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The workflow management process should be under control of a specific service that is able to 

forecast the processing time dynamically according to the status of the processing environment and 

workflow itself, and to react immediately on any abnormal behavior of the execution process. Such 

situational awareness analytic service would provide the possibility to monitor the execution process, 

to detect the source of any malfunction, and to optimize the management process. The stated service 

for the second generation of the ATLAS Production System (ProdSys2, an automated scheduling 

system) is based on predictive analytics approach. Its primary goal is to estimate the duration of the 

data processings (in terms of ProdSys2, it is task and chain of tasks) with possibility for later usage in 

decision making processes. Machine learning ensemble methods are chosen to estimate completion 

time (i.e., “Time-To-Complete”, TTC) for every (production) task and chain of tasks, and 

“abnormal” task processing times would warn about possible failure state of the system. This is the 

primary phase of the service development that also includes the strategy for its precision 

enhancement. The first implementation of such analytic service is designed around Task TTC 

Estimator tool and it provides a comprehensive set of options to adjust the analysis process and 

possibility to extend its functionality. 
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1. Introduction 

The key point of any control system is its ability to process a large amount of data and to 

extract the most valuable set of parameters and corresponding connections between them that would 

describe the behavior of the controlled system and forecast its future state with a certain level of 

confidence. The complexity of such control systems encapsulates a comprehensive model it is based 

on. A theoretical model of situation awareness contains workflow description and corresponding 

procedures regarding all above requirements. This model is viewed as “a state of knowledge” [1, 2]. 

The formal definition of situation awareness is presented as “the perception of the elements 

in the environment within a volume of time and space, the comprehension of their meaning and the 

projection of their status in the near future” [2]. It describes three essential levels / phases in 

achieving the situation awareness. The first phase (Level 1) is about perceiving the crucial factors of 

the environment (selection process of the most significant parameters to describe the controlled 

system’s behavior). The second phase (Level 2) is aimed at understanding the meaning of the 

collected data and their possible impact on the whole controlled system. And the third phase (Level 

3) gives an estimation of the (near) future state of the controlled system. Each of the phases is based 

on the outcome of the previous one, and it is a cyclic process. 

 The original scope of this model of situation awareness was the dynamic human decision 

making (in a variety of domains), and its structure is presented at the Figure 1 [2]. But also, this 

model represents a basic strategy to control the behavior of the system and might be used as a 

strategy (primary actions) for anomaly detection. 

Specifically, this schematic model is considered as a workflow for the control service of the 

ATLAS Production System (2nd generation, i.e., ProdSys or ProdSys2) [3]. ProdSys is a part of the 

distributed production/analysis and data management workflow in the ATLAS Experiment [4] (see 

Figure 2). ProdSys is a distributed task management and automated scheduling system with the 

current processing rate of about 2M tasks per year. Its major responsibilities include the following 

workflows: the central production of Monte-Carlo data, highly specialized production for physics 

groups, as well as data pre-processing and analysis using such facilities as grid infrastructures, clouds 

and supercomputers. 

The system contains such core components / layers as Ref. [5]: i) web UI to manage tasks 

(that consists of jobs that all run the same program) and production requests (i.e., group of tasks); ii) 

DEfT (Database Engine for Tasks) to formulate tasks, chains and groups of tasks; iii) JEDI (Job 

 

Figure 1. Model of situation awareness in dynamic decision making 
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Execution and Definition Interface, which is an intelligent component in the PanDA system [6]) to 

manage task-level workload with such key feature as dynamic job definition and execution for 

resources usage optimization (see Figure 3). The 4th layer is represented by PanDA system 

(workload management system) that is responsible for job execution process. 

2. Problem statement 

The possibility of controlling / tracking the state of a particular system requires being aware 

of its crucial parameters and processes, and their regular behavior. Such parameters and processes 

should be categorized following the potential failures of the controlled system. List of potential 

failures: i) overload in the system (that can cause for stuck handling processes); ii) malfunctioning of 

computing resources (that can cause failure of data processing); iii) components misconfiguration 

(that can cause improper operational processes); iv) general malicious activities (that can cause 

incorrect data results). 

The following parameters, which are actual ProdSys parameters or derived ones, reflect the 

specific state of the system and indicates a strong correlation with its failures of a particular category 

presented above. Controlled parameters are: 

 Duration of task (chain of tasks) execution (forecast and control Time-To-Complete); 

 Rate of task submission over processing during a limited period of time; 

 

Figure 2. The ATLAS ProdSys workflow management 
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Figure 3. Workload partitioning for traditional and opportunistic resources 
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 Cumulative number of failures or/and errors occurred; 

 Metrics of resources utilization (which are compared with optimal values). 

These parameters are considered as the initial set that has to be maintained, and should be extended 

later to improve the operational process. 

The goal of the designed control system (service) is being able to track the defined set of 

parameters of the controlled system (ProdSys), to distinguish their non-valid values according to the 

running state of the system, to forecast their next values considering the state of the computing 

environment and system itself, and base on corresponding metrics and controlled parameters to detect 

the source of malfunctioning. The current project is focused on description of the task TTC 

estimation as a part of the control service infrastructure (i.e., as a part of a proof-of-concept). 

3. Technology and methods 

Predictive analytics 

 

Predictive analytics is a form of conjunction of advanced analytics and decision optimization 

that uses both new and historical data to forecast future activity, behaviour and trends. Advanced 

analytics includes in itself: statistical analysis, machine learning, modeling, data visualization, and 

reporting; while decision optimization is represented by: scoring engine, rules engine, and 

recommendation engine. Thus, multiple variables are combined into a predictive model that is 

capable to assess future probabilities with a certain level of confidence. These predictive models 

(modeling) are used to look for correlations between different data elements (features). Predictive 

models are presented by two types: i) classification (predict the class membership for the considered 

object); ii) regression (predict a number for the specific feature of the object). Three of the most 

widely used predictive modeling techniques are decision trees, regression and neural networks. 

These techniques (or a combination of them) is a foundation for the Level 3 of the model of 

situation awareness. Predictive analytics should be applied to the parameters which are under the 

control, thus, the forecasting of their next value (state) will trigger the control system to follow the 

predefined actions. 

 

Processing framework and machine learning methods 

 

 Apache Spark [7] parallel processing framework and Spark.MLlib [8] machine learning 

library are used as a prediction tools for the control system / service. Apache Spark is a framework 

providing speedy and parallel processing of distributed data in real time (sophisticated analytics, real-

time streaming and machine learning on large datasets). It provides powerful cache and persistence 

capabilities. Because of these features Apache Spark is applied to defined data analytics problems. 

There are two regression ensemble methods (ensemble of decision trees) that were considered as the 

initial implementation for the predictive analytics: i) Gradient-Boosted Trees (GBT) regression 

method; ii) Random Forests (RF) regression method. Both methods were evaluated with the current 

service implementation, and RF outreached GBT in key characteristics such as less prone to 

overfitting, marginally better performance of parallel implementations, robust when the training set 

contains outliers. 

4. Conducted research 

The initial focus in controlling crucial parameters was set on estimation of the duration of 

task (chain of tasks) execution. The ability of being aware of the task execution process assists in 

forecasting the near-future state of the controlled system (as a basic representation of the system’s 

state). Three core stages for estimation of the task execution duration were highlighted, where each 

of the stage is applied at a certain time of the task lifecycle with available set of parameters (and 

applied corresponding techniques) and with a certain level of estimation accuracy: i) thresholds 

definition (based on statistical analysis); ii) initial / static predictions (based on descriptive data of 

task); iii) dynamic predictions (based on static and dynamic data of the running task). 
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The general workflow of the designed control system with its main components is presented 

at the Figure 4. It shows that the management process is concentrated in the “Control node”, while 

data processing is executed in the “Analytics cluster”. (Blocks “Collector” and “Model Handler” are 

responsible for the task TTC estimation.) 

 

Task Time-To-Complete by threshold definition 

 

The set of thresholds of the task execution duration is calculated based on the statistical 

analysis of the historical data for the last several months (6 months was used for the conducted 

research, see Figure 5). This stage is considered as a rough estimation of the duration of task of a 

particular type for the possible and valid values. The type of the task is a combination of its features 

such as <projectType> (e.g., “mc” – Monte-Carlo simulated data, “data” – real data collected from 

 

Figure 4. Controlled system structure overview (analytics cluster with highlighted services 

as provided by CERN-IT) 
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Figure 5. MC tasks duration distribution per month (for the last 180 days, collected on 2017-08-16) 

65 



Proceedings of the XXVI International Symposium on Nuclear Electronics & Computing (NEC’2017) 

Becici, Budva, Montenegro, September 25 - 29, 2017 

the physical experiment) and <productionStep> (e.g., evgen, simul, recon, merge, etc.). 

At Figure 5, there are plots with corresponding thresholds and columns per productionStep 

that are represented by: i) red vertical lines, which correspond to the values of maximum task 

execution duration for 95% of tasks that are finished during the defined period of time; ii) blue 

vertical lines are the same as red ones, but for 80% of finished tasks; iii) green vertical lines represent 

mean values of the task execution duration among all tasks of the defined type; iv) columns of a 

particular color represent the number of tasks that were started in a particular month (i.e., number in 

the legend corresponds to the number of the month) finished within a certain period of time (i.e., task 

duration). Thereby, the threshold for execution duration of 95% of tasks of a particular type was 

chosen as a rough estimation (other 5% of tasks were pruned as exceptions, which evaluation should 

be done separately), and which defines the range of valid values (i.e., “no warning” values). 

 

Task Time-To-Complete by predictive modeling 

 

The process of predictive modeling assumes to solve the problem (forecasting the value of a 

particular parameter) by creating a model from the sample data (training data based on historical 

data), thus take data with known relationships, and using learned relationships to make predictions on 

new data (to discover a certain outcome, e.g., numerical value of task execution duration). 

There are several categories of prediction approaches (where sub-categories are named 

according to temperature states to represent the time point of the task lifecycle when it is applied): 

 Initial / static predictions 

o “Cold”-prediction is based on task definition parameters that categorize the 

average execution process for the defined task type (with particular conditions). 

It gives the estimation of the task duration during its definition. 

 Dynamic predictions 

o “Warm”-prediction is based on description and state of scout jobs that are used 

to check the processing environment. It gives the prediction for the task duration 

immediately after task is launched. 

o “Hot”-prediction is based on the current state of the task processing (states of 

environment and corresponding jobs). It gives the prediction adjustment during 

the task execution (this prediction is calculated multiple times during the task 

execution process). 

The example of the static prediction based on Random Forest regression method is shown at 

the Figure 6. The following data was used for the prediction process: i) predictive models are based 

on “training” data (“mc-all” + “mc-recon” types) for the defined 3 months; ii) “test” data (“mc-

recon” type) for the next month (after training data is collected) was used to generate predicted task 

 

Figure 6. Real and predicted task durations (projectType=mc; productionStep=recon) 
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durations and compare it with real values. This result shows that predictions for tasks (execution 

duration of 95% of tasks of the defined type is under 27d) are actually following the real values of 

task durations (the accuracy for the defined example is presented with the following absolute error 

values: mean=1.57d, std=6.67d, RMSE=6.85d). Since the prediction approach of this category does 

not consider dynamic parameters and the state of the environment, the accuracy of predictions is low 

and can be considered as a rough estimation, same as for thresholds (further research will explore 

generated predictions based on different set of parameters for the training data). Predictions of 

“dynamic” category will increase the final accuracy (this is under the development). 
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6. Conclusion 

Techniques and methods of predictive analytics would benefit the control and monitoring 

processes for the controlled system. The situational awareness analytic service (based on predictive 

analytics techniques) would provide the possibility to detect the source of any malfunction, and to 

optimize the whole management process. 

The obtained results facilitate filtering the regular processes of tasks execution (with certain 

level of confidence) and form the basic layer for further sophisticated processes of highlighting 

abnormal operations and executions. The further improvement of the prediction process will increase 

the accuracy of the selection process of potentially failure task (chain of tasks), and the extension of 

this approach to other system’s computing blocks and data will keep the system aware of potential 

malfunction.  
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