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Abstract. Organization and management of virtual experiments in data-intensive research has been 

widely studied in the several past years. Authors survey existing approaches to deal with virtual experiments 

and hypotheses, and analyze virtual experiment management in a real astronomy use-case. Requirements for 

a system to organize virtual experiments in data intensive domain have been gathered and overall structure 

and functionality for system running virtual experiments are presented. The relationships between hypotheses 

and models in virtual experiment are discussed. Authors also illustrate how to conceptually model virtual 

experiments and respective hypotheses and models in provided astronomy use-case. Potential benefits and 

drawbacks of such approach are discussed, including maintenance of experiment consistency and shrinkage 

of experiment space. Overall, infrastructure for managing virtual experiments is presented. 
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1 Introduction 

Data intensive research (DIR) is evolving according 

to the 4th paradigm of scientific development and reflects 

the fact that modern science is highly dependent on 

knowledge extraction from massive datasets [5]. Data 

intensive research is multidisciplinary in its nature, 

bringing in many separate principles and techniques to 

handle complex data analysis and management. Up to 
80% of researcher’s time is spent on management of raw 

and analytical data, including data collection, curation 

and integration. The rest part requires knowledge 

inference from collected data in order to test proposed 

hypotheses, gather novel information and correctly 

integrate it. Although, it is the core of scientific work, it 

takes just 20% of researcher’s time. To overcome that, a 

new approach for handling multidisciplinary DIR is 

needed. 

Large-scale scientific experiments besides data 

processing issues are highly sophisticated– they include 

workflows, models and analytical methods. Every 

implementation of DIR can be treated as virtual 

experiment over massive collections of data. In [7] a 

survey is presented discussing different approaches to 

experiment modeling and how its core artifacts – 

hypotheses, can be specified. The use of conceptual 
representation of hypotheses and their corresponding 

implementation is emphasized, thus leading to the need 

of proper tools. 

The article aims at developing methods and tools to 

support the execution and conceptual modeling of virtual 

experiment and designing infrastructure to manage it.  

Article is structured as follows. In Section 2 related 

works are discussed. Section 3 explains why systems 

from section 2 are not enough, and introduces real-world 

use-case coming from astronomy. In section 4 main 
notions are defined. Section 5 provides infrastructure and 

functionality of system components is proposed. Section 

6 concludes the article. 

2 Related works 

Systems with explicit representation of hypotheses 

are being rapidly developed during last several years [2–
4, 6, 10]. Authors analyzed 3 different systems for 

executing virtual experiments and hypotheses: 

Hephaestus, Upsilon-DB and SDI. Some requirements 

for organizing and managing virtual experiments were 

extracted during the analysis. Although these platforms 

provide some important insights into defining and 

handling hypotheses, they miss some important features. 

First, they do not describe the perception of 

automatically derived hypotheses by domain experts, do 

not track their evolution, and do not discuss experiment 

design principles. 

Hephaestus. It is a system for running virtual 

experiments over existing collections of data. It provides 

independence from resources and the system rewrites its 

queries into data source queries. System hides underlying 

implementation details from user, letting him work only 

with Hephaestus language. The language itself is a SQL-
like language and is used to specify virtual experiment 

and underlying hypotheses.  

Hephaestus separates two different classes of 

hypotheses: top-down and bottom-up. Top-down 

hypotheses are the one introduced by the researcher, 

while bottom-up hypotheses are derived from data. 
System supports the discovery of bottom-up hypotheses 

by looking for the correlation in data. These hypotheses 

are then ranked by some score (e. g. p-value of some 

statistical test) and the one with highest are passed to the 

researcher. Yet the system does not support automatical 

finding of causality, which is an important requirement 

for the future work. Hephaestus emphasizes the role of 
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the expert in understanding which relationships should 

be further studied and which should not be chased. 

Hephaestus also computes metrics about experiments to 

estimate significance adequate to abandon further 

computation. System is used in testing clinical trials. The 

system does not catch the evolution of hypotheses or 

experiments yet.  

Upsilon-DB. System enables researcher to code and 

manage deterministic scientific hypotheses as uncertain 

data. It uses internal database to form hypotheses as 

relations and adds uncertainty parameter. Later, that 

uncertainty parameter is used to rank hypotheses using 

Bayes rule. Provided approach can be treated as 

complementary to classical statistical approach. The 
systems allows to work with two types of uncertainty - 

theoretical, which is brought by competing hypotheses, 

and empirical uncertainty, which appears because of 

alternative datasets used. The system introduces 

algorithm to rank hypotheses using observed data. This 

is done because several competing hypothesis can 

explain the same observation well and some score to 

distinguish them is needed. When new data becomes 

available, this score can be adjusted accordingly.  

Hypotheses have mathematical representation and 

authors provide method to translate its mathematical 

representation into relations in database. The simulations 

are also treated as data and respective relations are put 

inside the same database as hypotheses. Authors 

emphasize the need to support and develop the extraction 

of hypotheses from data and methods to sample both 

hypotheses and data. They illustrate that systems such as 
Eureqa [8] can be used to learn formula representation 

from data. 

Following example is presented in the paper: authors 

present three different laws describing free fall and some 

simulated data. They rank hypotheses accordingly. 

SDI. Platform is used to support scientific 

experiments. The system has the ability to integrate open 

data, reuse observed data and simulation data in the 

further development of experiments. The system enables 

multiple groups of researchers to access data and 

experiments simultaneously. Components of the 
framework are developed in such way that they could be 

deployed, adapted and accessed in individual research 

projects fast. SDI requires the support of lineage, 

provenance, classification, indexing of experiments and 

data, the whole cycle of obtaining data, curating and 

cleaning it, building experiments to test hypotheses over 

massive data, aggregating results is supported over long 

periods of time. The use of semantics is required by the 

system. 

3 Astronomical Use-case 

Surveyed systems do not cover several important 

issues, including interaction between hypotheses in 

single experiment, tracing experiment evolution, 

perception of automatically derived hypotheses and 

formulas by field experts. 

Authors’ further experience on how to deal with 

virtual experiments and hypotheses is based on Besancon 

Galaxy Model (BGM). BGM is based on “the population 

synthesis approach … aims at assembling current 

scenarios of galaxy formation and evolution, theories of 

stellar formation and evolution, models of stellar 

atmospheres and dynamical constraints, in order to make 

a consistent picture explaining currently available 

observations of different types (photometry, astrometry, 

spectroscopy) at different wavelengths”.  

BGM which is being developed for more than 35 

years represents a complex computational artifact, 

described in a series of [1, 11, 12]and presented in several 

major releases. Such a development represents a unique 

experience for catching the evolution scenarios for the 
model, changes to the model introduced both by using 

new observations (e.g. Hypparcos and Tycho-2 surveys) 

and the theoretical progress in the field. Both small 

changes to parameters of the model and huge 

improvements of the whole process were also made 

during the lifetime of the model. Also, the BGM authors 

enabled the community to change some parts of the 

model.  

Due to the great experience collected by the BGM 

authors in the respective articles and associated code, 

now there is a possibility to collect the requirements for 

the system to supports experiments and provide rationale 

to choosing the appropriate methods and adequate 

techniques for the infrastructure. 

BGM takes as input hypotheses and their parameters. 

The examples of such hypotheses are star formation rate 

(SFR), initial mass function (IMF), density laws, 

evolutionary tracks and so on [1]. As the model is 

evolving, new values for hypotheses parameters, even 

new parameters have been introduced into the BGM, e.g. 

for the IMF hypothesis in the last realization there has not 

only been tests of several new values of the hypothesis, 

but also separation of 2-slope and 3-slope instances of 

IMF is done. 

It is very important to explicitly catch the relationship 

between several hypotheses in VE. Hypotheses and their 

parameters can be interrelated. For example, stellar 

birthrate function is derived from both IMF and SFR 
functions and local volume density function is based on 

provided density law. The relationships between 

hypotheses put constraints on the tuning of their 

parameters – model can quickly become. 

Parameters of a single hypothesis can be linked to 

each other directly through equations. There are also 
indirect connections of parameters of several hypotheses, 

e.g. SFR parameter correlates with the slopes of IMF.

This implies that one could not give the best solution for

a particular variable without correlating it with others.

So, there is a need to support for a correlation search

between hypotheses parameters and to store relationships

between parameters of a single hypothesis.

Not all model ingredients are allowed to be changed 

by the user. This is done because if some hypothesis is 

changed in the model and no further adjustments for the 

dependant hypotheses are made a model consistency is 
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broken. Furthermore, the model has a property of being 

self-consistent meaning that when input values change, 

if it is possible hypotheses derived by the one changed 

are properly adjusted in order not to break fundamental 

equations of astronomy. Therefore, derived by 

relationship needs to be modeled. Also, system 

component should enable the adjustment and calibration 

of any hypothesis available in the model. 
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Figure 1 BGM Hypotheses Lattice with derived by 

relationship 

Apart from explicit hypotheses, there are also implicit 

hypotheses in the model. They are not described in the 

articles and are tacit. The example of such hypothesis is 

that no stars come from outside of the Galaxy. It is 

important to explicitly store such hypotheses and 

understand how to extract such hypotheses from 

publications and data sources.  

Workflow is used to implement BGM experiment 

specifying when each model which conforms to related 

hypotheses should be invoked. The workflow has also 

evolved since the first version, e.g. for thin disk treatment 

new activities dependent on IMF and SFR hypotheses are 

introduced. This development can only be tracked using 

publications. Some activities in model structure require 

the usage of statistical methods, tests and tools, which are 

used on both local hypotheses and on the general 

simulations from the whole experiment. 

As the number of experiments is huge due to the 

increasing size of competing hypotheses family, now not 

all of the possible are run against the whole sky. Studying 

the ways to reduce the number of experiments which give 

the best fit and to choose when and if to abandon further 

computations of experiment is a major part of 

requirements to the new system. Using the information 

from experiment run done both locally and by other 

research groups can be helpful in achieving that goal. 

Some researches of data-intensive analysis 

emphasize the role of error bars. As the data in astronomy 

is provided usually with errors, the BGM uses special 

methods to work with such type of uncertainty. A 

component supporting statistical tools which works with 

error bars is a major requirement for the infrastructure. 

4 Hypotheses and Models in Virtual 
Experiment 

4.1 Main Notions 

Extracted information needs to be formally 

specified. For that, authors define additional artifact 

– virtual experiment. It is a tuple <O, H, M, R, W, 

C>, where O is a domain ontology. Domain 

ontology is a set of concepts and relationships in 

applied domain formally specified with some 

language. 

H is a set of hypotheses specifications 

and relationships between them. H is a part of ontology 

and uses concepts from it. Together they form the 

ontology of virtual experiment. Hypothesis is a 

proposed explanation of a phenomenon that still 

has to be rigorously tested.  

M is a set of models. Each model is a set of 

functions. Every model implements a hypothesis 

specification. If model generates expected 

behavior of some phenomenon, it is said that 

model and respective hypothesis are supported by 

observations. 

R: H -> M, is a mapping from the set of 

hypotheses and into the models. 

W is a workflow. Workflow is a set of 

tasks, orchestrated by specific constructs (workflow 

patterns - split, join, etc.). Each task represents a 

function with predefined signature, which invokes 

models from M. Workflow implements experiment 

specifying when each model that conforms to related 

hypotheses should be invoked.  

C is a configuration for each experiment run. 

It consists of a total mapping from workflow tasks into 

sets of function parameter values. 

There exist a lot of possible 

hypotheses representations – mathematical 

models, Boolean networks, ontologies, predicates in 

first-order logic, etc. Authors use ontologies to specify 

hypotheses.  

Possible relationships between hypotheses 

are competes_with, which is used to relate 

competing hypotheses and derived_by to relate two 

hypotheses, one of which was used to derive another. 

Derived_bycan be used to form hypotheses lattice [9] – 

algebraic structure with partial order relation. 

Hypotheses derived from a single hypothesis are 

atomic, otherwise – complex (see Fig. 1).  

Model, which implements hypothesis, 

should conform to the hypothesis specification. If 

model generates expected behavior of some 

phenomenon, it is said that model and respective 

hypothesis are supported by observations. 

4.2 Remarks on methodology 

Since hypotheses become the core artifact of 

virtual experiment, there is a shift in treating data to 

successfully manage it. Fig. 2 depicts the process of 

specifying virtual experiment. 
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First, hypotheses are extracted from articles. Usually, 

it is text or formulas. Sometimes, there is a need to 

provide external hypotheses and substitute existing ones. 

Next step is to define mapping between hypotheses and 

models, which implement these hypotheses, and build 

some workflow specifying the sequence of tasks. 

Forming a research lattice is a next step. Virtual 

experiment needs configuration and execution plan. 

After that, one can launch virtual experiment.  

4.3 Virtual Experiment Specification 

Conceptual schema to define virtual experimentis 

provided. It is written with the simplified OWL 

functional syntax (Declaration keyword is omitted; 

property, domain, and range declarations are 

combined).Virtual experiment (VirtualExperiment class) 

has associated set of hypotheses, single workflow, 

observed_data against which experiment will run and 
probability, which describes how well underlying model 

suits observed data. Closer probability is to 1, better the 

underlying model simulates phenomenon. 

Ontology(<http://synthesis.ipi.ac.ru/virtual_ex

periment/ontology> 

Class(VirtualExperiment) 

ObjectProperty(Hypothesis 

domain(VirtualExperiment) range(Hypothesis)) 

ObjectMinCardinality(1 Hypothesis 

VirtualExperiment) 

DataProperty(workflow domain(VirtualExperiment) 

range(xsd:anyURI)) 

DataMinCardinality(1 workflow

VirtualExperiment) 

DataProperty(mediatordomain(VirtualExperiment) 

range(xsd:anyURI)) 

DataMinCardinality(1 mediator 

VirtualExperiment) 

DataProperty(probability 

domain(VirtualExperiment) 

range(xsd:float)) 

DataExactCardinality(1 probability 

VirtualExperiment)) 

Hypothesis is specified in the same ontology as 

virtual experiment. Every hypothesis has name, 

description, author(s) and associated articles. It also has 
a model associated with it. Following [4] associated 

probability of hypothesis is introduced. 

Several hypotheses explaining one and the same 

phenomena are called competing. Also hypothesis can be 

derived by some other hypothesis. Hypotheses lattice is 

formed with derived_by relationship on hypotheses 

space. 

Class(Hypothesis) 

DataProperty(probability domain(Hypothesis)

range(xsd:float)) 

DataExactCardinality(1probability Hypothesis) 

DataProperty(name domain(Hypothesis)

range(xsd:string)) 

DataExactCardinality(1name Hypothesis) 

DataProperty(description domain(Hypothesis)

range(xsd:string)) 

DataMinCardinality(1descriptionHypothesis) 

DataProperty(author 

domain(Hypothesis)range(xsd:string)) 

DataMinCardinality(1authorHypothesis) 

DataProperty(article domain(Hypothesis)

range(xsd:anyURI)) 

DataMinCardinality(1article Hypothesis) 

DataProperty(model domain(Hypothesis) 

Hypothesis) 

DataExactCardinality(1 model range(xsd:anyURI)) 

Class(HypothesisMetaClass) 

ClassAssertion(HypothesisMetaClassHypothesis) 

ObjectProperty(competes 

domain(HypothesisMetaClass) 

range(HypothesisMetaClass)) 

ObjectProperty(derivedBydomain(HypothesisMetaCl

ass) 

range(HypothesisMetaClass)) 

4.4 Hypotheses Specification 

Examples of hypotheses and their relationships come 

from Besancon Galaxy Model (BGM). For the sake of 

clarity not all hypotheses in BGM are specified. All of 

the BGM hypotheses are treated as subclasses of 

Hypothesis class. 

Initial Mass Function is the mass distribution of a 

given population of stars and is represented by standard 

power law. Due to construction of the hypothesis in the 

BGMIMF has a mathematical representation as a 

piecewise function with 2 or 3 pieces (slopes) where it is 

defined for mass regions. As there are just 2 possible 

sizes of the piecewise function, we put this into two 

disjoint subclasses. There are restrictions on available 

mass to Sol mass ratio. For IMF, authors test 10 different 

Build research lattice

Define workflow

Extract hypotheses 

from articles

Define external 

hypotheses

Define experiment 

configuration 

Build execution plan Configure statistical tests

Run virtual experiment
Use hypotheses 

cache

Define mapping between 

hypotheses and models

Figure 2 Methodology to form virtual experiment 
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versions of a hypothesis, 4 of them are 2-slope functions 

and 6 of them are 3-slope function. All of tested 

hypotheses are competing. Example instance from each 

subclass is given. 

Class(Slope) 

DataProperty(alpha domain(Slope) 

range(xsd:float)) 

DataProperty(minMass domain(Slope) 

range(xsd:float)) 

DataProperty(maxMass domain(Slope) 

range(xsd:float)) 

DataExactCardinality(1 alpha Slope) 

DataExactCardinality(1 minMassSlope) 

DataExactCardinality(1 maxMassSlope) 

SubClassOf(IMF Hypothesis) 

ObjectProperty(Slopes domain(IMF) range(Slope)) 

DataProperty(availableMass domain(IMF)

range(xsd:float)) 

DataExactCardinality(1 availableMass IMF ) 

DataProperty(outputStarMass domain(IMF)

range(xsd:float)) 

DataExactCardinality(1 outputStarMass IMF ) 

SubClassOf(ThreeSlopeIMF IMF) 

ObjectExactCardinality(3 Slopes ThreeSlopeIMF) 

SubClassOf (TwoSlopeIMF IMF) 

ObjectExactCardinality(2 Slopes TwoSlopeIMF ) 

DisjointClasses(TwoSlopeIMFThreeSlopeIMF) 

ObjectPropertyAssertion(competes TwoSlopeIMF 

IMF) 

ObjectPropertyAssertion(competes ThreeSlopeIMF 

IMF) 

ClassAssertion(Slope HaywoodSlope1) 

DataPropertyAssertion(alpha HaywoodSlope1 

"1.7"^^xsd:float) 

DataPropertyAssertion(minMass HaywoodSlope1 

"0.09"^^xsd:float) 

DataPropertyAssertion(maxMass HaywoodSlope1 

"1.0"^^xsd:float) 

ClassAssertion(Slope HaywoodSlope2) 

DataPropertyAssertion(alpha HaywoodSlope2 

"2.5"^^xsd:float) 

DataPropertyAssertion(minMass HaywoodSlope2 

"1.0"^^xsd:float) 

DataPropertyAssertion(maxMass HaywoodSlope2 

"3.0"^^xsd:float) 

ClassAssertion(Slope HaywoodSlope3) 

DataPropertyAssertion(alpha HaywoodSlope3 

"3.0"^^xsd:float) 

DataPropertyAssertion(minMass HaywoodSlope3 

"3.0"^^xsd:float) 

DataPropertyAssertion(maxMass HaywoodSlope3 

"120.0"^^xsd:float) 

ClassAssertion(ThreeSlopeIMFHaywoodIMF) 

ObjectPropertyAssertion(Slopes 

HaywoodIMFHaywoodSlope1) 

ObjectPropertyAssertion(Slopes HaywoodIMF 

HaywoodSlope2) 

ObjectPropertyAssertion(Slopes HaywoodIMF 

HaywoodSlope3) 

Star Formation Rate, Ψ(t) represents the total mass of 

stars born per unit time per unit mass of Galaxy. Star 

formation rate has subclasses for representing constant 
Ψ(t) = C and exponential function Ψ(t) = exp{-γt} where 

γ is a parameter. Authors tested several competing 

hypotheses - two possible values for gamma (0.12 and 

0.25) and one constant value. They can be stated as 

instances of respective classes. 

SubClassOf(SFR Hypothesis) 

DataProperty(time domain(SFR) range(xsd:float)) 

DataExactCardinality(7 time SFR ) 

DataProperty(bornStarMass domain(SFR)

range(xsd:float)) 

DataExactCardinality(7 bornStarMass SFR ) 

SubClassOf(ConstantSFR SFR) 

DataProperty(constant domain(ConstantSFR) 

range(xsd:float)) 

DataExactCardinality(1 constant ) 

SubClassOf(ExponentSFR SFR) 

DataProperty(gamma domain(ExponentSFR) 

range(xsd:float)) 

DataExactCardinality(1 gamma) 

DisjointClasses(ExponentSFRConstantSFR) 

ObjectPropertyAssertion(competes ConstantSFR 

SFR) 

ObjectPropertyAssertion(competes ExponentSFR 

SFR) 

ClassAssertion(ExponentSFRRobinSFR) 

DataPropertyAssertion(gamma RobinSFR

"0.12"^^xsd:float)

BGM apart from model ingredients has also implicit 

hypotheses, which are not marked as ingredients. For 

example, 1) thin disk is divided into seven age bins; 2) 

no stellar population comes from the outside of the 

galaxy. For the first example we can specify additional 
class AgeBins which has exactly seven age bins. 

SubClassOf(AgeBins Hypothesis) 

DataProperty(ageBin domain(AgeBins) 

range(xsd:integer)) 

DataExactCardinality(7 ageBin AgeBins) 

It is more difficult to deal with the second one. As a 

possible solution, additional hypothesis could later be 

specified. 

Hypotheses lattice is modeled with derived Byobject 

property. Some classes can be specified using Equivalent 

Classes construction. Hypotheses lattice for BGM was 
created manually, but later it should be constructed 

automatically by system for executing experiments. (Part 

of) hypotheses lattice for BGM is shown in Fig. 1. 
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ObjectPropertyAssertion(derivedBy SFR AgeBins) 

ObjectPropertyAssertion(derivedByAgeVelocityDis

persionAgeBins) 

ObjectPropertyAssertion(derivedBy SFR 

LocalVolumeDensity) 

ObjectPropertyAssertion(derivedByDensityLawLoca

lVolumeDensity) 

For IMF class and there are relations between slopes, 
output Mass and available Mass. Based on available 

Mass parameter alpha is chosen and then output Mass is 

computed. If available Mass is inside the respective 

interval, alpha is taken and output Mass is computed. 

Next, post-condition for ExponentSFR is written. It says 

that born stars should have mass respective to the 

exponential equation. Other pre- and post-conditions are 

specified in the same manner. 

Document( 

Group(Forall ?IMF ?am ?s ?om ?a ?min ?max ( 

AND (?IMF[AvailableMass -> ?am Slopes -> ?s 

outputStarMass -> 

?om]  ?s[alpha -> ?a minMass -> ?min 

maxMass -> ?max]) :- 

  AND (External(pred:numeric-greater-than(?am 

External(func:numeric-

multiply(?mincon:solMass))) 

External(pred:numeric-less-than(?am 

External(func:numeric- 

multiply(?max con:solMass)))) 

)))) 

Forall ?ExponentSFR ?g ?t ?m ( 

?ExponentSFR[Gamma -> ?g Time->?t BornStarMass-

> ?m]:- AND(

External(pred:numeric-equal(?m 

External(func:numeric-exponent(func:numeric-

multiply( 

"-1.0"^^xsd:float?t)?g))))))) 

4.5 Workflow Specification 

The model of mass determination consists of a local 

mass normalization, the simulation of the local 

neighborhood and calculating vertical density 

distribution. These tasks can be further divided into 

several subtasks: 

1. getRSVDensity. Relative density is calculated using

Einasto density law. After that for each population this

density ρ(r, l, b, i) is integrated in the vertical direction

ratio of surface to volume density (RSV) is computed.

2. getSurfaceDenisty. For each thin disk subcomponent

surface density is calculated and then summed.

Surface density of each age subcomponent has to be

proportional to the intensity of SFR in its respective

age bin.

3. getVolumeDensity. Volume stellar mass densities are

calculated and summed Total volume is checked to fit

the observations.

4. adjustSurfaceDensity. If the difference occurs surface

and volume density are adjusted and recomputed. 

5. getLNSimulations. Provided with specific hypotheses

(IMF, SFR, evolutionary tracks and so on) stars and

their parameters are simulated in the local

neighborhood.

6. getAliveStarsRemnants. Stars are splitted into alive

stars and remnants. Remnants -are possible stars for

which the age and mass combination was not on the

evolutionary tracks.

7. solvePotentialEquation. Poisson equation is solved

with the input of stellar content of thin disk.

8. constrainPotential. Calculated potential should be

constrained by observed Galactic rotation curve. The

central mass and corona parameters are computed in

such a way that the potential reproduces the observed

rotation curve.

9. calculatePotentialParameters. Based on the

calculated potential central mass parameters and

corona parameters are computed.

10. solveBoltzmannEquation. Boltzmann collisionless

equation for an isothermal and relaxed stellar

population is solved in order not to break

fundamentals of the model.

11. checkDynamicalConsistency. As equations in 6,7,8

are solved separately, the potential does not satisfy

both constraints. These tasks should be run until the

changes in the potential and other parameters are less

than 0.01.

Workflow is specified as a RIF-PRD document. The

ontology for virtual experiment and BGM ontology are 

imported. Rules in the document are separated into two 

groups. The first group with priority 2 is used to define 

workflow input and output parameters and variables. Part 

of specification describes several hypotheses passed as 

input parameters and calculated local surface density for 

each age bin as output. GetLocalSurfaceDensity task is 
specified in a group with priority 1. Task gets as input 

SFR hypothesis and total surface density vector (initially 

a guess) and multiplies provided values. Task checks if 

Xor of dependent tasks is done. 

Document( Dialect(RIF-PRD) 

Base(<http://synthesis.ipi.ac.ru/virtualexperim

ent/workflow#>) 

Import(<http://synthesis.ipi.ac.ru/virtualexper

iment/ontology#>) 

Import(<http://synthesis.ipi.ac.ru/bgm/ontology

#>)Prefix(bgm<http://sy 

nthesis.ipi.ac.ru/bgm/ontology#>) 

Prefix(ve<http://synthesis.ipi.ac.ru/virtualexp

eriment/ontology#>) 

Group 2 ( 

Do( 

Assert(External(wkfl:parameter-

definition(sfrbgm:SFRIN))) 

Assert(External(wkfl:parameter-

definition(imfbgm:IMF IN))) 

Assert(External(wkfl:parameter-definition(avd 
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bgm:AgeVelocityDispersionIN))) 

Assert(External(wkfl:parameter-definition(dl 

bgm:DensityLaw IN))) 

Assert(External(wkfl:parameter-definition(et 

bgm:EvolutionaryTracks IN))) 

Assert(External(wkfl:variable-

definition(lsdsList(xsd:float) 

IN))) 

Assert(External(wkfl:variable-definition(clsds 

List(xsd:float) 

OUT))) 

Assert(External(wkfl:variable-value(clsd 

List()))) 

Group 1 ( 

Do( 

Forall ?sfr?bsm?lsd ?lsds ?clsd ?clsds such 

that ( 

External(wkfl:variable-value(lsds ?lsds)) 

External(wkfl:variable-value(clsds ?clsds)) 

External(wkfl:variable-value(sfr ?sfr)) 

?lsd#?lsds 

?clsd#?clsds 

?sfr[bornStarMass -> ?bsm] 

( IfOr(Not(External(wkfl:end-of-

task(getRSVDensity))) 

External(wkfl:end-of-

task(adjustSurfaceDensity)) ) 

Then Do( Modify(?clsd ->External(func:numeric-
multiply(?bsm 

?lsd)) ) 

Assert(External(wkfl:end-of-

task(getSurfaceDensity))) )) 

4.6 Choosing parameters of hypotheses for virtual 

experiment execution 

Since some hypotheses can take quite a few values, 

the number of possible models can reach thousands. This 

poses a question about the order of model execution and 

how to make these executions effective (and not to 

recompute previous unchanged results). For that we use 

special structures to cache and store results. The system 
can put model execution in some order and use the results 

of previous executions. This could drastically increase 

the speed of model computation, especially on big 

amount of data. To implement this we use properties of 

hypotheses lattices.  

The researcher can run several experiments finding 

the probability of each, which can be later queried by 

other researchers. For example, following query takes 

two experiments, which have underlying models best 

explaining observed data, and fixed values for hypothesis 

SFR and workflow specified by URI. Since there could 

be thousands of possible experiments, there is a need to 

order them by their probability. As in [3] we don't want 

the researched to bury in thousands of possible models 

and just take several best ones.

SELECT ?experiment 

WHERE { 

?experiment probability ?probability . 

?experiment workflow ?workflow . 

?experiment Hypothesis ?hypothesis . 

?hypothesis name ?name . 

FILTER(?name = 'RobinSFR' && ?workflow = 

URI) 

} 

ORDER BY desc(?probability) 

LIMIT 2 

5 Requirements for Infrastructure for 

Managing Virtual Experiments 

In a series of experiment run it is important to keep 

track on evolution of models, hypotheses and 

experiments, as well as identifying new data sources. 

Operations to manipulate virtual experiments and its 

components need to be defined. Next, the system needs 

to capture dependencies (competes, derived by) between 
hypotheses, invariants in single hypothesis. Correlations 

between parameters of several hypotheses should also be 

considered. 

Second, infrastructure should contain components 

responsible for automatic extraction of dependencies 

between hypotheses, parameters in single and multiple 
hypotheses. Obtained data is used in deciding which 

experiments should be abandoned and also used in 

keeping hypotheses in a single experiment consistent. 

Third, one needs components for maintaining 

experiment consistency and constraining the number of 

possible experiments as well as defining the metric which 
is used to define if experiment poorly explains 

phenomena and abandon further computations. Methods 

for removing poor experiments based on previous 

experiments runs are also required. Experiments and 

hypotheses should stay consistent when parameters of a 

hypotheses change. 

As soon as several hypotheses in some experiments 

could explain some phenomena well and due to errors in 

data, researcher needs to deal with uncertainty and needs 

methods to rank experiments and competing hypotheses 

on massive datasets. 

While experiment could change slightly from a 

previous experiment run (e. g. one hypothesis parameter 

changes), system should store some data about previous 

executions. Methods for understanding which parts of 

experiments should be recomputed and which are not 

should be developed as well. Defining structures to 

store results of previous experiments and query these 

results is important. Since there could be thousands of 

possible experiments system should use a method to form 

a plan to execute experiments in such way that stored 

results are mostly used and no additional recomputations 

are made. 
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Some stages will investigate and adopt or reject 

certain values such as a velocity hypothesis, then 

continue. The design of the paths to be followed is called 

experimental design that as in the scientific method is the 

hardest part of the analysis. In principle, as in many 

systems, Hephaestus could pursue multiple paths in 

parallel using some metric to determine when to abandon 

a path. Some have criticized DeepDive and others for 

following a single path. 

Reducing computational experiments (what we call 

virtual experiments), as mentioned above using metrics 

to estimate significance adequate to abandon further 

computation.  

6 Conclusion 

The article aims at developing a new approach to 

managing virtual experiment. Hypotheses are becoming 

core artifacts of that approach. By analyzing existing 

systems and use case requrements are extracted. Formal 

specification of the determination of the mass model 

from BGM is presented in the OWL syntax.  

Further work should be concentrated on developing 

metasystem for handling hypotheses, models and other 

metadata in virtual experiment. 
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