issue
that multilevel modelling still lacks a strong conceptual basis,
consensus and focus. This paper presents one solution to that
challenge, i.e. creating a multilevel hierarchy that represents
the domain of bicycles as products composed of different parts
and with different features, starting from very abstract concepts
(components with weight and basic parts) and ending with one
particular model of bicycle with brand-specific parts, which in
turn is instantiated by a specific bicycle. We analyse and “fix”
the requirements, discuss them, and present our solution using
the MultEcore tool.

I. INTRODUCTION

The approach to deep metamodeling which we have used to
solve this challenge is implemented in the MultEcore tool [2].
This tool combines the best from the two worlds: fixed-level
metamodelling with its mature tool ecosystem, and multilevel
modelling with an unlimited number of abstraction levels,
potencies and multiple typing. Using our approach, model
designers can seamlessly create a multilevel version of their
hierarchies while still keeping all the advantages they get from
fixed-level ones. MultEcore facilitates multilevel modelling
without leaving the EMF (Eclipse Modeling Framework [3])
world, and hence allowing reuse of existing EMF tools and
plugins. The tool (and the solution to this challenge) is available
for download from http://prosjekt.hib.no/ict/multecore/.

A multilevel model hierarchy in MultEcore is defined as
an ontological hierarchy of models with a fixed, common and
generic topmost metamodel. In other words, the ontological
hierarchy does not require a linguistic metamodel in order to
be consistent, as opposed to the clabject-based proposals such
as [4], [5]. Therefore, this hierarchy is similar to MOF, but does
not restrict the number of new levels that the user can create.
An overview of the conceptual framework behind MultEcore
is displayed in Fig. 1. Note that since the ontological stack
can grow downwards an arbitrary number of levels, these are
indexed increasingly from the top. A detailed evaluation of our
design choices and formalisations can be found in [2], [6].

The differentiating aspects of our conceptual framework are
summarised as follows:

Mn

(instance)

Mn-1

M0

(fixed)

M1

...

ontologically typed

ontologically typed

ontologically typed

ontologically typed

supplementary

typed

SM 1

SM 2

Figure 1: Overview of the multilevel conceptual framework

• A multilevel modelling stack that does not require lin-
guistic metamodels, synthetic typing relations or “flatten-
ing” of the ontological stack.

• A realization of linguistic extension that differs from
other approaches and allows for several, independent
linguistic hierarchies (called supplementary hierarchies in
our approach), orthogonal to the ontological stack.

• Looser linguistic typing: while every element in every
model has an ontological type, it does not require a
linguistic type for each plugged linguistic metamodel.

• An extension of the two-level cascading approach that
aides the implementation of the framework as an extension
of EMF which preserves full compatibility with its model
representations and tools, i.e. we make use of EMF native
APIs and formats, and keep the overload of the models
as transparent as possible.

In the following sections we will show how we have designed
the bicycle model in the MultEcore tool, and argue for our
design decisions.

II. CASE ANALYSIS

The considerations we took to complete the case description
are:

• Not specifying a value for attributes is interpreted as that
attribute being optional.

http://prosjekt.hib.no/ict/multecore/


EClass 1-1

EClass 1-1 EClass 1-1

subc@1-1

EReference

Figure 2: Level 1: Configuration

• All the bicycles are “well-formed”. That is, the hierarchy
does not allow bicycles with missing parts like a wheel.

• Unclear requirements that do not look suitable to be
modelled are excluded.

The fact that the frame number for bicycles is unique can
be specified higher up in the hierarchy but instantiated at the
level of one particular bicycle. Moreover, the classifications
defined in the description might be extended, adding even
more intermediate levels of abstraction before reaching the
actual, “final” instances, which represent individual bicycles.
We have focused on the requirements and aspects which we
have extracted from the challenge description (see next section).

III. MODEL DESIGN

In this section, we present the multilevel hierarchy that
addresses the challenge. We have one subsection per level,
for the sake of clarity, starting from the top-most level 1. In
level 0 we locate Ecore, which is not displayed. However,
note that we will discuss the requirements sequentially as they
appear in the challenge description [1], which causes changes
in previously defined levels. These cases will be pointed out
to avoid confusion.

About the visual representations, it is important to mention
that the cardinality of the references is only displayed in case
it is different from 0..*, which is the default one, and the most
common and generic.

A. Level 1 - Configuration

The first configuration level resembles the traditional object-
oriented Composite pattern [7]. Hence, this model exploits
inheritance to achieve the pattern, as displayed in Fig. 2.

Apart from the classes themselves, the description mentions
that components may have a weight and a minimum weight,
included as attributes. The minimum weight attribute has
potency 1–3, indicating that it can be instantiated directly in the
level immediately below, two levels below or three levels below
(levels L2, L3 and L4, respectively). This attempts to fulfil
the requirement that the knowledge about the domain must
be located as high as possible. In case we want to add more
levels to our hierarchy, we may need to update this potency
to a higher number. Also, the sentence “There is a difference
between the type of a component and its instances” seems to
clearly point out a separation between this level and the next
one.

A hierarchy in MultEcore is tree-shaped and composed of
models with upwards typing relations among them (see [6]).
We have chosen the following concrete syntax in our tool. The
type of a node is indicated as a blue ellipse, e.g. EClass is
the type of Composite. The type of an arrow is written near
the arrow in italic font type, e.g. EReference. The names of
the nodes are used as labels in the class-like rectangles; italics
font means the node is abstract. The potency of each node is
written in a red rectangle on its top right corner. For arrows, it
is written after the arrow name separated by the @ character.
For attributes, the potency is written just before the attribute
name. The potencies in MultEcore have a range, having the
default “1–1”, which means that they only can be instantiated
directly at the next level below. This means that the tool does
not restrict whether an instance of a node with potency 1–1
is reinstantiated or not. With the same reasoning, a node with
potency 2–4 would mean that we can instantiate it directly at
2, 3 and 4 levels below, or a combination of those, or we may
not do so since instantiation is optional. This realisation also
keeps the potency of the instances independent of the potency
of their types, and it could be seamlessly combined with the
more traditional understanding of potency as depth (just by
adding a third value), i.e. how many times instances, instances
of instances, etc. can be created.

The tool also provides a hierarchy view in which all the
models in a branch could be visualised as a modeling stack,
with typing relations between model elements at different levels
being visualised as dashed arrows.

B. Level 2 - Bicycle

The next level on the hierarchy contains the abstract
description of a bicycle and its parts (see Fig. 3). Most of the
requirements from the description are quite straightforward to
model. The most relevant design decision is giving cardinality
0..1 to purchasePrice , since some instances of it do not specify
it. It has a potency of 2–2 since there are still two levels to
instantiate it below. Also, the fact that both wheels must have
the same size has been solved by the attribute wheelSize in the
class Bicycle hence forcing all wheels to be of the same size.
This design decision can be replaced by the more complex (but
arguably more semantically adequate) solution of duplicating
the attribute in both wheels and creating a constraint that
ensures that they have the same value. See subsection III-G
for an example of a constraint.

One remarkable usage of potency in this level is that all the
relations (except for wheels) are defined with potency 1–3 so
that they do not need to be redefined in the intermediate levels
while they can be directly instantiated in the lower levels. The
other interesting use of our range-like potency is for both color
attributes. We chose 1–4 for it since we believe it is a nice
example of flexibility, so that a colour can be specified at the
upper levels if that component is made with that colour, but we
allow for the lower instances to redefine it, so that a particular
bike can differ from its original colours.

The fact that frames have a unique serial number can be
easily provided by exploiting Ecore’s ID feature.



Component 1-1

BasicPart 1-1

BasicPart 1-1
BasicPart 1-1

BasicPart 1-1

frame@1-3subc handle@1-3 subc

wheels@1-1 subcfork@1-3subc

Figure 3: Level 2: Bicycle

Bicycle 1-1

Frame 1-1 Handle 1-1

Wheel 1-1

Material

Material

Material

Wheel 1-1

Fork 1-1

frontWheel@1-2 wheels

rearWheel@1-2 wheels

Figure 4: Level 3: Racing Bicycle

C. Level 3 - Racing Bicycle

This level simply instantiates some attributes previously
defined, and specifies new ones like the lengths of the different
tubes for the frame (see Fig. 4). The fact that some bicycles
are suitable to certain environments did not look suitable
for explicitly modelling, since maintaining a list of them is
cumbersome. At most, we consider that a simple string attribute
with the description could be added.

D. Level 4 - Pro Racing Bicycle

This level is quite simple, and just instantiates the attributes
previously defined (see Fig. 5). The most relevant feature is
the restriction on the material of the wheels: “A carbon frame
type allows for carbon or aluminium wheel types only”. This
requirement is addressed in section III-G.

E. Level 5 - Challenger A2-XL

The last level required by the description is a specific bicycle
model, where we can see the instantiation of three attributes,
weight (for both frame and bicycle) and salesPrice, defined
at higher levels (see Fig. 6). Since weight is defined at level

RacingBike 1-1

RacingFrame 1-1 RacingHandle 1-1

FrontWheel 1-1

RearWheel 1-1

RacingFork 1-1

Figure 5: Level 4: Pro Racing Bicycle

ProRacingBike 1-1

ProRacingFra... 1-1 ProRacingHa... 1-1

PRFrontWheel 1-1

PRRearWheel 1-1

ProRacingFork 1-1

prframe@1-1 frame@3 prhandle@1-1 handle@3

prfrontwheel@1-1

frontWheel@2prfork@1-1
fork@3

prrearwheel@1-1

rearWheel@2

Figure 6: Level 5: Challenger A2-XL

L1 together with minWeight, it is possible to also define a
cross-level constraint where we forbid an actual weight to be
less than the minimum weight. Specific instances of this model
will instantiate the frame serial ID which will differentiate
specific bicycles from each other.

F. Level 6 - My Challenger

The previous level defines a particular model of a bike, but
probably more than one bike of that model is available. If
the modeller wishes to represent this information, along with
some specific differences between this bike an the rest of the
Challenger A2-XL bikes, an instance of the previous model
can be specified, like the one we depict in Fig. 7.

Here, the particular colours to which the bike was painted (or
re-painted) can be specified, as displayed in MyRocketFrame
and MyFork.

G. Constraints

Some of the features represented in the previous subsections
could have been addressed by means of (multilevel) constraints,



Challenger-A... 1-1

Rocket-A1-XL 1-1 ChallengerHa... 1-1

ChallengerFro... 1-1

ChallengerRe... 1-1

ChallengerFork 1-1

prframe@1-1 prframe
prhandle@1-1

prhandle

prfrontwheel@1-1 prfrontwheel

prfork@1-1
prfork

prrearwheel@1-1

prrearwheel

Figure 7: Level 6: My Challenger

i

Implication 1-1

CarbonFrame

Atomic 1-1

F

W

material=steel

Element 1-1

right@1-1

right

n

Not 1-1

SteelWheel

Atomic 1-1

left@1-1

left

has@1-1 has f@1-1

has@1-1 has

*Wheel

property

material=carbon

1-1

*Frame

Element

formula

Figure 8: A multilevel constraint using a supplementary
hierarchy

using a language like the one we describe in [6]. We chose,
however, to create a hierarchy as simple and self-contained
as possible. Hence, the only constraint we create is specified
as an implication, in the following manner: A frame with
the attribute material=carbon implies that either the front
and rear wheels have also material=carbon or that they have
material=aluminium. This constraint uses a supplementary
hierarchy, as depicted in Fig. 1, in order to define double-typed
elements that relate the atomic propositions of the language of
boolean logic to actual elements in the ontological hierarchy
(called application hierarchy in our approach). Fig. 8 displays
the constraint, using the same notation as the previous diagrams,
but with two different colours to distinguish between the
application type (blue) and the supplementary type (green).

IV. EVALUATION

The proposed multilevel modeling hierarchy ended up having
up to 7 abstraction levels L0, . . . , L6, where the L0 level is
the Ecore metamodel. The knowledge domain is at level L2,
just below the generic component model at level L1.

The model at L2 can be used as a DSL, or as a starting
point for a software system which could be used by bicycle
retailers. This would imply that some of the potencies in L2,
e.g. the ones on purchasePrice, serial, etc., would be updated
so that these attributes could be instantiated at L3. Similarly,
the model at level L3 can be used as a DSL, or as a starting
point for a software system which could be used by racing
bicycle retailers. An ordinary bicycle model, which is specified
at level L3 as an instance of L2, would be in a sibling branch
of the metamodel Racing Bicycle in the model hierarchy.

The Racing Bicycle specialised DSL or software could
further be refined and specialised to define a Pro Racing Bicycle
metamodel. This specialised DSL would disallow racing bicycle
and pro racing bicycle retailers from defining ordinary bicycles.
However, by changing the potency of the nodes at level L2 so
that the upper bound is *, we could relax on this restriction,
if this was desirable. Hence, although the refinement process
has given rise to more specialised DSLs for special kinds of
bicycle, e.g. pro racing bicycles, we could still choose to create
a DSL which enables usage of types from upper levels than
the Pro Racing Bicycle. That is, in our alternative solution
with relaxed potencies, a specific ordinary bicycle could be
specified at level L3, L4, L5 or L6 depending on which created
DSL one would like to use.

In http://prosjekt.hib.no/ict/multecore/ we show how
Sirius [8] could be used to create editors for a bicycle DSL
given by the metamodel at level L2. Indeed, editors could
be created for any of the models in the hierarchy. This also
demonstrates the strength of our approach in not leaving the
EMF world which makes it easy to create editors and other
artefacts. Moreover, from the .ecore version of the models
it is possible to use EMF’s native code generation facilities
and generate Java code, or write other templates to generate
custom code.

In a few cases in this solution, we could have used
generalisation (i.e. inheritance) instead of specialisation (i.e.
typing). For example, the specialisation of the Racing Bicycle
into Pro Racing Bicycle could be replaced with inheritance
among the elements of both. However, we believe that the
usage of typing in this scenario allows for a more flexible
specification and separation of abstraction levels. As we argue
in [6], our framework leaves this possibility open to the user.

In our solution, it is not required to have associations between
different levels. In the case of cross-level constraints, we have
used multilevel constraints as shown in Fig. 8. These constraints
would be parsed and transformed to validators by customized
code-generators so that the created DSLs can enforce the
restrictions given by them.

We have identified three of the requirements given by the
challenge description [1], namely the domain knowledge is

http://prosjekt.hib.no/ict/multecore/


specified at the highest possible level, the models could be
used as a foundation for a software system, and possibility to
define cross-level constraints.

The main limitation of the approach lies in the fact that we
cannot automatically propagate changes done to higher level
models to lower level models. That is, if we change potencies
or add/delete model elements, the lower level models which
are depending on the potency or these elements might become
invalid models. Addressing this challenge is part of a bigger
development step in MultEcore which focuses on co-evolution
and model repair.

V. CONCLUSIONS

In this paper, we have presented a solution to the Bicycle
Challenge proposed at MULTI 2017 workshop. Our multilevel
modeling hierarchy ended up having up to 7 abstraction levels
where specific ordinary bicycles could be defined at the level
L3, and with some potency relaxation also on L4, L5 and L6.
However, specific pro racing bicycles could only be defined at
level L5 since these are instances of a more specific or refined
metamodel at L4. Our solution is based on the MultEcore tool
and follows a conceptual framework which enables EMF with

the potential of becoming a multilevel modelling framework.
This facilitates usage of the rich ecosystem of EMF such as
code generation and DSL editor creation.

REFERENCES

[1] MULTI2017. (2017, Jul.) Bicycle Challenge description. [Online]. Avail-
able: https://www.wi-inf.uni-duisburg-essen.de/MULTI2017/#challenge

[2] F. Macías, A. Rutle, and V. Stolz, “MultEcore: Combining the best of fixed-
level and multilevel metamodelling,” in MULTI, ser. CEUR Workshop
Proceedings, vol. 1722, 2016.

[3] Eclipse Modeling Framework, Web site. [Online]. Available: http:
//www.eclipse.org/modeling/emf

[4] C. Atkinson and R. Gerbig, “Flexible deep modeling with Melanee,” in
Modellierung 2016, ser. LNI, S. Betz and U. Reimer, Eds., vol. 255.
Bonn: Gesellschaft für Informatik, 2016, pp. 117–122.

[5] J. de Lara and E. Guerra, “Deep meta-modelling with Metadepth,” in
Objects, Models, Components, Patterns, ser. LNCS, vol. 6141. Springer,
Jul. 2010, pp. 1–20.

[6] F. Macías, A. Rutle, V. Stolz, R. Rodriguez-Echeverria, and U. Wolter,
“Formalisation of flexible multilevel modelling,” Submitted, available at
http://prosjekt.hib.no/ ict/multecore/ , 2016.

[7] E. Gamma et al., Design Patterns: elements of reusable object-oriented
software. Addison-Wesley, 1994.

[8] The Eclipse Project, “Eclipse Sirius,” Dec. 2016. [Online]. Available:
http://www.eclipse.org/sirius/

https://www.wi-inf.uni-duisburg-essen.de/MULTI2017/#challenge
http://www.eclipse.org/modeling/emf
http://www.eclipse.org/modeling/emf
http://prosjekt.hib.no/ict/multecore/
http://www.eclipse.org/sirius/

	Introduction
	Case Analysis
	Model Design
	Level 1 - Configuration
	Level 2 - Bicycle
	Level 3 - Racing Bicycle
	Level 4 - Pro Racing Bicycle
	Level 5 - Challenger A2-XL
	Level 6 - My Challenger
	Constraints

	Evaluation
	Conclusions
	References

