
Standardization of Storage and Retrieval of Semi-structured 

Thermophysical Data in JSON-documents Associated 

with the Ontology 

© A.O. Erkimbaev    © V.Yu. Zitserman    © G.A. Kobzev    © A.V. Kosinov 

Joint Institute for High Temperatures, Russian Academy of Sciences, 

Moscow, Russia 

adilbek@ihed.ras.ru  vz1941@mail.ru  gkbz@mail.ru  kosinov@gmail.com 

Abstract. A new technology for data management of a complex and irregular structure is proposed. 

Such a data structure is typical for the representation of the thermophysical properties of substances. This 

technology based on storage of data in JSON files is associated with ontologies for the semantic integration 

of heterogeneous sources. Advantages of JSON-format – the ability to store data and metadata within a text 
document, accessible perceptions of a person and a computer and support for the hierarchical structures 

needed to represent semi-structured data. Availability of a multitude of heterogeneous data from a variety of 

sources justifies the use of the Apache Spark toolkit. When searching, it is supposed to combine SPARQL 

and SQL queries. The first one (addressed to the ontology repository) provides the user with the ability to 

view and search for adequate and related concepts. The second, accessed by JSON documents, retrieves the 

required data from the body of the document. The technology allows to overcome a variety of schemes, types 

and formats of data from different sources and implement a permanent adjustment of the created infrastructure 

to emerging objects and concepts not provided for at the stage of creation. 

Keywords: thermophysical properties, semi-structured data, JSON-format, ontology. 

1 Introduction 

The constantly increasing volume and complexity of 

the data structure on the substances and materials 

properties imposes stringent requirements for the 

information environment that integrates diverse 

resources belonging to different organizations and states. 

In contrast to the earth science or medicine, here the 

source of data is the growing publication flow. In so 
doing the volume of data is determined not so much by 

the number of objects studied, as by the unlimited variety 

of conditions for synthesis, measurement, morphological 

and microstructural features, and so on. It can be said that 

of the three defining dimensions of Big Data (the so-

called “3V-Volume, Velocity, Variety” [3]), it is the 

latter plays a decisive role, that is, an infinite variety of 

data types. 

In this paper, we propose a set of solutions borrowed 

from Big Data technology, allowing to overcome with 

minimum expenses two main difficulties in the way of 

integration of resources. The first one is the variety of 

accepted schemes, terminologies, types and formats of 

data and so on, and the second is the need for permanent 

adaptation of the created structure to the emerging 

variations in the nomenclature of terms (objects, concepts 

etc) not provided at the design stage. The need for 

variation in the data structure can be associated with the 
expansion of the range of substances (e.g. by including 

nanomaterials), the range of properties (e.g. by including 

state diagrams), or by changing the data type, say with 

the transition from constants to functions.  

The solutions proposed in the work are based on the 

joint use of previously used technologies:  

• Data interchange standard in the form of text-based

structured documents, each of which is treated as an

atomic storage unit;

• Ontology-based data management;

• General framework Apache Spark for large-scale

data processing.

The three main elements of the planned data 

infrastructure (Figure 1): a plethora of primary data 

sources of different structures (databases, file archives, 
etc.) subject to conversion to the standard JSON format; 

ontologies and controlled dictionaries for the semantic 

integration of disparate data; Big Data technology for 

storing, searching and analyzing data.  

2 Data preparation 

2.1 General scenario 

The general scheme of data preparation (Figure 2) 
assumes as an initial material a large body of external 

resources, thematically related, but arbitrary in terms of 

volume, structure and location. Among them are sources 

of structured data which include factual SQL databases 

(DB), document-oriented DB, originally structured files 

in ThermoML [7] or MatML [9] standards, numerical 

tables in CSV or XLS formats and so on. The second 

group (possibly dominant in terms of volume) is formed 

by unstructured data: text, images, raw experimental or 

modeling data etc. 

Proceedings of the XIX International Conference 

“Data Analytics and Management in Data Intensive 

Domains” (DAMDID/RCDL’2017), Moscow, Russia, 

October 10–13, 2017 

219

mailto:adilbek@ihed.ras.ru
mailto:vz1941@mail.ru
mailto:gkbz@mail.ru
mailto:kosinov@gmail.com


Figure 1 Key elements of the data infrastructure 

concept 

The first stage of data preparation is the downloading 

of records from external sources with their subsequent 
conversion to the standard form of JSON documents [2]. 

In so doing, the conversion of structured documents can 

be entrusted to software whereas the unstructured part is 

subject to “manual” processing with the extraction of 

relevant information from the texts. Finally, the control 

element in this scheme is the repository of subject 

specific (domain) and auxiliary ontologies. 

The distinctive characteristic of the proposed 

approach is that the starting data sources remain 

“isolated” and unchanged. Resource owners periodically 

download data to JSON files by templates linked with 
ontological models. 

In so doing they determine themselves the 

composition, amount and relevance for the “external” 

world of the data being download. This type of 

interaction is passive, in contrast to active, when client 

can use the JDBC or ODBC interface to access 

databases. 

2.2 JSON-documents 

The basic unit of storage is a structured text document 

recorded in JSON format, one of the most convenient for 

data and metadata interchange propose [2]. The 

advantage of JSON-document – text-based language-

independent format, is easy to understand and quickly 

mastered, a convenient form of storing and exchanging 

arbitrary structured information. Previously, structured 

text based on the XML format was proposed as a means 

of storing and exchange thermophysical data in the 
ThermoML project [7] and data on the properties of 

structural materials in the MatML project [9]. 

Here, a text document is proposed as the main storage 

unit, written in JSON format, which is less overloaded 

with details, simplifying the presentation of the data 
structure, reducing their size and processing time. In 

particular, the JSON format is shorter, faster read and 

written, can be parsed by a standard JavaScript function, 

rather than a special parser, as in the case of the XML 

format [https://www.w3schools.com/js/js_json_xml. 

asp]. 

Among other advantages of the format, one can note 

a simple syntax, compatibility with almost all 

programming languages, as well as the ability to record 

hierarchical, that is, unlimited nested structures such as 

“key-value”. By way of value may be accepted object 

(unordered set of key-value pairs), array (ordered set of 

values), string, number (integer, float), literal (true, false, 

null). It is also important that the JSON format is a 

working object for some platforms, in particular for 

Apache Spark, allowing for the exchange, storage and 

queries for distributed data. 

 Figure 2 Schematic sketch of initial data processing 

220



The rich possibilities of JSON-format as a means of 

materials properties data interchange attracted the 

attention of developers of the Citrination platform [10]. 

They proposed JSON-based hierarchical scheme PIF 

(physical information file), detailing the object, System, 

whose fields include three data groups, explaining what 

an object is (name, ID), how it was created/synthesized 

the generality of the created scheme should be sufficient 

for storing objects of arbitrary complexity, “from parts in 

a car down to a single monomer in a polymer matrix”. 
Flexibility of the PIF-scheme is achieved due to 

additional fields and objects, as well as the introduction 

of the concept of category. This concept is nothing but a 

version of the scheme, oriented to a certain kind of 

objects, say substances with a given chemical identity. 

2.3 Ontology-based data management 

The second stage of data preparation is the linking of 

extracted metadata with concepts from ontologies and 

dictionaries assembled into a single repository. The 

management of the repository is entrusted to an 

ontology-based data manager, which allows for the 
search and editing of terms (class) ontologies, as well as 

their binding to JSON documents, Figure 3. This means 

that when the particular source schema is converted to a 

JSON format, terms from ontologies, rather than source 

attributes, are used as its keys. It is also possible to use 

additional keys for a detailed description of the data 

source itself, for example, indicating the type of DBMS, 

name and format of textual or graphical file, authorship 

and other official data, “sewn up” in the atomic “unit” of 

storage.  

The role of ontologies is to introduce semantics (a 
common interpretation of meaning) into documents, as 

well as the ability to adjust the data structure of the 

JSON-documents by editing the ontology. 

Linking documents with ontologies allows to perform 

semantic (meaningful) data search (more precisely, 

metadata) using SPARQL queries, which makes it 

possible to reveal the information of the upper and lower 

levels (super and sub-classes) and side-links (related 

terms), without knowing the schema of the source data. 

Thus, the user can view and retrieve information without 

being familiar with the conceptual schema of a particular 

DB or the metadata extracted from unstructured sources. 
The repository should include three types of 

ontologies and controlled vocabularies: upper-level, 

domain and narrow-specialized. The first type is 

scientific top-level ontology, which introduces the basic 

terminology used in different fields, for example such 

concepts as substance, molecule, property, state, as 

well as informational entities that reflect the 

representation of data: data set, data item, document, 

table, image, etc. Most of these terms and links between 

them can be borrowed from ontologies presented on the 

server Ontobee [11], for example SIO (Semanticscience 
Integrated ontology) or CHEMINF (Chemical 

Information ontology).The second type of ontology 

(domain ontology) should cover the terminology of 

certain subject areas, for example, thermophysics, 

structural materials, nanostructures, etc. For each of the 

domains, as a rule, some ontologies previously created 

and presented in publications or Web are already 

available on the basis of which it is possible to build and 

further maintain its own subject-specific ontology. 

Finally, the third type (narrow-specialized) should 

include ontologies or vocabularies for systems of units 

(for example, UO on the above portal Ontobee) or 

chemical dictionaries, for example ChemSpider [6] and 

the like. Figure 3 illustrates the binding of terms from a 

JSON document to ontological terms. 

Even at the stage of data preparation the proposed 
technology provides:  

• consistency with accepted standards regardless of the

structure and format of the original data;

• semantic integration of created JSON-documents;

• inclusion of previously not provided objects and

concepts by expanding classes or introducing new

ontologies and dictionaries.

The scheme of the generated data is determined by

the initial data scheme with subsequent correction in the 

process of linking with the terms and structure of the 

corresponding ontological model. It should be noted that 

JSON-documents are objects with which one can operate 

using external API. In so doing, there is always the 

possibility of accessing keys in JSON documents not 

currently linked with a particular ontology term. 

At the same time, it seems justified to identify or bind 
not only keys, but also values with ontological terms. For 

example, the key/value pair “Property”: “Heat Capacity” 

is presented in Figure 3. This will allow in the future to 

facilitate the formation of SQL query, relying on the 

information received from the ontologies repository. 

The experience of using ontology in the data 

interchange through text documents has already been 

implemented in a special format CIF (Crystallographic 

Information File) [8], intended for crystallographic 

information.  

In other cases of using a JSON document for the 

storage of scientific data (for example, in the mentioned 
Citrination system [10]), the сategorization and 

introduction of new concepts is carried out by a special 

commission without linking with the concepts of 

ontological models. 

3 Technique of storage and access to data 

Given the increasing volume and distributed nature of 

the data on the properties, some of the Big Data 

technologies would be appropriate for infrastructure 

design. Their advantage is due not so much to high 

performance in parallel computing, but rather to a 

pronounced orientation to work with data (storage, 

processing, analysis and so on) in a distributed 
environment (when data sources are located on remote 

severs). Among the available open-source means, the 

Apache Spark high-performance computing platform 

[5] is offered here. Along with other technological

features, it is distinguished by the presence of built-in

libraries for complex analytics including running SQL-

queries. By means of SQL-queries one can access the

contents of structured JSON documents. It is the ability

of SQL-queries to data plays a key role in the task of their

221



integration. The efficiency of Spark in the storage and 

processing of data is also associated with its ability to 

maintain interaction with a variety of store types: from 

HDFS (Hadoop Distributed Files System) to traditional 

database on local servers. We should also note the built-

in library GraphX – an application for processing 

graphs, which provides our project with our own tools for 

working with ontologies.  

Figure 3 Linking JSON documents to ontology classes using the example of the ontology for the domain of 

thermophysical properties 

The computing platform shown in Fig. 4 includes 

three basic elements:  

• Management-dispatching of distributed computing

under the control of Hadoop YARN, Apache Mesos or 

stand-alone;  

• Computer interface – API for languages Scala, Java

и Python; 

• Powerful and diverse means of data storage.

Advantages of Apache Spark in comparison with

other technologies (MapReduce) – higher computing 
speed and the ability to handle data of different nature 

(text, semi-structured and structured data, etc.) from 

various sources (files of different formats, DBMS and 

streaming data). It is also important to have APIs for 

Scala, Java and Python and high-level operators to 

facilitate code writing, integration with the Hadoop 

ecosystem [4], which unites libraries and utilities 

provided for in Big Data technology. The ecosystem has 

I/O interfaces (InputFormat, OutputFormat) that are 

supported by a variety of file formats and storage systems 

(S3, HDFS, Cassandra, Hbase, Elasticsearch and so 

on).  

Figure 4 Spark Architecture 

For storage purposes, the Apache Spark provides for 

interaction with three groups of data sources: 

Files and file systems – local and distributed file 

systems (NFS, HDFS, Amazon S3), capable of storing 

data in different formats: text, JSON, SequenceFiles 

(binary key/value pairs) etc; 

Sources of structured data available through Spark 

SQL, including JSON, Apache Hive; 

Relational databases and key/value pairs storages 

(Cassandra, HBase), accessed by built-in and external 

libraries of interaction with the databases such as 

JDBC/ODBC or search engine Elasticsearch.  

222



In doing so Spark supports loading and saving data 

from different formats files: unstructured (text), 

semistructured (JSON), structured (such as CSV or 

SequenceFiles). The Apache Spark operation reduces to 

the formation and transformation of RDD (Resilient 

Distributed Dataset) sets, which are distributed 

collections of elements. When parallel processing, the 

data is automatically distributed in sets between the 

computers in the cluster. RDD sets can be created by 

importing HDFS files using the Hadoop InputFormats 
tool or by converting from another RDD. 

The main task (access and search among structured 

and semistructured data) is implemented by the Spark 

SQL module, which is one of the built-in Apache Spark 

libraries. Spark SQL defines a special type of RDD 

called SchemaRDD (in recent versions, the term 

DataFrame is used). The SchemaRDD class represents 

a set of objects row, each of which is a normal record. 

The SchemaRDD type is called a schema (a list of data 

fields) of records. SchemaRDD supports a number of 

operations that are not available in other sets, in 
particular, execution of SQL-queries. SchemaRDD sets 

can be created from external sources (JSON-documents, 

Hive tables), query results and from ordinary RDD sets. 

Three main features of Spark SQL: 

• It can download data from different sources;

• It requests data using SQL within Spark programs

and from external tools related to Spark SQL through 

standard mechanisms for connecting to databases via 

JDBC/ODBC;  

• It provides an interface between SQL and ordinary
code (when used within Spark SQL programs), including 

the ability to connect sets of RDDs and SQL tables.  

It is possible to configure Spark SQL to work with 

structured data Apache Hive. The Apache Hive store is 

specifically designed for querying and analyzing large 

data sets, both inside HDFS and in other storage systems. 
JDBC/ODBC standards are also supported by Spark 

SQL, which allows executing a direct SQL query to 

external relational databases, in the case of the above 

defined active type of interaction.  

Figure 5 Web-environment for managing heterogeneous and distributed data on the substance properties (databases, 

unstructured and semistructured files and so on) 

The main scenario that uses the Apache Spark 

features is shown in Figure 5. As a result of uploading 

data to JSON documents according to the above 

procedure, we will have data sets with a single 

classifying key system identical to terms from 

ontologies. The organization of data requests in JSON 

documents will always be based on definitions from this 
single system. Thus, one can form the SQL query of 

interest in the interface of the data processing system. In 

this case, it always remains possible to access the 

ontology repository to refine or supplement the terms of 

the query using the SPARQL query (Figure 5). Then the 

SQL-request coming from the user interface initiates the 

work of the Spark SQL module. As a result of the work 

of Spark SQL module, RDD or DataFrame sets are 

created, including the selected records, which can be 

processed by the system's service functions for further 
use. In fact, the user's work consists of two phases: 

viewing ontologies terms with the choice of adequate for 

the formation of SQL-query; access to the repository of 

223



processed data with a SQL query. Thus, the main 

scenario involves unifying heterogeneous data by 

converting them to JSON documents and processing 

them using Spark SQL. Other scenarios are also 

justified, if we take into account the diversity of the 

source data. For example, the Spark SQL module allows 

direct query to relational databases without their 

conversion to the JSON format. On the other hand, you 
can provide access to JSON documents by collecting 

them in a file system using other Big Data tools. The first 

and main feature of JSON data collection based on 

ontological models terms – the unambiguous 

interpretation of the content and type of data. In this case 

users and external programs can freely work with data, 

because the ontology term, mapped to a key or value in 

the body of the JSON file, has available and accepted 

definitions and properties. For example, links to various 

types of files (graphics, multimedia, exe-files, etc.) can 

be described adequately and functionally using keys-

terms from ontologies describing data formats. The 
second feature, as it is not strange, is the possibility of 

including in the exchange of such data sources that do 

not allow active access or changes due to various 

reasons. Then uploading the data to an external JSON file 

solves this problem, providing independent data storage 

and their full description via ontological models. 

The listed technologies, supported by Apache 

Spark, provide unlimited productivity and variety of 

opportunities to handle complex data, which include data 

on the properties of substances, including traditional 

materials and nanostructures. 

References 

[1] Ataeva, O.M., Erkimbaev, A.O., Zitserman, V.Yu.

et al.: Ontological Modeling as a Means of

Integration Data on Substances Thermophysical

Properties. Proc. of 15th All-Russian Science 

Conference “Electronic Libraries: Advanced 

Approaches and Technologies, Electronic 

Collections” – RCDL-2013, Yaroslavl, Russia, 

October 14–17, 2013. http://rcdl.ru/doc/2013/ 

paper/s1_3.pdf 

[2] Introduction to JSON. http://json.org/json-ru.html

[3] 3Vs (volume, variety and velocity), definition from

TechTarget Network. http://whatis.

techtarget.com/definition/3Vs

[4] Apache Hadoop. https://hadoop.apache.org/

[5] Apache Spark. http://spark.apache.org/docs/

[6] ChemSpider. www.chemspider.com

[7] Frenkel, M., Chirico, R.D., Diky V. et al.: XML-

based IUPAC Standard for Experimental,

Predicted, and Critically Evaluated

Thermodynamic Property Data Storage and

Capture (ThermoML) (IUPAC Recommendations

2006). Pure Appl. Chem., 78 (3), pp. 541-612

(2006)

[8] Hall, S.R, McMahon, B.: The Implementation and

Evolution of STAR/CIF Ontologies:

Interoperability and Preservation of Structured
Data. Data Science J., 15 (3), pp. 1-15 (2016). doi:

http://dx.doi.org/10.5334/dsj-2016-003

[9] Kaufman, J.G., Begley, E.F.: MatML. A Data

Interchange Markup Language. Advanced

Materials & Processes/November, pp. 35-36 (2003)

[10] Michel, K., Meredig, B.: Beyond Bulk Single

Crystals: A Data Format for all Materials Structure-

property-processing Relationships. MRS Bulletin.

41 (8), pp. 617-623 (2016)

[11] Ontobee: A Linked Data Server Designed for

Ontologies. www.ontobee.org

224

http://dx.doi.org/10.5334/dsj-2016-003



