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The modern parallel computing solutions were used to speed up the calculations by Feynman’s 

continual integrals method. The algorithm was implemented in C++ programming language. 

Calculations using NVIDIA CUDA technology were performed on the NVIDIA Tesla K40 

accelerator installed within the heterogeneous cluster of the Laboratory of Information Technologies, 

Joint Institute for Nuclear Research, Dubna. The results for energies of the ground states of several 

few-body nuclei demonstrate overall good agreement with experimental data. The obtained square 

modulus of the wave function of the ground states provided the possibility of investigating the spatial 

structure of the studied nuclei. The use of general-purpose computing on graphics processing units 

significantly (two orders of magnitude) increases the speed of calculations.  
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1. Introduction 

There is high interest in structure and reactions with few-body atomic nuclei (e.g., 
3
H, 

3
He, 

6
He, etc.) from both theoreticians and experimentalists of the Joint Institute for Nuclear Research 

(JINR) and other scientific centers. The development of computing and information resources of the 

Laboratory of Information Technologies (LIT), JINR [1] provides opportunities for high-

performance computing and application of new methods for theoretical study of light nuclei. This 

work is devoted to application of NVIDIA CUDA technology [2, 3] to calculations within 

Feynman’s continual integrals method [4, 5] which provides the energy and the probability densities 

for ground states of few body systems. This approach was already used for calculations of 
3
H, 

3,4,6
He 

nuclei [6, 7] and 
6
Li, 

9
Be nuclei [8, 9]. In addition to the above-listed nuclei, in this work 

12
C and 

16
O 

nuclei are considered using the same approach. The few-body nuclei 
3
H, 

3,4
He were described as 

consisting of protons and neutrons, whereas the nuclei 
6
He, 

6
Li, 

9
Be, 

12
C, and 

16
O were described as 

α-cluster nuclei. The algorithm allowing us to perform calculations directly on GPU was developed 

and implemented in C++ programming language. The results show that the use of GPU is very 

effective for these calculations. 

2. Theory and computing 

Feynman’s continual integral [4] is a propagator  the probability amplitude for a particle to 

travel from the point 0q  to the point q  in a given time t . In the imaginary (Euclidean) time it   

the propagator can be represented as the limit of a multiple integral [4, 5] 
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Here m is the mass of the particle and  kV q  is its potential energy. The energy 0E  and the square 

modulus of the wave function 
2

0 of the ground state of a system of few particles with coordinates 

q  may be calculated using asymptotic behavior of propagator [5] 
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The values of the propagator  E , ; ,0K q q  were calculated using averaging denoted by  over 

random trajectories ( , )kq f q k   with the distribution in the form of the multidimensional 

Gaussian distribution 
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This theoretical approach to N-particle systems with the use of Jacobi coordinates is described in 

detail in Ref. [8]. Feynman’s continual integrals method provides a new, mathematically simpler, 

possibility for calculating the energy and the probability density of the ground states of N-particle 

systems compared to other approaches, e.g., expansion into hyperspherical harmonics [10]. 

The Monte Carlo algorithm for numerical calculations was developed and implemented in 

C++ programming language using NVIDIA CUDA technology. The integration method does not 

require the use of any additional integration libraries. Parallel calculations (one thread calculated one 
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trajectory) were performed on the NVIDIA Tesla K40 accelerator installed within the heterogeneous 

cluster [1] of LIT, JINR, Dubna. The code was compiled with NVIDIA CUDA version 8.0 for 

architecture version 3.5. Calculations were performed with single precision. 

To check the correctness of the calculation of the propagator the comparison with the exactly 

solvable N-body ( 3 7N   ) oscillatory systems has been performed. For particles with equal masses 

im m  interacting with each other by oscillator potentials 

 
2
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the exact value of the ground state energy is 

 0 0

3
( 1)

2
E U N N     .  (8) 

Assuming 1,  1  , we obtain 0 0 1.5( 1)N NE U   . The Monte Carlo calculations were 

carried out with statistics 710n  . For values of the logarithm of the propagator, linear smoothing 

according to formula (4) was performed and the ground state energies were found. The results in 

Table 1 demonstrate satisfactory accuracy of calculations. 

 

Table 1. Comparison of exact and calculated ground state energies the exactly solvable N-body 

oscillatory systems 

Number of particles N 0U  Exact value of 0E  Calculated value of 0E  

3 0 4.098 4.11 ± 0.006 

4 15 6 5.98 ± 0.02 

5 20 6.584 6.56 ± 0.05 

6 20 1.629 1.84 ± 0.1 

7 20 3.812 3.63 ± 0.1 

 

3. Results for 3 and 4 body nuclei 

The same effective pairwise nucleon-nucleon, nucleon-cluster and cluster-cluster interaction 

potentials  V r  were used for all the studied nuclei, where r  is the distance between nucleons. In 

Refs. [69] the calculation of the propagator for the nuclei 
2,3

H, 
3,4

He neutron-neutron, proton-proton 

and neutron-proton two-body effective strong interaction potentials ( )i jV r  ( , ,i j n p ) similar to the 

M3Y potential [11, 12] have been used 
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The values of parameters are given in Ref. [8]. The calculations were performed in the center of mass 

system using the usual Jacobi coordinates. For a system of three particles, two of which have equal 

masses 1 2m m m   (two neutrons in 
3
H and 

6
He, a proton and a neutron in 

6
Li, two -clusters in 

9
Be and in 

12
C) 
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The theoretical binding energies B 0E E   obtained using formula (4) are listed in Table 2 

together with the experimental values taken from the NRV web knowledge base [13]. It is clear that 

the theoretical values are close enough to the experimental ones. The observed difference between 

the calculated binding energies of 
3
H and 

3
He is also in agreement with the experimental values. 

The α-cluster-nucleon and α-cluster-α-cluster strong interaction potentials ( )i jV r  (

, , ,i j n p  ) were used in the form of the combination of Woods–Saxon potentials 
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where 2,3s  . The values of parameters are given in Ref. [8]. The obtained theoretical energies of 

separation into cluster(s) and nucleon(s) 0SE E   are listed in Table 2 together with the 

experimental values taken from the NRV web knowledge base [13]. It can be seen that the theoretical 

values are close enough to the experimental ones. 

 

Table 2. Comparison of theoretical and experimental energies of separation of light nuclei into 

constituent particles 

Atomic nucleus Constituent particles Experimental value [13], MeV Theoretical value, MeV 
3
H n + n + p 8.482 8.21 ± 0.3 

3
He n + n + p 7.718 7.37 ± 0.3 

4
He n + n + p +p 28.296 30.60 ± 1.0 

6
He n + n +  0.97542 0.96 ± 0.05 

6
Li n + p +  3.637 3.87 ± 0.2 

9
Be n +  +  1.573 1.7 ± 0.1 

12
C

 
 +  +  7.37 7.39 ± 0.1 

16
O

 
 +  +  +  14.53 14.52 ± 0.1 

 

The probability density distribution 0 ( , ,cos )x y   for the configurations of nuclei 
6
He (α + n + n) and 

6
Li (α + n + p) with the angle  between the vectors x  and y  is shown in 

Figures 1 and 2, respectively. 

It can be seen that the most probable configurations of 
6
He nucleus are α-cluster + dineutron 

and the cigar configuration, whereas the configuration n + 
5
He has low probability. The only one 

possible configuration of 
6
Li nucleus is α-cluster + deuteron-cluster. 

The probability density distribution 0 ( , ,cos )x y   for the configurations of nucleus 
9
Be 

(α + n + α) with the angle  between the vectors x  and y  is shown in Figure 3. The most probable 

configuration is α + n + α, whereas the configurations α + 
5
He and n + 

8
Be are less probable. 

 

 

Figure 1. The probability density 
2

0  for the 
6
He nucleus and the vectors in the Jacobi coordinates; 

neutrons and α-clusters are denoted as small empty circles and large filled circles, respectively. The 

most probable configurations are α-cluster + dineutron (1) and the cigar configuration (2). The 

configuration n + 
5
He (3) has low probability. 
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Figure 2. The probability density 
2

0  for the 
6
Li nucleus and the vectors in the Jacobi coordinates; 

notations are the same as in Figure 1, protons are denoted as small filled circles. The only one 

possible configuration is α-cluster + deuteron-cluster. 

 

 

Figure 3. The probability density 
2

0  for the 
9
Be nuclei and the vectors in the Jacobi coordinates; 

notations are the same as in Figures 1, 2. The most probable configuration is α + n + α (1). The 

configurations α + 
5
He (2) and n + 

8
Be (3) are less probable. 
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5. Conclusions 

In this work an attempt is made to use modern parallel computing solutions to speed up the 

calculations of ground states of few-body nuclei by Feynman’s continual integrals method. The 

developed parallel algorithm provided significant increase of the speed of calculations. The method 

was applied to the nuclei consisting of nucleons and cluster nuclei. The results of calculations 

demonstrate that the obtained theoretical values are close enough to the experimental ones for the 

studied nuclei. The obtained probability densities may be used for the correct definition of the initial 

conditions in the time-dependent calculations of reactions with the considered nuclei [14]. The results 

may also serve as a useful addition to the results obtained by the expansion in hyperspherical 

functions [15]. 
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