
Semantic Clipboard -
Semantically Enriched Data Exchange Between

Desktop Applications

Gerald Reif, Martin Morger, and Harald Gall

University of Zurich, Department of Informatics, 8050 Zurich, Switzerland
{reif,gall}@ifi.unizh.ch
martinmorger@hispeed.ch,

WWW home page: http://seal.ifi.unizh.ch/

Abstract. The operating system clipboard is used to copy and paste
data between applications even if the applications are from different ven-
dors. Current clipboards only support the transfer of data or formatted
data between applications. The semantics of the data, however, is lost in
the transfer. The Semantic Web, on the other hand, provides a common
framework that allows data to be shared across application boundaries
while preserving the semantics of the data.

In this paper we introduce the concept of a Semantic Clipboard and
present a prototype implementation that can be used to copy and paste
RDF meta-data between desktop applications. The Semantic Clipboard
is based on a flexible plugin architecture that enables the easy extension
of the clipboard to new ontology vocabularies and target applications.
Furthermore, we show how the Semantic Clipboard is used to copy and
paste the meta-data from semantically annotated Web pages to a user’s
desktop application.

1 Introduction

Users frequently use the clipboard of the operating system to exchange data
between desktop applications. They select the data they want to copy in the
source application, the data is then temporarily stored by the clipboard, and
inserted into the target application selected by the user. With current clipboard
applications the data is transferred as text or binary data. The semantics of the
data, however, is lost. As a consequence, the user has to restore the semantic
context when pasting the data to the target application.

For example, a user orders a cinema ticket in an online-store and gets a
Web page with the ticket’s receipt. Using the operating system clipboard to add
the event to the calendar or the cinema’s address to the address book can not
be done in one step. Instead, the user has to select each information item in
an individual step (e.g., the movie title as event name, the street name, etc.)
and paste it to the according field of the target application. This way the user
manually restores the semantic context of the data.

2

To overcome this semantic gap, the Semantic Web provides a common frame-
work that allows data to be shared and reused across application, enterprise,
and community boundaries [22]. To make the semantics of the data machine-
processable, the Semantic Web employes ontology-based meta-data that is for-
malized using the the Resource Description Framework (RDF) [13]. Therefore,
Web pages in the Semantic Web have to be annotated with RDF meta-data that
describe the semantics of the content.

Using a clipboard that is based on Semantic Web technologies enables the
transfer from RDF meta-data between applications. This way a clipboard is
able to preserve the data semantics during the data transfer. In the scenario
described above, the clipboard can now paste the performance data in RDF
format from the cinema’s online-store receipt page to the user’s desktop applica-
tion. The desktop application interprets the well-defined semantics and performs
the appropriate actions (e.g., creating a new event for the performance in the
calendar, adding the cinemas address to the address book) without having the
user to restore the semantic context of the data.

In this paper we discuss the semantic implications when pasting data to
different desktop applications and introduce the architecture and a prototype
implementation of a Semantic Clipboard. To enable the easy adaptation of the
clipboard to new ontology vocabularies and target desktop applications, the
Semantic Clipboard is based on a flexible plugin architecture. To demonstrate
the potential of the Semantic Clipboard, we implemented plugins for several
ontology vocabularies and desktop applications for the Apple MacOS and MS
Windows operating systems.

The remainder of the paper is structured as follows. Section 2 discusses the
idea that target applications define the semantic implications of the transferred
data. Section 3 introduces the plugin architecture of the Semantic Clipboard
and Section 4 presents the prototype implementation. Section 5 discusses related
work and Section 6 presents future work and concludes the paper.

2 Semantic Implications Defined by Target Application

An ontology formally defines the semantics of the common terms that are used
to describe the domain of discourse [5]. Since RDF meta-data is based on the
terms defined in the ontology, machines have access to the semantics of the data.
RDF data can be exchanged between applications without losing its semantics
and the applications have the same semantic understanding of the data. The
implications of the exchanged data, however, depend on the target application.
The target application processes the data received and handles the data based on
its semantic context. Therefore, pasting the data to different target applications
can cause different semantic implications.

For example, the Web page of an online-banking application presents the
user’s latest bank account statement, shown in Figure 1. The semantic annota-
tion of such a Web page contains information such as the date, the value, the
recipient, and the posting details for each money transfer in RDF format. De-

3

4 Chapter 1. Introduction

Figure 1.2: Exporting the data of a bank account statement into different applications.
Fig. 1. The semantic implications are defined by the target application.

pending on the target application pasting the data will cause different actions,
determined by the semantic context of the application.

The following list shows the different actions for some possible target appli-
cations:

– Home accounting application (such as MS Money) – A series of accounting
records will be created; one for each money transfer.

– Spreadsheet applications (such as MS Excel) – The data will be formatted
as a table; a new row is created for each posting line.

– Calendar application (such as iCal) – A new calendar entry will be created
for each day a money transfer took place.

– Address book application (such as the MacOS Address Book) – The address
of the recipients will be added to the address book.

– MP3 player (such as iTunes) – Since the semantic context of a MP3 player
does not include money transfers, dates, or addresses the application is not
able to perform any meaningful action with the data and will ignore it.

4

As shown in the examples above, using a Semantic Clipboard to paste the
same RDF data to different target applications will cause different application
specific actions. Therefore, the clipboard has to hand-over the RDF data to
some application-specific code which processes the data in the semantic context
of the application. Since the Semantic Clipboard should be easily extensible to
new target applications, this application-specific code is hosted in application
and operating system specific plugins. The plugin architecture of the Semantic
Clipboard is introduced in the following section.

3 Architecture

The Semantic Web community defined numerous ontology vocabularies for var-
ious domains. Therefore, it is an important requirement that the Semantic Clip-
board can easily be extended to new ontologies to facilitate these various do-
mains. On the other hand, there are countless desktop applications that are
potential target applications for a data transfer. Hence, it is a further require-
ment that the support for new desktop applications can easily be added to the
Semantic Clipboard.

Both of requirements concern the extensibility of the Semantic Clipboard. To
meet these requirements we propose to use a flexible plugin architecture for the
Semantic Clipboard. This way the capabilities of the clipboard can be extended
by adding new plugins and leaving the core of the implementation untouched.
The basic components of the plugin architecture are shown in Figure 2.

The architecture is split into two main parts, the core functionality and the
plugins that are used to increase the capabilities of the clipboard. The task of the
core functionality is to load and manage the plugins, to provide the user interface,
to parse the RDF data, and to manage the clipboard sessions. A clipboard session
starts when the user requests the clipboard to read RDF meta-data. The data
is then stored in the clipboard session and can be repeatedly pasted to the
supported target applications. The current session ends and a new session is
started when the user loads new RDF meta-data to the clipboard.

3.1 Reading from the RDF Source

The Source Data Processor is responsible for reading the RDF meta-data from
the data source selected by the user. The Semantic Clipboard has to support
several data sources. RDF data can be read from another desktop application
that directly supports copying data in RDF format. RDF data can also be read
form a file on the local hard-disk or from a source in the Internet via HTTP.

Semantically annotated Web pages are a further data source. These pages
do not only provide their content in HTML format to be displayed by a Web
browser but also RDF meta-data describing the semantics of the content. Several
techniques exist to associate the HTML page and its RDF meta-data descrip-
tion [17]. When the RDF meta-data is embedded into the HTML page the Source
Data Processor extracts the RDF data from the HTML page. In case the HTML

5
6 Chapter 2. Implementation

Figure 2.1: Data Flow and Plugin Component Structure.

Plugin Package Contains the reader, data container, and application plugin classes which extract
its ontology-specific data from the RDF source, store it temporarily, and paste the data into
target applications.

Shared Package Provides functionality used by modules from both the core and main packages,
such as the Session class, Exception classes, ontology vocabularies, and some utility
classes.

2.2 Technologies
The following technologies and libraries have been used to develop the Semantic Clipboard:

Java Software Development Kit (J2SE), Version 1.4.2 for Mac The Semantic Clipboard applica-
tion is implemented in the JavaTM programming language1. Being a relatively young lan-
guage, Java has rapidly become one of the major languages for object oriented program-
ming. Its virtual machine architecture allows programmers to write once, run everywhere, as
the the Java compiler will generate a platform-independent byte-code, that can be run on
any platform that provides a Java virtual machine. In addition to being a modern object
oriented language, its community provides a large amount of freely available libraries.

Eclipse IDE The Eclipse Integrated Development Environment (IDE)2 has been used to support
the development process. The Eclipse IDE provides a large array of coding assisting, refac-
toring, and debugging functionality, and its license allows anyone to use the program free of

1http://java.sun.com/
2http://www.eclipse.org/

Fig. 2. Plugin architecture of the Semantic Clipboard. [15]

page contains a reference to an external document containing the RDF meta-
data description, the Source Data Processor extracts the reference and retrieves
its RDF meta-data over the network. Once the Source Data Processor loaded
and parsed the RDF data, the data is handed over to the reader plugins, which
are described in the following section.

3.2 Plugins

Using a plugin architecture allows developers to provide further plugins to enable
the clipboard to handle new ontology vocabularies or to increase the number of
supported target applications.

A possible architecture for the Semantic Clipboard would be to have only
application-specific plugins. In this case the Source Data Processor directly
hands over the RDF meta-data to the application plugin. This plugin is then
responsible for analyzing the RDF data and for integrating the data into the
semantic context of the application.

Such an architecture would have serious drawbacks. To support a new on-
tology, each application plugin that is able to handle data in the domain of the
ontology has to be modified. In addition, application plugins that are able to
process data based on the same ontology typically use the same statements to
filter the RDF graph for specific information items such as the street name or
the ZIP code of an address. Therefore, the same code would be found in several
applications plugins.

To overcome these drawbacks, our proposed plugin architecture processes the
RDF meta-data in three steps. The ontology-specific reader plugins extract the
information from the RDF graph and store it in domain-specific data container

6

plugins. When the user selects the target application, the data containers are
handed over to the responsible application plugin which communicates with the
desktop application. The three processing steps are shown in Figure 2.

Introducing these additional steps increases the flexibility and code reuse
in the architecture of the Semantic Clipboard. To support a new ontology in
a domain where a data container already exists, only a new reader plugin for
the new ontology has to be implemented. In addition, the code to extract the
information from the RDF graph is only needed once, in the responsible reader
plugin, even if several application plugins can handle the information encoded
with this ontology.

In the following we introduce the plugin types in detail.

Reader plugin. A reader plugin is required for each supported ontology vocab-
ulary (e.g., vCard [8], iCal [9], foaf [7]). The plugin extracts the information
from the RDF graph that is encoded with the ontology vocabulary the plu-
gin is responsible for. It then instantiates the corresponding data container
plugin to store the extracted information.
A reader plugin can instantiate and write to several data containers. For
example, the ontology provides the vocabulary to represent a person’s con-
tact information including its current geographical coordinates. The reader
plugin would instantiate a contact container and a geographical container to
store the data.

Data container plugin. The data container plugin is responsible for storing
the information extracted by the reader plugins. A data container is respon-
sible for a specific domain such as events or contacts. More than one reader
plugin can write information to the same data container. For example, the
RDF graph contains information about a person’s contact encoded using
the foaf [7] and vCard [8] ontology. In this case both the foaf reader and the
vCard reader write its information to the same contact data container.
A data container can also store references to other data containers. For
example, the RDF graph contains data about a meeting and its participants.
The data container that stores the meeting event stores references to the
contact data container of the meeting participants.

Application plugin. The application plugin builds the interface between the
Semantic Clipboard and the desktop applications. When a user selects the
target application, the responsible application plugin accesses the informa-
tion stored in the data containers. The application-specific code in the plugin
then communicates with the desktop application.
Depending on the semantic context of the desktop application, the applica-
tion plugin can use information from several data containers. For example,
the RDF graph contains data about a person including the current geo-
graphical coordinates and the data is stored in a contact and a geographic
container. If the target application stores the geographic location in the per-
son’s contact entry, the plugin will access the information of both containers.
On the other hand, if the semantic context of the target application does
not overlap with the data in the current clipboard session no action can be
issued in the target application.

7

Each application plugin has access to the user interface of the Semantic
Clipboard to present its application-specific dialog. For example, the plugin
asks the user to confirm the modification of an existing contact in the address
book.

This flexible plugin architecture enables the Semantic Clipboard to be ex-
tended with regard to the number of ontology vocabularies the clipboard can
handle (reader plugin), the domains the clipboard is aware of (data container
plugin), and the target applications the information can be pasted to (applica-
tion plugin).

3.3 Manifest Files

At compile time of the Semantic Clipboard, the number of plugins and their
specific task is not known. To make the clipboard aware of the plugins that are
available, each plugin has to provide a manifest file in a specific directory. The
manifest of a plugin contains information about the plugin type, the associated
class file, and the specific task the plugin was developed for. When the clipboard
starts up, the Plugin Manager reads the manifest files and recognizes the plugins
that are available, their tasks, and the dependencies between the plugins.

Beside the plugin name, the associated class file, and the plugin type (reader,
data container, or application plugin) the manifest contains information that is
specific to the plugin type. Since the Semantic Clipboard can evolve over time
each manifest also contains a version number. The plugin-specific information in
the manifest is listed below.

– Reader plugin - The manifest also provides the name and the version
number of the data container(s) the extracted information is stored in.

– Data container plugin - No specific information is needed.
– Application plugin - The manifest contains name and version number of

the data container(s) the plugin is able to handle. Since the application-
specific code can depend on the operating system platform, the manifest
contains the name of the operating system the plugin was designed for. Be-
cause the user of the Semantic Clipboard has to select the target application
the data is pasted to, the manifest also contains the human-readable name
and description of the target application, which is displayed to the user.

Figure 3 shows an example of the manifest file for the iCal application plugin.
Lines 7 to 9 name the responsible class file, line 10 gives the plugin type, line 13
contains the operating system the plugin is implemented for, and lines 14 to 19
name the data containers the plugin is able to handle.

4 Implementation

In this section we present the prototype implementation of the Semantic Clip-
board that is based on the plugin architecture as presented in the section above.

8� �
1 <rdf:RDF
2 xmlns:semclip="http://seal.ifi.unizh.ch/semclip -rdf/"
3 xmlns:rdf="http://www.w3.org /1999/02/22 -rdf -syntax -ns#" >
4 <rdf:Description
5 rdf:about="http://seal.ifi.unizh.ch/semclip -rdf/plugins#ICalAppPl
6 ugin">
7 <semclip:classname >
8 ch.unizh.ifi.seal.semclip.plugins.applications.ICalAppPlugin
9 </semclip:classname >

10 <semclip:plugintype >AppPlugin </semclip:plugintype >
11 <semclip:appname >iCal Calendar </semclip:appname >
12 <semclip:appdesc >The desktop calendar , redefined.</semclip:appdesc >
13 <semclip:platform >Mac OS X</semclip:platform >
14 <semclip:containers rdf:nodeID="A0"/>
15 </rdf:Description >
16 <rdf:Description rdf:nodeID="A0">
17 <semclip:containername >ICalContainer </semclip:containername >
18 <semclip:containerversion >1</semclip:containerversion >
19 </rdf:Description >
20 </rdf:RDF >� �

Fig. 3. Manifest file for the iCal application plugin.

The prototype is implemented in Java and includes plugins for several ontology
vocabularies as well as desktop applications running on the Apple MacOS and
the MS Windows operating systems.

Since the prototype of the Semantic Clipboard is not yet integrated in the
clipboard of the operating system, the standard keyboard shortcuts ctrl-c and
ctrl-v do not work. Instead we use a dialog window to select the RDF data
source and the target application. Figure 4 shows the dialog window to select a
local file or a document on the Web. The selected file is loaded by the Source
Data Processor that checks whether the file is an RDF/XML document or an
HTML Web page. If it is an HTML Web page the document is parsed and
checked if an RDF fragment is embedded or if the page links to an external
document with its RDF description.

The current implementation of the Semantic Clipboard supports embedded
RDF in the HTML <script> element [17]. The used application/rdf+xml
media type (MIMEtype) is defined in the RFC3870 [20]. An example of the use
of the <script> element is shown below.

<head>
<title >My Document </title >
<script type="application/rdf+xml">

<rdf:RDF xmlns:rdf="http: //www.w3.org /1999/02/22 -rdf -syntax -ns#"
xmlns:dc="http: //purl.org/dc/elements /1.1/">

<rdf:Description rdf:about="http://www.w3.org/"
dc:title="W3C Homepage"/>

</rdf:RDF >
</script >
<body><!-- Web page --></body>

</head>

The HTML document is also searched for a reference to an external RDF
description using the <link> element, which is the recommended technique to

9

22 Chapter 2. Implementation

Using the first panel of the Wizard user interface, as shown in Figure 2.5, the user specifies the
RDF source, represented by a plain RDF file or an HTML file with embedded or linked RDF
content. The location of the source is specified either as a URL, or by choosing a local file using a
FileChooser dialog. If the current content of the system clipboard is a text representing a URL,
the user may paste this URL into the corresponding text field by clicking the Paste from Clipboard
button.
After specifying the location of the RDF source, the user clicks the Next button, which causes the
Semantic Clipboard to retrieve the specified RDF source, iterate through the reader plugins to
process the data, and create data container objects from it, as described in Sections 2.4 and 2.5.3.

Figure 2.5: Specifying the RDF source in the first Wizard panel.

2.8.2 Selecting the Target Application

The second Wizard panel displays a progress bar, showing the progress of retrieving and process-
ing the RDF source to the user. Below the progress bar, the list of application plugins that are able
to handle the current source data is displayed, as Figure 2.6 shows. The description of a plugin,
as defined in its manifest file, see Section 2.5.1, is displayed for the selected plugin upon clicking
the Get Plugin Description button.
In this example, the Google Earth, Mac Address Book, and iTunes applications would be possible
target applications for the data contained in the RDF source and are, therefore, shown in the plu-
gin list.
After the user has selected the application plugin to handle the data and has clicked on the Next
button, the Semantic Clipboard instantiates the chosen application plugin and lets the plugin
display its user interface.

Fig. 4. Specifying the RDF data source.

associate the HTML Web page and its RDF description [19]. An example of the
use of the <link> element is shown below.

<link rel="meta" type="application/rdf+xml" href="contact.rdf"/>

Once the RDF document is retrieved, it is parsed using the Jena RDF
parser [11]. The Jena model is then handed over to the reader plugins. For the
prototype we implemented readers for several ontologies in different domains. In
the domain of contacts we implemented readers for the vCard [8] and the foaf [7]
ontologies, in the domain of calendar events a reader for the iCal ontology [9]
was implemented. In addition, we implemented a reader for a self-defined music
ontology.

To store the information that is extracted from the RDF graph by the reader
plugins, we implemented data containers for contacts, events, geographical co-
ordinates, and music data.

In the last step the user is presented a dialog window with the list of applica-
tions the data can be pasted to. Since the manifest file of the application plugins
includes the data containers the plugin is able to handle, the list only includes
applications that are able to process the semantic context of the data in the cur-
rent clipboard session. For example, if the RDF graph does not include calendar
data, no event container is instantiated and, therefore, no calendar applications
are listed. Figure 5 shows a screenshot of the application selection dialog of the
Semantic Clipboard.

The application plugin is then responsible for the communication with the
desktop application and for issuing the required actions. Depending on the oper-
ating system and the desktop application, the plugin uses different techniques to
communicate with the desktop application. On MacOS the plugin can use Apple

10 2.9 Installation 23

Figure 2.6: Selecting the target application in the second Wizard panel.

2.8.3 Selecting the Data to be pasted
In the third Wizard panel, the specific user interface provided by the application plugin, as se-
lected in the previous step, is displayed. As each application plugin implements its specific user
interface, the layout and contents of this Wizard panel varies, depending on the chosen applica-
tion plugin. Therefore, the screenshots shown in Figures 2.7 and 2.8 are only one possible example
of such a plugin-specific user interface.
Figure 2.7 shows the Wizard displaying the user interface of the Mac Address Book application
plugin. The plugin displays a list containing the vCard components extracted from the source, in
this case a vCard about the person John Doe. Clicking on the Preview button displays a message
box showing the summary of the contents of the selected vCard component, as Figure 2.8 shows.

Clicking on the Paste Data button results in the application plugin pasting the data into its
target application. In the case of this example, the application plugin pastes the selected vCard
data into the Mac Address Book application, resulting in the creation of a new address entry.

After the data is successfully pasted into the target application, the user may select and paste
other data into the same application. He may also click on the Back button to return to the sec-
ond or first Wizard panel to choose another target application or specify a different RDF source.
Clicking on the Finish button closes the Wizard user interface, which may be displayed again by
selecting the Show Wizard command from the File menu bar.

2.9 Installation
The enclosed CD-ROM provides a ZIP file (semclip bin.zip) that contains a JAR archive of
the Semantic Clipboard classes, as well as the plugin classes and manifest files, and all required
external Java libraries. The contents of the ZIP file should be extracted into an empty folder, in
the following referred to as $SEMCLIP. In order to run the Semantic Clipboard application, the

Fig. 5. Selecting the target application.

Script, whereas on MS Windows the plugin can use the Java COM Bridge JA-
COB [10] for the communication. A general technique, which works with most
operating systems, is to write the data to a temporary file (e.g., an iCal file) and
call the application with the filename as command-line parameter. Table 1 pro-
vides an overview of the application plugins we implemented for the prototype
of the Semantic Clipboard as well as the data containers they can handle.

Data Target Application Action performed
Container MacOS MS Windows

Contacts MacOS Address Book Windows Address Book Contact is added
Outlook to the address book

Events iCal Outlook New event is added

Coordinates Google Earth Google Earth Focused on coordinates

Music iTunes — Song is played

Table 1. Overview of the available application plugins.

Depending on the target application, some further user interaction might be
necessary before the pasted information can be integrated in the semantic con-
text of the application. When pasting contact data to a address book application,
for example, the application requests the user to confirm the modification of an
existing contact entry. Therefore, the application plugins have access to the Java
Swing JPanel of the user interface of the Semantic Clipboard and can use it for
the application-specific interaction.

11

5 Related Work

To our knowledge, the Semantic Clipboard we presented in this paper is the first
implementation of a clipboard that is able to exchange semantically enriched
data between desktop applications. In [2] Tim Berners-Lee first brought up the
idea of a Semantic Clipboard. He proposed an architecture that uses conversa-
tion rules to convert RDF data from the ontology used by the application that
provides the data to the ontology understood by the target application. In our
implementation this conversation is implicitly done when a reader writes the
extracted data to a data container and when an application plugin accesses this
data.

The semiBlog [14] allows users to drag and drop data from desktop applica-
tions such as the Mac Address Book to the semiBlog editor. Wrappers take the
data in the native data format of the application, convert it to RDF, and use it
as semantic annotation of the blog entry.

The Live Clipboard [16] is a DHTML application that provides copy and
paste functionality for data associated with a Web page. The data can be trans-
fered within Web pages in XML format which does not address the data se-
mantics. The Web Clipboard [23] is a semantic enabled extension of the Live
Clipboard that is able to copy and paste RDF data. Instead of having to parse
a complete resource description with each copy and paste operation, the Web
Clipboard uses a small JSON snippet [12] which only contains an identifier of
the resource and information where full information can be obtained from.

DBin [3] is general purpose Semantic Web application that enables users to
create semantically enriched discussion groups where users can annotate any
subject of interest. It provides a Semantic Clipboard to transfer data within
DBin features such as queries, visualizers and exporters.

In addition, several approaches exist to benefit from Semantic Web technolo-
gies on the user’s desktop [4]. In gnowsis [21] information from different appli-
cations is extracted, transferred from its native format into RDF meta-data,
and stored in a central database. In this database information from different
applications is interlinked which enables new views on the information that was
scattered over several applications. In Fenfire [6], also meta-data from differ-
ent sources is stored in a single RDF graph. The Haystack project [18] aims
to provide users with a unified framework for managing their information, e.g.,
documents, emails, etc. through a single interface. Such a Semantic Desktop en-
vironment provides many RDF data source and target application the Semantic
Clipboard can cooperate with.

6 Conclusion and Future Work

In this paper we introduced the concept of the Semantic Clipboard that enables
data to be exchanged between desktop applications, without losing its semantics.
We argued that two main requirements for such a clipboard are the possibility
to add support for new ontology vocabularies and new target applications. To

12

meet these requirements we have developed a flexible plugin architecture that
processes the RDF data in three steps. The ontology-specific reader plugin ex-
tracts the information from the RDF graph and stores it in domain-specific data
container plugins. After the user selected the target application, the application
plugin is responsible for the integration of the data from the containers into the
semantic context of the desktop application.

The presented prototype implementation includes plugins for several ontology
vocabularies, data containers, and desktop applications for the Apple MacOS
and MS Windows operating systems. The prototype is able to process plain
RDF/XML data and HTML Web pages with an associated RDF description.
For the future we plan to add data that is encoded in RDFa format [1] as
possible data source. RDFa is the W3C working draft for integrating RDF into
XHMTL documents.

The prototype implementation of the Semantic Clipboard uses a different
communication paradigm than the one that is found in current operating system
clipboards. In an operating system clipboard the data source pushes the data
into the temporal storage of the clipboard. The application, the user wants to
paste the data to, pulls the data from this storage. The Semantic Clipboard,
however, pulls the data from a file or the network and pushes it to the target
application. We made this design decision not to establish this communication
paradigm, but to be able to provide a proof of concept implementation with
reasonable means. This way we did not have to modify the source applications
to push RDF data to the clipboard and the target application to pull data
from the clipboard. Regardless of the communication paradigm, the prototype
implementation demonstrates the idea of pasting semantically enriched data
between desktop applications. Nevertheless, a future version of the Semantic
Clipboard should use the standard communication paradigm and be integrated
in the operating system.

References

1. B. Adida and M. B. eds. RDFa Primer 1.0 - Embedding RDF in XHTML, 16 May
2006. http://www.w3.org/TR/xhtml-rdfa-primer/.

2. T. Berners-Lee. Semantic Clipboard, January 2004. http://www.w3.org/

DesignIssues/SemanticClipboard.
3. DBin Porject Homepage, Last visited October 2006. http://dbin.org.
4. S. Decker and M. Frank. The networked semantic desktop. In Workshop on

Application Design, Development and Implementation Issues in the Semantic Web
at the 13th International World Wide Web Conference, New York, USA, May 2004.
CEUR Workshop Proceedings. http://CEUR-WS.org/Vol-105/.

5. J. H. ed. OWL Web Ontology Language Use Cases and Requirements. W3C
Recommendation, 10 February 2004. http://www.w3.org/TR/webont-req/.

6. The fenfire project homepage, Last visited February 2005. http://fenfire.org/.
7. The friend of a friend (foaf) project homepage, Last visited February 2005. http:

//www.foaf-project.org/.
8. R. Iannella. Representing vCard objects in RDF/XML. W3C Note 22 February

2001, 2001. http://www.w3.org/TR/vcard-rdf.

13

9. iCalendar OWL ontology definition, April 7 2004. http://www.w3.org/2002/12/

cal/ical.
10. Jacob - java com bridge, Last visited August 2006. http://sourceforge.net/

projects/jacob-project/.
11. Jena - a semantic web framework for java, Last visited August 2006. http://jena.

sourceforge.net/.
12. Introducing json (javascript object notation), Last visited August 2006. http:

//www.json.org/.
13. G. Klyne and J. J. C. eds. Resource Description Framework (RDF): Concepts and

Abstract Syntax. W3C Recommendation, 10 February 2004. http://www.w3.org/
TR/2004/REC-rdf-schema-20040210/.

14. K. Moller and S. Decker. Harvesting Desktop Data for Semantic Blogging. In 1st
Workshop on the Semantic Desktop at the International Semantic Web Conference,
pages 79–91, Galway, Ireland, November 2006.

15. M. Morger. Semantic Clipboard. Master’s thesis, Department of Informatics,
University of Zurich, 2006.

16. R. Ozzie. Live clipboard technical introduction, Last visited August
2006. http://spaces.live.com/editorial/rayozzie/demo/liveclip/

liveclipsample/techPreview.html.
17. S. B. Palmer. RDF in HTML: Approaches, June 2002. http://infomesh.net/

2002/rdfinhtml/index.html.
18. D. Quan, D. Huynh, and D. Karger. Haystack: A Platform for Authoring End

User Semantic Web Applications. In International Semantic Web Conference,
pages 738–753, Florida, USA, October 2003.

19. W3C: RDF issue tracking: Issue faq-html-compliance: The suggested way of includ-
ing RDF meta data in HTML is not compliant with HTML 4.01 or XHTML, Jan-
uary 2004. http://www.w3.org/2000/03/rdf-tracking/#faq-html-compliance.

20. RFC 3870: Application/rdf+xml media type registration. IETF RFC, September
2004. http://www.ietf.org/rfc/rfc3870.txt.

21. L. Sauermann and S. Schwarz. Gnowsis Adapter Framework: Treating Structured
Data Sources as Virtual RDF Graphs. In International Semantic Web Conference,
pages 1016–1028, Galway, Ireland, November 2005.

22. World Wide Web Consortium (W3C) Semantic Web activity homepage. http:

//w3c.org/sw.
23. Web clipboard demo, Last visited August 2006. http://www.sparqlets.org/

clipboard/home.

