Detecting and Preventing Power Outages in a
Smart Grid using eMoflon

Sven Peldszus, Jens Biirger, Daniel Striiber
{speldszus,buerger strueber } @Quni-koblenz.de

University of Koblenz and Landau

Abstract

We present a solution to the OQutage System Case of the Transformation
Tool Contest 2017, based on the bidirectional model transformation
language eMoflon. The case comprises two tasks, in which the goal is
to produce custom model views on a set of input models from a smart-
grid system, eventually allowing power outages to be detected and pre-
vented. To facilitate understandability, our solution uses eMoflon’s
declarative transformation rules. Moreover, to address performance,
we use a general-purpose-language preprocessing step contributing to
the identification of elements participating in the considered views.

1 Introduction

Model-driven engineering emphasizes the use of models to facilitate the development of software systems. As
the involved systems grow in size and complexity, maintaining a single model to represent the overall system
becomes infeasible. Complex scenarios usually involve a multitude of models to represent distinct concerns of
the system and its subsystems, working together in some well-defined way.

When working with such a multitude of models, two issues may arise: First, the information relevant for specific
tasks may be scattered over multiple models. To represent this relevant information in an easily digestible way,
custom model views on a set of models are required. Second, in the case of frequently changing models, it is
necessary to update these views after each modification. However, computing all views from scratch each time
an underlying model changes can be prohibitively expensive. A solution to this issue are incremental views
that reuse results from earlier view computations. Since the creation of incremental views is essentially a model
transformation problem, it is promising to address it with the available transformation tools.

In this context, the Outage System Case [Hinl7] of the 2017 Transformation Tool Contest, based on a smart-
grid setting, provides an interesting benchmark scenario. To capture information about a power supply system,
the benchmark features three kinds of models: The Common Information Model (CIM) describes physical
components, measurement data, control and protection elements. The Companion Specification for Energy
Metering (COSEM) model supports data exchange for meter reading, tariff and load control in power metering.
The Substation Configuration Description Language and Logical Node (SCL/LN) model fosters interoperability
of intelligent electronic devices in substation automation systems.

The Outage System Case comprises two tasks that each involve an incremental view on this set of models:
(1) an outage detection task to identify power outages based on a lack of responsiveness by a smart meter, and
(2) an outage prevention task based on disturbances that can be observed by comparing the current phasor data

Copyright © by the paper’s authors. Copying permitted for private and academic purposes.

In: Antonio Garcia-Dominguez, Georg Hinkel, Filip Kfikava (eds.): Proceedings of the 10th Transformation Tool Contest, Marburg,
Germany, 21-07-2017, published at http://ceur-ws.org

to historical ones. Technically, each of the views required for these tasks can be expressed as a model, based on
a view-specific meta-model (see Fig. 1la and Fig. 3 in [Hinl7]).

In this paper, we present a solution to the Outage System Case based on eMoflon [ALPS11], a bidirectional
model transformation language and tool based on the paradigm of triple graph grammars (TGGs, [Sch95]). The
main use-case of TGGs is the synchronization of two models, called left-hand side and right-hand side model
(LHS, RHS). The user specifies a set of rules, which map LHS meta-model classes to RHS meta-model classes
by using a dedicated correspondence model. From these correspondence rules, one can automatically generate
transformation code for realizing model synchronization in two directions: the forward direction for propagating
changes of the LHS to the RHS model, and the backward direction for propagating changes of the RHS to the
LHS model.

In our application of eMoflon to the Outage System Case, we interpret the set of input models as the LHS,
and the output view as the RHS. Since the views in our scenario are not required to be editable, we only need
the forward direction in order to produce and update the required views. We provide the code for our solution
at https://github.com/SvenPeldszus/rgse.ttcl7.emoflon.tgg.

The rest of this paper is structured as follows: In Sec. 2, we provide an overview of our solution. In Sec. 3,
we show details, including example rules. We evaluate our solution in Sec. 4, and give a conclusion in Sec. 5.

generated from

e T R e PR
i
LHS :
Y Corr Y i
Glue Correspondence View i
Meta-model Meta-model Meta-model |
I
A A A i
I 1, [1
| instance of | instance of | instance of |
CIM model : ‘. i |
I
Glue model Correspondence - View !
SO izl (LHS) <1 model (Cor) > (RHS) :
H I
COSEM model | ©Ombined A A A ;
takes maintains produces [
as input !
I
I
Transformation | —___________________ !
code

-

Figure 1: Overview of our view computation.

2 Overview

Fig. 1 shows an overview of the view computation. In eMoflon, the LHS has to be an instance of exactly one
meta-model. To accomplish this, we introduce a glue meta-model which integrates the three given meta-models
and adds a root class with containment references to the root nodes of these meta-models. Based on this meta-
model, the three input models can be combined into one model that we call glue model, instantiating the glue
meta-model.

A set of rules describes the triple graph grammar (TGG) used to construct the model view. These rules are
composed of graph patterns, where the contained nodes and edges refer to elements of the involved meta-models,
specifically, the glue, correspondence and view meta-models. Consequently, each TGG rule includes a pattern
of glue-model elements which is matched against the input glue model. Whenever the glue-model pattern of a
rule can be fully matched, the respective model elements of the view and the correspondence model are created.
The transformation is realized by running transformation code generated by eMoflon from the TGG rules.

Note that our solution does not support the incremental execution of the transformation; we recompute the
views from scratch after each change. In fact, eMoflon supports an incremental execution mode out of the box;
however, since our use of the glue meta-model makes some additional preprocessing necessary, the preprocessing
needs to be adapted to the incremental mode as well. Doing so is left to future work.

3 Details

In this section, we present the details of our solution. For each task, we first explain the preprocessing step,
followed by an explanation of the transformation.

3.1 Task 1: Outage Detection

Preprocessing. The preprocessing step has two goals: First, it unifies the input models into the glue model used
as input for the transformation. Second, it enriches this model with auxiliary references and model elements to
support a more compact specification and a more efficient matching.

To unify the input models, we introduce a dedicated container element called Root. A Root holds a CIM
model, a SCL/LN model and a COSEM model. In addition, it has some references to enable a more convenient
retrieval of involved elements: in particular, all MeterAssets of the CIM model are stored in a reference called
assets. Finally, it holds a set of MeterAssetsAndPhysicalDevicesPairs to identify pairs of PhysicalDevices
and MeterAssets with the same ID.

In a purely declarative specification, finding these pairs can be highly inefficient, since the underlying imple-
mentation may consider all pairs of PhysicalDevices and MeterAssets, filtering them to keep only those with
matching IDs. To overcome this, we compute these pairs upfront using a Java method of 15 lines of code, where
we consider each PhysicalDevice and MeterAsset element only once, while maintaining a a hash map. This
enables us to identify the required element pairs in linear time.

Transformation. The view produced to solve Task 1 includes three distinct classes: EnergyConsumer,
Location, and PositionPoint. Our transformation includes a TGG rule for producing each of them, amounting
to three basis TGG rules in total. These basis rules are further extended by rule refinements [ASLS14] for dealing
with special cases, such as the if-then-else in the MODELJOIN specification.

To understand eMoflon rules, it is important to consider that they declaratively specify how the considered
models should be related in the end. They do not specify the process of how these relationships are established—
instead, this process is realized in the generated forward and backward transformation code.

In Fig. 2 we present an example of a TGG rule and a related refinement. The upper half of Fig. 2 illustrates
the EnergyConsumer rule. The base rule represents lines 2 to 4 of the MODELJOIN source of Task 1. The rule
includes green nodes and edges for specifying newly created elements, and black nodes and edges for specifying
existing ones. LHS model elements are shown with a yellow background, and RHS elements are shown with
a red background. Elements of the correspondence model are indicated as diamonds. Beneath the graph, the
rule includes two attribute conditions, specifying equality between pairs of values. Lax equality (laxEq) is
used to compare a boolean to an integer, based on an underlying Java implementation. Note that the shown
graphical representation of rules is a read-only representation generated by eMoflon; the actual rule creation and
development was performed using eMoflon’s textual syntax.

In a nutshell, this rule specifies the correspondence between a MeterAsset-PhysicalDevice pair and an
EnergyConsumer. The forward transformation generated from the rule establishes that for each such pair in the
input model, a corresponding EnergyConsumer will be generated in the output model. The attribute conditions
ensure that the attributes of the newly created EnergyConsumer obtain the values according to the specification.
Note that MeterAssetPhysicalDevicePair was not contained in the original model; as argued above, we added
this during the preprocessing to enable a more compact specification and improved performance during matching.

The refinement EnergyConsumerWithID shown in the lower half of Fig. 2 deals with the following fact: For
the ServiceDeliveryPoint of the considered MeterAsset, an existing EnergyConsumer may or may not exist.
If it exists, it needs to be treated according to the view specification. We implement this distinction using rule
refinement. The underlying semantics is to glue together the refinement with all of its super-rules, based on name
equalities of the included elements. In the example, this allows us to apply the additional attribute condition to
the target model, enabling us to propagate the LHS EnergyConsumer’s mRID to the RHS EnergyConsumer’s ID
field, in case the former exists.

3.2 Task 2: Outage Prevention

Preprocessing. The preprocessing for task 2 follows the same basic ideas as for Task 1. We unify the input
models, populate certain convenience references and add auxiliary model elements to facilitate a compact spec-
ification and optimized matching. The custom parts of interest in the glue meta-model is a reference mmxus

++ pair : MeterAssetPhysicalDevicePair Energyconsumel’

TN

asset : MeterAsset device : PhysicalDevice
Miverypomt ‘++ / &utocowwalues
deliver : ServiceDeliveryPoint trgConsumer : EnergyConsumer connect : AutoConnectObject electric : ElectricityValues

laxEq(connect.Connection, trgConsumer.Reachability)
eq(electric.ApparentPowermLl, trgConsumer.PowerA)

A

deliver : ServiceDeliveryPoint trgConsumer : EnergyConsumer ++ EnergyConsumerWitth

EnergyConsumer

Legend
LHS Corr RHS create persist
++

consumer : EnergyConsumer

i

eq(consumer.mRID, trgConsumer.ID)

Figure 2: Example of a TGG rule and its refinement to compute the view in Task 1.

keeping track of the MMXU instances in the SCL/LN model, and a MeterAssetMMXUPair class maintaining pairs of
MeterAssets and MMXUs with the same ID. The purpose of these parts is the same as described for Task 1.

Transformation. Similar to Task 1, we organize the overall TGG rule specification into rules for specific classes
from the view meta-model and rule refinements for dealing with special cases thereof. This time, more different
elements types are involved and there are fewer special cases per element type: We distinguish 19 rules in total,
only three of them needing refinements.

Fig. 3 illustrates two of these rules. The Location rule specifies the correspondence of Location elements in
the LHS and RHS models, which are related to an existing MeterAsset and PMUVoltageMeter, respectively. To
comprehend why we need to specify the related MeterAssetMMXUPair as well, we first give some details on how
the matching process works.

In essence, the LHS is matched as a first step and after that, the RHS is matched. In TGGs, it is assumed
that for each LHS match, we can identify a corresponding RHS match. However, in our particular scenario,
the issue is that we do not transform all of the MeterAssets, but only some of them, strictly speaking those
with a corresponding MMXU. Therefore, specifying the MeterAssetMMXUPair (which, again, is produced during
preprocessing) saves us from matching MeterAssets with no RHS counterpart, which would lead to an error.

Based on the correspondence manifested in the Location rule, the Position rule specifies the correspondence
of PositionPoint classes in the LHS and RHS. Again, we use attribute conditions to specify the equality of
involved attributes, which will be used during the forward transformation to propagate the values from the
LHS element to the RHS counterpart. In the overall forward transformation process, all Locations will be
transformed first, which enables all PositionPoints to be transformed subsequently.

4 Evaluation

In this section, we evaluate two aspects of our solution: conciseness and performance.

According to the specification, conciseness is to be evaluated in terms of the number of Lines of Code (LoC).
The measurement shall include “the model views and glue code to actually run the benchmark”, while the code
for converting the change sequences can be ignored. We present the results in Table la. Since our solution
comprises declarative rule specification as well as some imperative orchestration code, we list both separately,
amounting to 1312 LoC for rules and 364 for code. The glue code for running the benchmark comprises 119 LoC.

For the performance evaluation, we show the execution times for both tasks when applied to the input change
sequences. All experiments have been performed on an Ubuntu 16.04 LTS PC with an Intel i5-6200U and 8 GB
of RAM of which our implementation was allowed to allocate up to 6 GB for the experiments.

pair

MeterAssetMMXUPair

la

asset :

MeterAsset

Location

pair :

MeterAssetMMXUPair

la

meter : MeterAsset

Location

location :

Location

++ /Location \
++

srcLocation :

Location

consumer

: PMUVoltageMeter

+/Position \
++

PositionPoint

positionPoint :

PositionPoint

trglocation :

Location

4_:!‘-\ ‘.j;;t///ﬁ;:;:;on

\\iit-k “:;j;,/tEZ;:;on
++

trgLocation : Location

trgPositionPoint :

PositionPoint

eq(positionPoint.xPosition,trgPositionPoint.xPosition)
eq(positionPoint.yPosition, trgPositionPoint.yPosition)
eq(positionPoint.zPosition,trgPositionPoint.zPosition)

Figure 3: Two related TGG rules for producing the view in Task 2 (Legend: see Fig. 2).

Part LoC
Rules 1312
Orchestration code 364
Benchmark code 119
Total 1795

(a) Conciseness.

5 Conclusion

Input Mode Time[ms] Input Mode Time[ms]
det/prev det/prev

seql.out000 batch ~ 847.9/1139.2 seq2.0ut000 batch 825.9/975.0
seql.delta001 batch 379.7/497.8 seq2.delta001 batch 350.2/504.9
seql.delta002 batch 387.9/598.2 seq2.delta002 batch 483.3/477.1
seql.delta003 batch 321.5/308.2 seq2.delta003 batch 281.4/312.2
seql.delta004 Dbatch 246.1/477.5 seq2.delta004 batch 256.7/329.1
seql.delta005 batch 210.8/350.7 seq2.delta005 batch 217.1/235.5

(b) Performance (task 1)

Table 1: Results.

(c) Performance (task 2)

We presented a solution to the TTC 2017 Outage System Case based on eMoflon. Following a simple prepro-
cessing step in Java, we facilitated a compact declarative specification as well as an efficient execution of our
solution. We believe that the overall solution combines the best of both worlds by providing a mostly declarative
specification, while using imperative code for performance-critical parts of the rule application process.

References

[ALPS11] Anthony Anjorin, Marius Lauder, Sven Patzina, and Andy Schiirr. eMoflon: Leveraging EMF and
Professional CASE Tools. Informatik, 192:281, 2011.

[ASLS14]

Anthony Anjorin, Karsten Saller, Malte Lochau, and Andy Schiirr. Modularizing triple graph gram-

mars using rule refinement. In International Conference on Fundamental Approaches to Software
Engineering, pages 340-354. Springer, 2014.

[Hin17]

Contest (TTC 2017), 2017.

[Sch95)

Georg Hinkel. The Outage System Case for Incremental Model Views.

Concepts in Computer Science, pages 151-163. Springer, 1995.

10th Transformation Tool

Andy Schiirr. Specification of graph translators with triple graph grammars. In Graph-Theoretic

