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Abstract. During past several year huge sets of fMRI data were obtained within Human Connectome 

Project. Despite this, technologies for scalable analysis of large amounts of data are rarely used to analyze 

whole data set. Authors conducted virtual experiment on a large sample of data taken from the HCP to find 

the gender differences in functional connectivity. A review of methods for search for the functional 

connectivity is fulfilled. Further analysis of distributed use and scalability on large datasets of rfMRI data is 

provided with the discussion of existing libraries and suggestions of how to integrate them with a distributed 

system. As a result, the distributed architecture of the software based on the Apache Spark framework is 

developed. Being fairly complex, it includes ontology, conceptual schema and workflow. The results of this 

experiment may be of interest to neurophysiologists for further analysis. 
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1 Introduction 

Today in many branches of science it is necessary to 

solve problems associated with increasing scale of data 

[1–3]. This led to the development of specialized tools, 

which primarily focus on structured data, but are 
increasingly being adapted for more general forms [4, 5]. 

Yet this tools and software are not widely used in data 

intensive research and methodology to correctly apply 

them has still to be developed. Different use-cases from 

multidisciplinary fields can greatly impact the evolution 

of this methodology and tools. 

One of the most prominent examples of data 

intensive domains is the field of neurophysiology, where 

the amount of data has reached petabyte scale. 

Neurophysiology allows to visualize the structure, 

functions and biochemical characteristics of the brain. In 

particular, approaches to find the functional connections 

of the brain departments are being explored [6]. One way 

to do that is to measure the functional connectivity 

between brain regions as the level of co-activation of 

spontaneous functional time series of resting-state fMRI 

[7–9]. 

During past several years, major projects such as the 

Human Connectome Project (HCP) and the 1000 

connectome have started with more than a thousand 

people participating. Datasets are open to the scientific 

community. Such large-scale data warehouses could 

serve as the beginning for the use of technologies for 

analyzing large amounts of data in the neuroimaging of 

the human brain, yet there are some limitations. One of 

the reasons why the community of neurobiologists do not 

use tools to work with large amounts of data is that 

standard file formats, such as NIFTI[10], are binary and 

possess additional costs to deliver to distributed file 

systems. Another problem is that many distributed 

systems do not effectively perform iterative algorithms, 
such as principal component analysis (PCA) and the 

independent component analysis (ICA), which are 

actively used in the field of neuroimaging. 

One of significant are of research in neurophysiology 

is the study of gender difference in functional 

connectivity [11]. For example, there is a study of army 
veterans that experience physical and psychiatric 

complications, including craniocerebral trauma, post-

traumatic stress and depression. The integration of a 

large number of women into military operations attracted 

attention to the potential sexual differences in the 

frequency and recovery from craniocerebral trauma, as 

well as from other concomitant disorders. Understanding 

the role of gender-related effects can provide information 

on the needs for evaluating treatment for women, which 

can demonstrate both similarities and differences from 

men.  

This article aims at developing approach for a 

distributed analysis of data intensive neurophysiology 

domain. The article is structured as follows. Section 2 

surveys existing distributed methods ant tools to process 

and analyze neurophysiological datasets. Section 3 
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presents domain ontology that was created to better 

interact with domain experts. Section 4 describes 

distributed programming implementation on the existing 

computational infrastructure, as well as output results. 

Section 5 concludes the article. 

2 Data analysis methods 

2.1 Data processing 

Resting-state fMRI dataset from the HCP project is 

used. The HCP consortium has developed an information 

platform for storing raw and processed data, systematic 

processing and analysis of data, obtaining and 

researching data. One of the main components of the 

project is ConnectomeDB. ConnectomeDB provides 
database services for the storage and dissemination of 

datasets that are open to the scientific community. The 

data is already preprocessed. Preprocessing consists of 

removing spatial artifacts, distortion, surface formation 

and alignment to a single standard space. 

Data processing is divided into two parts: data 

cleaning inside the brain (FMRIVolume) and on the 

brain surface (FMRISurface) [3]. 

At the FMRIVolume stage, spatial distortion 

removal, volume redistribution due to subject movement 

during the session, normalization of 4D images to the 
standard value and creation of the final brain mask are 

done. 

The main purpose of FMRISurface is to display time 

series in the standard CIFTI space. This is achieved by 

comparing the voxels in the cortical region of the gray 

matter to the native surface of the cortex and 
transforming each subcortical region for each individual 

to a standard set of voxels for each data set. 

After processing the data, resting-state fMRI time 

series are stored in a special format – NIFTI. As a result, 

the data obtained with the resting-state fMRI yields more 
than 10 TB obtained for more than 1000 people. During 

the experiment, each patient was placed in a dark room 

and asked to relax, but not to fall asleep. The experiment 

was conducted in 4 sessions for 15 minutes. Two 

sessions of the fMRI device took pictures from the left 

side of the brain to the right side of the brain, and the 

other two sessions from the right side of the brain to the 

left. 

2.2 Data analysis methods 

The data of each subject is represented as a matrix 

(see Fig. 1), where each row represents a set of 

voxels of the brain at a particular time, and each column 

is a time series for the corresponding voxel [12]. It is 

assumed that the data has already been pre-processed to 

remove artifacts and scaled to a standard space 

(coordinate system) so that the voxels are anatomically 

compatible for all subjects. It is also assumed that the 

time series of each voxel is shifted by its mean (and, 

possibly, normalized to the variance) [13]. 

If the data set consists of one object, in order to 

reduce the dimensionality of the data, the PCA is applied: 

where  is the number of main components (usually 

much smaller than ),  is the set of temporal 

eigenvectors,  is the set of spatial eigenvectors, and the 
corresponding eigenvalues on the main diagonal of the 

matrix  (  largest eigenvalues). Then, ICA is applied 

to the matrix , estimating a new set of spatial 

components that are linear combinations of the vectors 

of the matrix  and are maximally independent of each 

other. If the data set consists of several subjects, then 

initially all the data is combined into one large set 

consisting of s subjects, and then PCA and ICA are 

applied. The resulting approximation will be the same as 

above, but now with dimensions  (see Fig. 2). 

With large data sets, or with a large number of 

subjects, it becomes unreasonable to form a complete set 

of data, and then apply PCA and ICA due to memory and 

time limitations. To solve this problem, several 

algorithms were invented. 

In 2001, it was suggested to approximate the 

concatenation of all data sets by first reducing each set of 

data to m main spatial vectors using PCA and then 

concatenating them and applying the final PCA to reduce 

Figure 1 Transformation of 4-D array into 2-D array 

Figure 2 PCA for concatenated data 

Figure 3 Parallel execution of PCA 
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the final dataset to n components and then apply ICA 

[14]. Although using a small value of  limits the 

memory requirements for these operations, the data size 

is scaled linearly with the number of objects, which can 

eventually become impractically large. In addition, an 

important piece of information can be lost if  is not 

relatively large (usually it should not be large). 

Information can be difficult to assess at the level of an 

individual subject, but it can be important at the group 

level (see Fig. 3). 

To overcome these limitations, the MELODIC's 

Incremental Group-PCA (MIGP) algorithm was 

proposed[15]. MIGP is an incremental approach, the 

goal of which is to provide a very close approximation to 

the complete concatenation of the data set followed by 

the PCA, but without large memory requirements. High 

accuracy is achieved due to the fact that individual sets 

of subjects’ data do not decrease to a small number of 

components of PCA. The incremental approach 

preserves the inner space of PCA from  weighted 

spatial eigenvectors, where  is usually larger than the 
number of time points in each individual data set. By 

“weighted” is meant that the eigenvalues are included in 

the matrix of spatial eigenvectors. The final set of m 

components representing the temporarily concatenated 

output of the PCA can then be reduced to the required 

dimension n simply by storing the upper n components 

and, if necessary, discarding the weighting coefficients 

(eigenvalues). 

Usually, 2–3 sets of data are first concatenated. This 

data set is then fed into an m-dimensional PCA and 

following matrix is obtained: . 

Each vector is multiplied by its own value. The 
eigenvalues characterize the importance of the 

component here, so statistical information is not lost. 

becomes the current evaluation of the group set and can 
be considered as a matrix of pseudo-series consisting of 

m time points and v voxels. For each data set of each 

subject, we gradually update  by combining  with 

each data set  and applying the ICA to get the updated 

, saving only m main components. Thus, the variance 

of each batch of data is preserved (see Fig. 4). 

Figure 4 MELODIC Incremental Group PCA 

MIGP does not increase the memory requirement 

with an increase in the number of subjects, large matrices 

are never formed, and the computation time varies 
linearly with the number of objects. This is easily 

parallelized by applying the approach in parallel to 

subsets of entities, and then combining them using the 

same approach of “concatenation and reduction” 

described above. 

2.3 Libraries 

Nibabel [16] is a library that provides an API for 

reading and writing some common file formats for 

neuroimaging. These formats include: ANALYZE 

(plain, SPM99, SPM2 and higher), GIFTI, NIfTI1, 

NIfTI2, MINC1, MINC2, MGH and ECAT, as well as 

Philips PAR/REC. Different image format classes 

provide full or selective access to header information 
(meta), and access to image data is made available 

through the arrays of the numpy library. 

Objects of the image of nibabel consist of three 

elements: 

1. The n-dimensional array containing the image

2. Matrix of affine transformations of size 4x4,

which correlates the image coordinates with the

standard world coordinate space.

3. Image metadata, stored in the header.

When an image is loaded, an object of type 

Nifti1mage is created. The file name can have an 

extension of both .nii and .nii.gz. 

It is worth noting that when the load function is called 

directly, image data is not loaded into memory, since 

images can be stored as a numpy array or stored on a 

disk. To load data from a disk, you need to call the 

get_data() function of an object of type Nifti1Image. 

This function returns an n-dimensional numpy array. 

In addition, an object of type Nifti1Image is created 

from numpy arrays. To do this, one should pass an n-

dimensional data array and an affine transformation 

matrix to the Nifti1Image constructor must. 

Nitime[17] is a library for the analysis of time series 

in the field of neuroimaging. Nitime can be used to 

represent, process and analyze time series data from 

experimental data. The main purpose of the library is to 

serve as a platform for analyzing data collected in 

neurophysical experiments. The basic principle of nitime 

implementation is the division of time series 

representation and time series analysis. 

An important feature of the nitime library is lazy 

initialization. Most attributes of both time series and 

analysis objects are used only when necessary. That is, 

the initialization of a time series object or an analysis 
object does not cause any intensive calculations. In 

addition, after the calculation starts, the object is saved 

and ensures that access to the results of the analysis will 

cause the calculation to be performed only when the 

analysis is performed for the first time. After that, the 

result of the analysis is saved for further use. 

One of the algorithms of the nitime library is the 

correlation analysis of brain regions. It calculates the 

correlation between one time series that represents a 

given area of the brain, with other areas that are also 

represented by a time series. To calculate the correlation 

between regions in the nitime library, there is a 

SeedCoherencAnalyzer function that takes two time 

series inputs and returns a correlation matrix that can be 

used for further analysis. 

Nilearn [18] is a Python module for statistical 
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processing of neuroimaging data. 

It uses scikit-learn module for multidimensional 
statistics with applications in intelligent modeling, 

classification, decoding, and connectivity analysis. 

Nilearn can work NiftiImage objects from the nibabel 

library. 

Nilearn library has great functionality for working 

with nii-images. It allows visualizing, decoding, 
exploring the functional connectivity, and performing 

various manipulations, such as smoothing, marking and 

advanced statistical analysis. 

Nilearn provide CanICA method that is the ICA 

method for analyzing fMRI data at the group level. 

Compared to other strategies, it brings a well-controlled 
group model, as well as a threshold algorithm that 

controls specificity and sensitivity with an explicit signal 

model. 

In order to get a time series and build a correlation 

matrix for it, nilearn provides the NiftiMapsMasker 

object. To create an object, one needs to specify an atlas 
of the brain regions.Nilearn provides the ability to create 

a correlation matrix for independent components that 

iscomputed by CanICA. 

3 Ontology 

The study of neuroimaging with large amounts of 

data represents the intersection of different areas of 
science. In order to use the same terms and concepts, 

simple ontology was developed that describes the main 

entities used in this work and a conceptual schema that 

defines the types of data, constraints on these data types 

and the means of interaction between them. Ontology is 

a formal specification of shared conceptualization [19]. 

The ontological specification of the subject area of 

neuroimaging consists of the following components (see 

Fig. 5): 

• Neuro-image – a 3-dimensional or 4-dimensional
image (a series of 3-dimensional images), reflecting

the distribution of metabolic activity in different

regions of the brain in different time intervals [20].

• The area of the brain is a set of voxels, sorted by a

certain feature. Most often presented in the form of 

time series [20]. 

• Voxel is an element of a three-dimensional image

containing some value.

• Independent models - a model for investigating

thefunctional connectivity of the entire brain. They

are designed to search for general patterns of

functional connectivity between brain
regions.Dependent models are a model for analyzing

the correlation of a given region of the brain.

• Brain connectivity – the structure of anatomical

connections, statistical dependencies or cause-effect

interactions between individual units within the

brain's nervous system [21].

• Structural connectivity refers to a network of

physical or structural links linking sets of neurons or

neural elements to structural biophysical features

[22].

• Functional connectivity is a statistical type of
connection between anatomically unconnected areas

of the brain that have common functional properties

[7].

• Effective connectivity – the combination of

structural and functional connectivity. It describes

the networks of directions of one neural element

over another.

• The resting-state fMRI is a neural image obtained as

a result of an experiment when the subject was at rest

and did not engage in active tasks.

• The task fMRI is the neuro-images obtained as a
result of the experiment, when the subject performed

active actions, e. g., listened to music.

4 Implementation 

4.1 Laboratory cluster specifications 

Virtual experiment was executed on the laboratory 

cluster (see Fig. 6). It consists of 2 master nodes and 6 

slave nodes. Each master node has 32Gb of RAM, 24 
threads and 2 Tb of disk space in RAID1. Slave nodes 

have 64Gb of RAM, 24 threads and 4 Tb of disk space 

attaches as JBOD. All the machines are connected to 

10Gbs switch. 

On the cluster, the Hortonworks Data Platform 

(HDP) distribution package is installed. This distribution 

Figure 6 Cluster Architecture 

Figure 5 Main concepts of the domain ontology 
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represents a set of tools from the Hadoop infrastructure 

running Apache Ambari. 

A distributed file system (HDFS) (Hadoop 

Distributed File System) is installed file system. HDFS 

consists of a NameNode server and DataNode servers. 

The NameNode server manages the namespace of the file 

system and manages the clients' access to the data. The 

main NameNode server is installed on the m1node and 

records all transactions associated with changing the file 

system metadata to a special file called EditLog. When rt 

the main NameNode server is started, it reads the HDFS 

image and applies all the changes to it. This is done once 

at startup. A similar operation is performed by the 

Secondary NameNode, which is installed on the m2 
machine. On machines s1-s4 DataNode servers are 

installed, which are responsible for storing the data itself 

and keeping its integrity. 

For the sharing, scalability and reliability of the 

Hadoop cluster, a resource manager YARN [5] is used. 

YARN offers a hierarchical approach to the cluster 
infrastructure. The root of the YARN hierarchy is the 

ResourceManager. This daemon manages the entire 

cluster and assigns applications to the underlying 

computing resources. It allocates resources (computing 

resources, memory, and bandwidth) for the basic 

NodeManager. ResourceManager interacts with 

ApplicationMaster when allocating resources and with 

NodeManager when starting and monitoring basic 

applications. ResoureManager is located on m2, and 

NodeManager on nodes s1–s4. 

Another important module for the Hadoop cluster is 

the Zookeper. ZooKeeper is a server that coordinates 

distributed processing. It provides a distributed 

configuration service, a synchronization service, and a 

registry of names for distributed systems. Distributed 

applications use ZooKeeper to store and notify updates 

of important configuration information. The Zookeper 

server is running on the m1 node. 

Since most of the calculations are iterative 

algorithms, Apache Spark was chosen as the 

computational backbone. Apache Spark provides a fast 

and versatile platform for data processing. In comparison 
with Hadoop, Spark accelerates the work of programs by 

minimizing disk input-output operations. 

In Spark, the concept of RDD (stable distributed data 

set) is introduced – an unchangeable fault-tolerant 

distributed collection of objects that can be processed in 

parallel. RDD can contain objects of any type. RDD is 
created by loading an external data set or distributing a 

collection from the main program (driver program). In 

RDD, two types of operations are supported: 

• Transformations are operations (for example,

mapping, filtering, merging, etc.) performed over

RDD. The result of the transformation is a new

RDD containing its result.

• Actions are operations (eg, reduction, count, etc.)

that return a value that results from some

calculations in RDD.

The cluster has Spark History Server installed on m1, 
Spark Thrift Server on m2, Livy Server on m2 and Spark 

Clients on all nodes. 

For more convenient programming on a cluster, we 

use Apache Zeppelin – a web-based notebook that allows 

to conduct interactive data analytics. It supports many 

interpreters, including the Spark interpreter and the 

Python interpreter. 

Scalability. As of algorithm used, each slave 

machine handles several independent fMRI images, so 

scalability increases almost linearly with using more 

slave nodes. It is bounded by the network speed when 

transmitting initial image data into slave memory, 
however the transmission time is several seconds and is 

negligible compared to processing time. 

4.2 Workflow 

Workflow is depicted on Fig. 7. The program reads all 

files from the directory, checks the validity of the format 

(all data are compressed zip folders). After that, the 

subject number is extracted from the file name and its 

gender is checked using an additional metadata file. 

When the gender is known, the file is unzipped to the 

corresponding folder. Inside the unzipped folder is a 4-D 

image in the .nii.gz format. Using the nibabel library, the 
image is loaded into memory as an array of type 

numpy.array. From this array, a new array is created with 

information about the spatial coordinates before the 

value of the voxel. The new array is compressed by the 

gzip algorithm and stored in HDFS. 

Due to Apache Spark limitations files larger than 2.5 
GB in binary format can not be loaded. In the 

uncompressed form, the sizeis 4.3 GB, so file needs to be 

compression. After compression, the file occupies just 

700 MB.  

Spark task is started with the following parameters: 
• num-executor=4 – number of executable entities;

• executor-memory=25 GB – the amount of memory

used for one execution process;

• executor-cores=2 – the number of cores used for

each executive entity.

• driver-memory=8 GB – the amount of memory used

for the driver process, that is, where SparkContext

is initialized.

Figure 7 Workflow 
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YARN creates on each node a container that receives 

information from the driver. All calculations occur in two 

streams. When metadata is received, a file with a 

compressed binary array is loaded into memory. The 

program decompresses it and converts it to a normal 

array without information about the indexes. Then, using 

the resulting array and affinity transformation matrix, 

Nifti1Image and the CanICA object are created with the 
following parameters: n_components=20; 

Smoothing_fwhm=6; N_init=10; Threshold=3; 

Verbose=10. 

The CanICA object is passed to the Nifti1Image 

object and an image consisting of 20 components is 

output. This image is returned to the m1 driver. Thus, 
each node receives a portion of the paths to the 

compressed images, processes them, and returns the 

result to the driver. The task is executed until all the files 

specified for analysis on the m1 driver are processed. 

When the nodes complete the tasks, the driver comes 

with a list of Nibabel1Image objects that contain 

independent components. The data for all objects is 

averaged and a time series is created using the 

NiftiLabelsMasker object. 

A map of regions of the brain is transferred to the 

constructor of the NiftiLabelsMasker object. Using the 
ConnectivityMeasure object, which is created with the 

correlation parameter, the correlation matrix for the brain 

regions is considered.The correlation matrix for men and 

women is calculated separately. After this, the Fisher 

transform (z-transform) is applied to each matrix. 

After a new sample is calculated, which is obtained 
as the difference between the male z_m obtained and the 

female sample z_w. This sample will have a normal 

distribution with a mathematical expectation of 0 and a 

variance of 2/(n-3). For this sample, calculates a critical 

area with a significance level of 0.05 and c is corrected 

for multiple testing of the Benjamin–Hochberg 

hypotheses. As a result, a binary matrix is obtained that 

shows the deviation or acceptance of hypotheses for each 

area of the brain. 

4.3 Results 

In total 50 male and 50 female subjects are used. All 

data is resting-state fMRI images. 

Fig. 8 depicts a binary matrix of gender differences 

in the functional connectivity of healthy middle-aged 
people. Red spots mark areas that correlate both in men 

and women, and blue dots indicate a lack of correlation. 

For example, this experiment shows that the upper front 

(Superior Frontal Gyrus) of the brain has a significant 

correlation with the insular cortex (Insular Cortex), but 

does not have a significant correlation with the front part 

(Frontal Pole) of the brain. 

The independent components of averaged male 

subject show a greater functional connectivity compared 

to women. It can be seen that the main activity of the 

brain of men and women occurs near its cortex.  

5 Conclusion 

This paper presents distributed methods and means 

for searching gender differences in functional 

connectivity of resting-state fMRI were explored. 

Several methods for the search for functional 

connectivity of functionally magnetic resonance 

tomography of human rest are considered. To work with 

large amounts of data, machine learning methods were 

used to identify repetitive patterns and to intelligently 

reduce data. Their possibilities of parallel and distributed 

use and scaling are investigated with large amounts of 

input data. For the sake of better communication with 
domain experts the domain ontology was specified with 

main entities that describe this area and the necessary 

links between them. 

The review of existing means of preparation and 

preprocessing of data on local and distributed systems is 

carried out. At the moment there are few libraries for 

working with the NIFTI format on a distributed system, 

so the input and output procedures for data were 

Figure 8 Binary matrix of functional connectivity 

difference 

Figure 9 Averaged independent components for men 

(upper) and women (lower) 
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implemented in this work. To preprocess the data, we 

used method compositions from the nibabel and nilearn 

libraries.To solve the problem, an overview of existing 

distributed systems was made, among which the Apache 

Spark framework was most effective. For the 

experiment, a cluster of 6 machines was taken, where the 

two machines were the main nodes, and 4 the workers. 

On the cluster, the minimum set of programs required for 
the experiment, such as YARN, HDFS, ZooKeeper, 

Spark and Zeppelin notebook was installed and 

configured. 

A virtual experiment was performed in a distributed 

system. The time of this experiment was 4 hours for 400 

GB of data. As a result of the experiment, matrices of 

connectivity between the brain regions of men and 

women were obtained, as well as a binary matrix of 

gender differences in functional connectivity. 
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