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Abstract. This paper presents a neural network architecture for segmentation of medical images. The 

network trains from manually labeled images and can be used to segment various organs and anatomical 
structures of interest. We propose an efficient reformulation of a 3D convolution into a series of 2D 
convolutions in different dimensions. A loss function that directly optimizes intersection-over-union metric 
popular in medical image segmentation field is proposed. 
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1 Introduction 
Medical image is a visual representation of the interior 
of a body; it reveals internal anatomical structures and 
thus can be used for clinical analysis, intervention 
planning etc. 

Volumetric medical images are obtained from 
various medical image acquisition technologies, such as 
computed tomography (CT), magnetic resonance 
tomography (MRT), etc. These images are represented 
by a stack of 2D image slices thus forming a 3D 
representation of a body [2]. 

Medical image segmentation is an automatic or 
semi-automatic process of splitting a medical image 
into regions, which may correspond to an organ, a 
tissue, a tumor, or any other anatomical structure of 
interest. 

Some of the applications of medical image 
segmentation are surgical planning, virtual simulation 
of surgeries, tumor detection and segmentation, brain 
development study, functional mapping, automated 
classification of blood cells, mass detection in 
mammograms, image registration, heart segmentation 
and analysis of cardiac images, border detection in 
angiograms of coronary, etc. 

Earliest medical image segmentation techniques 
were based on low-level processing of image data 
(comparing gray level values of voxels to one or 
multiple thresholds, edge detector filters, unsupervised 
clustering algorithms etc.). 

Later, supervised techniques, where training data 
(manually labeled examples) is used to train a model, 
became increasingly popular. Examples of such 
methods are maximum likelihood and expectation 
maximization methods, maximum a posteriori and 
Markov random field methods, deformable models 
(active contour models, level set models), atlas-based 
models, conditional random field, graph cut algorithms. 

Convolutional neural networks had their 
applications in image segmentation, but did not gather 
momentum until various new techniques and computing 
architectures were developed. In December 2012 CNNs 
won ImageNet challenge for the first time. AlexNet [5] 
architecture proposed by Krizhevsky et al. won the 
competition by large margin. In subsequent years, 
further progress has been made [6][7]. Convolutional 
neural networks have became technique of choice, 
showing state of the art results in computer vision. 

A supervised learning algorithms experience a 
dataset, consisting of examples, each of which contains 
features xi and a target yi. For example, popular Iris 
dataset contains measurements of various species of iris 
plants. A supervised learning algorithm can study the 
Iris dataset and learn to classify iris plants into three 
different species based on their measurements. In our 
task, xi can be a computed tomography medical image, 
while yi can be a segmentation of that image done by an 
experienced radiologist. 

An artificial neural network consists of many simple 
units called neurons. Neurons receive and send 
information via weighted connections. Each neuron 
calculates weighted sum of inputs and applies nonlinear 
activation function f to them: 

ℎ(𝑥𝑥;𝑤𝑤, 𝑏𝑏) = 𝑓𝑓 ��𝑥𝑥𝑖𝑖
𝑖𝑖

∗ 𝑤𝑤𝑖𝑖 + 𝑏𝑏�. 

Historically popular choices for activation functions 
were 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑡𝑡𝑡𝑡𝑡𝑡ℎ, where 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) =
1

1 + 𝑒𝑒−𝑥𝑥
. 

Recently, one of the most popular activation functions 
used in computer vision are rectified linear units 
(ReLU) defined as: 

𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥) = � 𝑥𝑥, 𝑠𝑠𝑓𝑓 𝑥𝑥 ≥ 0
0, 𝑠𝑠𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑠𝑠𝑠𝑠𝑒𝑒.

In a simple feed forward architecture, neurons are 
organized into groups called layers. Neurons in the first 
layer (called input layer) process information from the 
environment, while neurons in subsequent layers 
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process information from previous layers. Neurons in 
the last layer (called output layer) produce information 
of interest. Because of this multi-layered structure, 
neural networks show very complex behavior: 

𝑦𝑦 = ℎ(… ℎ(ℎ(𝑥𝑥;𝑤𝑤1, 𝑏𝑏1);𝑤𝑤2, 𝑏𝑏2) … ;𝑤𝑤𝑛𝑛 , 𝑏𝑏𝑛𝑛). 
The universal approximation theorem states that a 

feed-forward network with a single hidden layer 
containing a finite number of neurons, can approximate 
continuous functions. Thus, the theorem states that 
simple neural networks can represent a wide variety of 
interesting functions when given appropriate number of 
parameters [1]. 

Convolutional neural networks (CNNs) are type of 
artificial neural networks specialized for processing 
data that has grid-like topology. Examples of such data 
domains include 1D time-series data or 2D or 3D 
images. Given two-dimensional image I and kernel K, 
convolution operation can be defined as [1]: 

(𝐼𝐼 ∗ 𝐾𝐾)(𝑠𝑠, 𝑗𝑗) = �𝐼𝐼(𝑠𝑠 − 𝑠𝑠, 𝑗𝑗 − 𝑡𝑡) ∗ 𝐾𝐾(𝑠𝑠, 𝑗𝑗)
𝑚𝑚,𝑛𝑛

. 

Combining outputs of convolutions from earlier layers 
with new convolutions on later layers, a neural network 
can learn very complex features. Usually, first layers of 
convolutional neural network detect edges and angles, 
while later layers detect more complex features like 
eyes, hair, wheels, and even deeper layers detect human 
faces, cars etc. depending on the task at hand. 

If we need to transform data in the direction 
opposite to convolution, i.e., from something that has 
the shape of the output of some convolution to 
something that has the shape of its input while 
maintaining a connectivity pattern that is compatible 
with said convolution, we can use so called transposed 
convolutions or deconvolutions [14]. 

In classification task, the final layer of a neural 
network computes 𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 scores applying convolutions 
to the output of previous layer. The 𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 scores are not 
bounded, but we would like to model probability 
distribution from them. In order to convert them to 
probabilities, a softmax function is used: 

𝑠𝑠𝑠𝑠𝑓𝑓𝑡𝑡𝑠𝑠𝑡𝑡𝑥𝑥(𝑧𝑧) =
e−𝑧𝑧𝑖𝑖
∑ e−𝑧𝑧𝑖𝑖

. 

In order to train a neural network, we minimize a 
loss function 𝐿𝐿(𝑥𝑥,𝑦𝑦, 𝑦𝑦�;  𝜃𝜃) with respect to 𝜃𝜃, where 
𝜃𝜃 = {𝑤𝑤1,𝑤𝑤2 … , 𝑏𝑏1, 𝑏𝑏2 … }, x and y are elements of 
training set, and 𝑦𝑦� is a prediction of the network. The 
loss function used in this paper will be presented in 
section 2. 

The minimization of the loss function is achieved by 
calculating partial derivatives of the loss function with 
respect to parameters of the neural network, and then 
applying small changes to the parameters. The most 
basic optimization algorithm is stochastic gradient 
descent algorithm (SGD), which uses following update 
rule: 

𝜃𝜃𝑖𝑖 =  𝜃𝜃𝑖𝑖 +
𝜕𝜕𝐿𝐿(𝑥𝑥,𝑦𝑦,𝑦𝑦�;  𝜃𝜃𝑖𝑖)

𝜕𝜕𝜃𝜃𝑖𝑖
∗ 𝛼𝛼, 

where 𝛼𝛼 is a small constant called learning rate. 𝛼𝛼 is a 
hyper parameter of learning algorithm, usually good 
values for 𝛼𝛼 are between 0.01 – 10−6. 

As neural network may have many layers, gradients 
of the loss function are computed using 
backpropagation algorithm: first we computed gradients 
for last layer, and then we compute gradients of 
preceding layer using chain rule: 

𝜕𝜕𝐿𝐿
𝜕𝜕𝜃𝜃𝑖𝑖−1

=  
𝜕𝜕𝜃𝜃𝑖𝑖
𝜕𝜕𝜃𝜃𝑖𝑖−1

𝜕𝜕𝐿𝐿
𝜕𝜕𝜃𝜃𝑖𝑖

. 

If neural network has many layers gradient 
information may be lost during this process (this 
problem is called vanishing gradients problem). One 
solution to this problem is skip connections: we sum 
outputs of deeper layers with outputs of more shallow 
layers, e.g.: 

 ℎ1 = ℎ(𝑥𝑥;𝑤𝑤1, 𝑏𝑏1), 
ℎ2 = ℎ(ℎ1;𝑤𝑤2, 𝑏𝑏2), 

ℎ3 = ℎ(ℎ2;𝑤𝑤3, 𝑏𝑏3) +  ℎ1. 
One of the most useful (and most popular) metrics 

in medical image segmentation is intersection-over-
union metric (IoU). For volumes A and B, IoU is 
defined as: 

𝐼𝐼𝑠𝑠𝐼𝐼(𝐴𝐴,𝐵𝐵) =
|𝐴𝐴 ∩ 𝐵𝐵|
|𝐴𝐴 ∪ 𝐵𝐵|. 

CNNs can directly classify each pixel of an image 
individually, given that we present to it a patch of image 
around pixel of interest. However, a drawback of this 
naïve sliding window approach is that input patches of 
neighboring pixels have a huge overlap, and thus some 
convolutions would be computed many times [2]. 

A significant speedup can be achieved if we present 
many pixels to a CNN simultaneously. One of the first 
implementations of this idea, that were successful in 
medical image segmentation, were Fully Convolutional 
Neural Networks (fCNN) [3]. fCNNs added upsampling 
layers to popular classification neural network 
architectures, such as AlexNet [6], VGG16 [7], and 
GoogLeNet [8]. This solution allowed CNN to produce 
a likelihood map for an entire image rather than a single 
pixel. The resulting neural network can be applied to an 
entire input volume in an efficient fashion [3]. 

The next iteration of fCNN idea is U-Net 
architecture, where a typical convolutional network 
architecture (contracting path) is followed by an 
upsampling layers (expanding path) where the size of 
an image is increased with upconvolutions. The 
resulting network forms a U-shape giving the name of 
the architecture. Another major improvement are skip-
connections which directly connect contracting and 
expanding layers. The architecture showed very good 
performance on a different biomedical segmentation 
applications. Thanks to use of data augmentation with 
elastic deformations, it only needs a very few annotated 
images and has a very reasonable training time [4]. 

The 3D U-Net architecture developed ideas of U-
Net further to construct a network for volumetric image 
segmentation that learns from sparsely annotated 
volumetric images. The implementation replaced all 2D 
convolutions of U-Net by 3D convolutions. The authors 
showed a successful application of the proposed method 
on difficult data set of the Xenopus kidney [5]. 
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2 Method 

2.1 Architecture of the neural network 

We used convolution-deconvolution network based on 
U-Net architecture. The input is processed by blocks of 
convolutional operations. The data is downscaled with 
maxpool operations and fed to a next convolutional 
block in which we would increase number of channels 
twice to alleviate for loss of resolution. We upscale 
images with upconvolutions and concatenate data with  
signals from inner blocks before processing with 
another convolutional block. Thus, the neural networks 
forms U-shape with skip connections. Figure 1 
summarizes the overall architecture of the neural 
network. 

 

Figure 1 Architecture of proposed neural network 

The skip connections were introduced as it is known 
that they reduce gradient vanishing problem. 

A convolutional block (see Figure 2) consists of 
four 2D convolutions along different axis. This was 
done to optimize processing time, as even single 3x3x3 
convolution has 27 parameters, while 4 3x3 
convolutions have only 36 parameters. Each 
convolution is followed by ReLU nonlinearity and a 
dropout. 

 
Figure 2 A convolutional block. 

An upconvolution layer has 1x1 kernel which 
upscales the data, after which we concatenate upscaled 
data with output of convoltuion block with same size. 

 

2.1 Loss function 

Our experiments showed that more popular softmax 
cross-entropy function is harder to tune, as it optimizes 
a metric (accuracy) that we’re not interested in and 

needs tuning of weights of examples. In our setting, IoU 
metric is much more informative. We extend loss 
function presented in [13] to multiclass setting. The loss 
function optimizes IoU metric directly: 

𝐿𝐿(𝑥𝑥, 𝑦𝑦,𝑦𝑦�;  𝜃𝜃) =
∑𝑦𝑦1: ∗ 𝑦𝑦1:�

∑𝑦𝑦1: + ∑𝑦𝑦1:� −∑𝑦𝑦1: ∗ 𝑦𝑦1:�
, 

where y is one-hot encoding of voxel’s label, 𝑦𝑦� is label 
probabilities outputted by the network (with softmax 
function). 𝑦𝑦1: denotes 𝑦𝑦 without the first element.  
 

2.2 Implementation details 

The proposed method was implemented using 
TensorFlow library in Python 3 language [4].  

A machine with Intel Core i7 6700K CPU, 32 Gb 
RAM, and NVidia GeForce GTX 1070 GPU was used 
to train a neural network and perform all experiments. 

One of the problems we faced was limited memory 
of the video card. During training, we were not able to 
process a full image thus we had to split an image into 
blocks. This could potentially decrease accuracy for 
voxels close to the edges of the split because they 
would have less information about their neighbors. Our 
experiments showed that this is not a significant 
problem. To segment an image with trained model, we 
used TensorFlow’s ability to apply convolutions to 
inputs of variable size to speed up segmentation. 
However, the architecture of our network forced us to 
use images with dimensions  23 ∗ 𝑡𝑡, as otherwise 
dimensions of upscaled images would not match 
original images. 

The neural network showed strong signs of 
overfitting. We tested various regularization methods 
and obtained best results by using dropout right before 
output layer, as well as l2 regularization of 
convolutional filters’ weights. 

 

2.1 Hyperparameters 

We performed an extensive search for optimal 
hyperparameters. Our program would select previous 
best hyperparameters, randomly generate new ones in 
interval [0.1*pbest, 10*pbest], perform 5000 training steps, 
and select the network which showed higher IoU score 
on validation set. We summarized final 
hyperparameters that were used in Table 1. 

 
Table 1 Best hyperparameters 

Hyperparameter Value 
dropout keep probability 0.85 
l2 regularization weight 3.0 ∗ 10−4 
learning rate 7.6 ∗ 10−5 
beta1 0.9 
beta2 0.999 
gradient clip 1.0 
channels in first conv layer 30 
 

We used Adam stochastic optimization method. Our 
experiments showed that using batch normalization is 
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not beneficial in our case and leads to numerical 
instabilities [5]. 

In order to minimize numerical problems gradients 
were clipped to be less than or equal to 1.0. 

3 Experiments 
In order to confirm ability of the neural network to 
produce segmentation, we conducted an experiment to 
segment heart’s left ventricle using the Cardiac Atlas 
Project dataset [9]. It consists of 83 volumetric MR 
images of heart and a mask which highlights region of 
interest. Figures 4 and 5 show an example of a slice of 
an image from such dataset, as well a mask for that slice 
which highlights region of interest. Each image consists 
of 10-15 slices of various sizes, with 192x192 and 
256x256 being the most frequent ones. 
 

  

Figure 4 An example of image from the dataset. 

Images in dataset were split to training set, 
validation set and test set. Validation set was used to 
tune the parameters of the neural network. 

Figure 6 shows segmentation that was obtained 
using our convolutional neural network. Our model 
showed quality segmentation with IoU = 0.63. 

 
4 Conclusions 
Our experiment showed that convolutional neural 
network is capable of segmenting visually 
distinguishable anatomical structures on medical 
images. We plan to extend presented model to more 
medical image segmentation datasets. 

 
Support. This research was supported by the Russian 
Foundation for Basic Research (grant 16-07-01028). 

 

Figure 5 Segmentation of a ventricle from Fig. 3 by 
experienced radiologist.  

 
 

 

Figure 6  Segmentation of a ventricle from Fig. 3 by 
our convolutional neural network. 
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