SO W N

The SDMULib Solution to the TTC 2017 Families 2
Persons Case

Albert Zundorf Alexander Weidt
Kassel University Kassel University
zuendorf@uni-kassel.de alexander.weidt@uni-kassel.de

1 Introduction

The TTC 2017 Family to Persons Case asks for bidirectional transformations between a Family model and a
Persons model. Each model provides informations that is not contained in the other model. Thus, the case asks
to keep some kind of correspondences between the elements of the two models. In addition, the case asks for
incremental handling of model changes.

Figure 1 shows the SDMLib class model for this case. SDMLib comes with its own code generation, i.e. we do
not use the EMF class model nor the EMF code generation. SDMLib class models do not provide aggregation
as this is an unusual concept within a graph like object model. Thus, the four associations between Family and
FamilyMember are modeled as bidirectional associations with explicit roles at the Family side. To deal with
these four associations easily, FamilyMember provides the additional method getFamily () that looks up all four
associations in order to find the corresponding family.

To maintain the correspondences between the two model parts, we have added a famReg-persReg asso-
ciation between FamilyRegister and PersonRegister. In addition we use a cp—cfm association connecting
FamilyMember objects with corresponding Person objects.

Adressing the incremental requirement, we use unidirectional changed links between the register objects and
their FamilyMember and Person objects, respectively. The set methods mark changed objects with c links, as
a side effect. Furthermore, the cp—cfm association has a life-dependency semantics: if one object is explicitly
destroyed, the corresponding partner is deleted as well. Again, this is implemented via side effects in the
corresponding removeYou() methods.

2 The rules

Figure 2 shows our forward transformation rule in graphical notation. Pattern matching starts with the pattern
object fr that matches the FamilyRegister object passed as parameter. Pattern object pr matches the corre-
sponding PersonRegister. Next, pattern object fm looks for FamilyMember objects marked as changed via a c
link. This c link is shown in red color as it is deleted on rule execution (in order to unmark handled objects).

Now there are two cases: there might already exist a corresponding Person object or not. The first case is
handled by the optional subpattern 1 shown in a dashed box in the bottom right corner of Figure 2. If pattern
object 0ldP finds a match, the pseudo condition ensureNameAndGender (01dP) is checked. This methods, is
shown below:

public boolean ensureNameAndGender(Person p) {
FamilyMember fm = p.getCfm ();
Family f = fm.getFamily ();
Class gender = Male.class;
if (fm.getMotherOf() != null || fm.getDaughterOf() != null) {
gender = Female.class;

Copyright © by the paper’s authors. Copying permitted for private and academic purposes.

In: A. Garcia-Dominguez, F. Krikava and G. Hinkel (eds.): Proceedings of the 10th Transformation Tool Contest, Marburg, Germany,
21-07-2017, published at http://ceur-ws.org

7

10
11
12
13
14
15
16
17
18
19
20
21
22

FamilyRegister PersonRegister
famReg persReg
1 1
1 1
register register
families
n
Family
name : String persons
n
c
Person < n
1 1 1 1 name : String
motherOf |fatherOf |sonOf |daughterOf
cp
mother |fatherOf | sons daughters
1 1 n n
c
n FamilyMember] Male Female
name : String
getFamily()

Figure 1: Adapted Class Model

}
if (p.getClass() != gender) {
try {
Person newP = ((Person) gender.newlnstance())
.withRegister (p. getRegister ()).withBirthday (p.getBirthday ())
.withCfm (p. getCfm ()). withName (p. getName ()) ;
p.removeYou ();
p = newP;
} catch (InstantiationException | IllegalAccessException e) {
e.printStackTrace ();
}
}

String fullName = String.format(”s, s”, f.getName(), fm.getName());
p.withName (fullName);
return true;

Listing 1: Example Graph Query in Java

The Families to Persons case requires that the mother and the daughters of a Family shall map to an object
of type Female within the PersonRegister. The father and the sons shall map to an object of type Male. As
a FamilyMember might have changed e.g. from the sons role of one family to the mother role of another family,
the corresponding Person object needs to change from type Male to type Female. As Java objects are not able

public void transformForward{FamilyRegister fr)

fr : FamilyRegisterPO personRegister | P PersonRegisterPO

== hound==

]

| =<=optional 2 >=

| - newP: PersonPO

fm : FamilyMemberPO

<< Create=>

{ ensureNamefAndGender{newP)}

[
[
I
[
[
I
[
| cp| =<optionall>> @ :
[
[
[
[
[
[

oldP: PersonPO l \‘_.}\ noOldP: PersonPO

{ ensureNameAndGender(oldP)}

- O G e . e S e e e

Figure 2: Forward Transformation Rule

to change their type, lines 10 to 12 of Listing 1 simply create a new Object of the appropriate gender and copy
all attributes and references from the old object. Finally, method ensureNameAndGender () assigns the current
full name to the Person object.

The second case is handled by the second optional subpattern of Figure 2. The second subpattern contains
a negative application condition shown as a solid blue box with a forbidden sign in its upper left corner. This
negative application condition again looks for an old corresponding Person if there is no match the negative
application is not violated and the surrounding pattern continues its matching. In our case, the second optional
subpattern just creates a new object of type Person. As discussed, we actually need an object either of type
Female or of type Male. This is again handled by calling method ensureNameAndGender () within the pseudo
condition shown below pattern object newP.

Figure 3 shows our backward transformation rule. Pattern matchin starts with the PersonRegisterP0 pattern
object pr shown in the up right corner. The match for pr is provided as parameter. The rule first looks for
a Person p that is marked as changed via a c¢ link. This ¢ link is destroyed (as indicated by the red color).
The backward transformation rule now handles two cases: there is an old corresponding FamilyMember or not.
The first case is handled by the optional subpattern shown at the bottom of Figure 3. The pattern object
01dFM matches a FamilyMember that has a cfm (corresponding family member) link to our Person p. Next
pattern object 01dF looks up the corresponding Family. This uses method getFamily () which tries motherOf,
fatherOf, daughter0f, and sonOf links to navigate from a FamilyMember to its Family. Now there are two

conditions. Condition 1 is a pseudo condition that actually assigns the given name of the current person to the
current FamilyMember. After that, the second condition checks, whether the current Family has the right name.
The second condition holds, if the current Family’s does not match current person’s family name. In that case,
we need to look for another Family with a matching name. This is done by the second subpattern of our rule.
Thus, in case of a conflict with the family name, the first subpattern matches (all conditions) and it is executed,
i.e. the 01dFM object is destroyed. (Causing the second subpattern to create a new FamilyMember object, see
below). If the family name matches, the second condition fails and the pattern is not executed but the 01dFM
object survives. In that case, the first pseudo condition has already adjusted the given name and the case of an
old existing FamilyMember is handled, completely.
public void transformBackward(PersonRegister pr)

fr : FamilyRegisterPO familyRegister pr : PersonRegisterPO

<< bound==

==<gptional 2 ==

getOrCreate(p.getFamilyName())

f : FamilyPO fm: FamilyMemberPO

{f.addToFit(frm)}
=< Creates>>

i

I

I

I

I

I

I

I

I

i Lo,

I ! ! :
. | p : PersonPQ

I {fm.name ;= p.getGivenName()} |

I

I

I

I

I

I

I

I

|

|

noQIdFM : FamilyMemberPO

=<optional 1 ==

oldF: FamilyPO | getFamily() oldFM: FamilyMemberPO

| |
I |
0 |
I |
I |
I |
| =< destroy==> |
I |
: {1: oldFM.name := p.getGivenName()} :
I |
| I

{2: oldF.name != p.getFamilyName()}

Figure 3: Backward Transformation Rule

The second optional subpattern of our backward transformation rule creates a new FamilyMember object
that corresponds to our Person p. This is done by the pattern object fm. The pseudo condition below fm
assigns the given name. We also need a Family f for the new FamilyMember. The Family is derived from the
FamilyRegister fr via the path expression getOrCreate(p.getFamilyName()). This operation searches our
FamilyRegister for a matching Family. If there is no Family with the right name, a new Family object is

created. Actually, the getOrCreate() methods also respects the Decisions parameter required by the case
description and creates always a new Family, if required. Now, we have to add our new FamilyMember to its
Family. This is done using the pseudo condition f.addToFit (fm). Method addToFit() just looks for the gender
of the current person and whether the corresponding parent role is still vacant and whether it should be used
or whether the new FamilyMember should become a daughter or a son, respectively. Note, method addToFit ()
might easily have been modeled as a model transformation rule, but the cases are pretty straight forward and
thus we just programmed it in plain Java.

3 Results
Batch FWD Incr. FWD
18 0,08
16 N 0,07 /’
14 0,06
1,2 Mv/\f" oon ’_/..,/
g ! ~ g o0a)
par_y 'y
gi ,,..-/ W e 2 I of IO N 002 - N eMoflon
0J2 /'/ A === BXtend 0,01 - BXtend
! J— _...—-,'-,_v
04T T T T 0 - T 7 Tl
PSS SIS SISO S 5833388858338
oy
N AT AT ANV AT 4,‘\& T g I REARAREIERSZ
model elements # model elements
Batch BWD Incr. BWD
30 0,03
: i yo Vit
g g
15 0,015
& / ——5DMLib 2 AV ——S5DMLib
10 001 et
/ — e Moflon . /\/ e & O lON
5 e BXt N 0,005 K/—/-’ e BXtEN
0 =TT T T T T T T T 0o+ T T T T T T T
gk '& & & & gv v v & @ g Ld 6'” Kol gk g
N P G S T L il e) '\° &
~ o AV 9 g e E Ny A RO S
model elements # model elements

Figure 4: Performance

Figure 4 shows the performance measured by the predefined scalability test of the Families to Persons case.
We have measured this performance on a laptop with 2 GHz Intel 17 CPU giving the Java process 6 GB heap
space. We compared SDMLib only to eMoflon and BXtend as the Medini and the FunnyQT approach used a
magnitude more time. Final performance results will be delivered by the case organizers that are able to compare
all solutions on one computer. Thus, Figure 4 gives some relative results, only. Still, SDMLib performance almost
similar to BXtend while eMoflon is 2 or 3 times slower. All tools deal well with the incremental transformations.

References
[SDMLib] SDMLib - Story Driven Modeling Library www.sdmlib.org May, 2017.

[F2PCase] Anthony Anjorin, Thomas Buchmann and Bernhard Westfechtel The Family to Persons Case
www.transformation-tool-contest.eu/TTC_2017_paper_2.pdf May, 2017.

