
A framework for multi-level semantic trace

abstraction

Doctoral Consortium ICCBR 2017

Manuel Striani

PhD Candidate
Department of Computer Science, University of Torino

Corso Svizzera 185, 10149 Torino, Italy
striani@di.unito.it

1 Research Summary

Many commercial information systems and enterprise resource planning tools
routinely adopted by organizations and companies worldwide, like those provided
by, e.g., Oracle and SAP, record information about the executed business process
instances in the form of an event log [5]. The event log stores the sequences (traces
henceforth [3]) of actions that have been executed at the organization, typically
together with key execution parameters, such as times, costs and resources.

Event logs constitute a very rich source of information for several business
process management tasks. Indeed, the experiential knowledge embedded in
traces is directly resorted to, e.g., in operational support and in agile workflow

tools, which can take advantage of trace comparison and retrieval. Opera-
tional support [3] assists users while process instances are being executed, by
making predictions about the instance completion, or recommending suitable
actions, resources or routing decisions, on the basis of the comparison to already
completed instances retrieved from the log. The agile workflow technology [10,
8] deals with adaptation and overriding needs in response to expected situations
(e.g., new laws, reengineering e↵orts) as well as to unanticipated exceptions and
problems in the operating environment (e.g., emergencies) [4], even if the default
process schema is already in use by some running instances [9, 2]: in order to
provide an e↵ective and quick adaptation support, many agile workflow systems
share the idea of recalling and reusing concrete examples of changes adopted in
the past, recorded as traces in the event log. The CBR [1] methodology, and in
particular the retrieval step, can therefore be adopted in this context.

In my PhD thesis, I am developing a framework to compare and retrieve
process traces, represented at di↵erent levels of abstraction. The framework
will then be interfaced to operational support or agile workflow tools, as well
as to other analysis mechanisms. In this paper, I describe the methodological
approach behind trace abstraction; the applications mentioned above will be
considered in my future work.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Copyright	©	2017	for	this	paper	by	its	authors.	Copying	permitted	for	private	and	
academic	purpose.	In	Proceedings	of	the	ICCBR	2017	Workshops.	Trondheim,	Norway		

179



Manuel Striani

1.1 Multi-level abstraction mechanism

We are developing a semantic-based, multi-level abstraction mechanism,
able to operate on event log traces. In our approach, actions in the log are
mapped to instances of ground concepts (leaves) in a taxonomy, so that they
can be converted into higher-level concepts by navigating the hierarchy, up to
the desired level, on the basis of the user needs.

The abstraction mechanism has been designed to properly tackle non-
trivial issues that could emerge. Specifically:

– two actions having the same ancestor in the taxonomy (at the chosen ab-
straction level) may be separated in the trace by a delay (i.e., a time interval
where no action takes place), or by actions that descend from a di↵erent
ancestor (interleaved actions henceforth). Our approach allows to deal with
these situations, by creating a single macro-action, i.e., an abstract action
that covers the whole time span of the two actions at hand, and is labeled
as the common ancestor; the macro-action is however built only if the to-
tal delay length, or the total number/length of interleaved actions, do not
overcome proper admissibility thresholds set by the user. The delays and
interleaved actions are quantified and recorded, for possible use in further
analyses. In particular, we have defined a similarity metric where this in-
formation is accounted for as a penalty, and a↵ects the similarity value in
abstract trace comparison;

– abstraction may generate di↵erent types of temporal constraints between
pairs of macro-actions; specifically, given the possible presence of interleaved
actions, we can obtain an abstracted trace with two (or more) overlapping
or concurrent macro-actions. Our approach allows to represent (and exploit)
this information, by properly maintaining both quantitative and qualitative
temporal constraints in abstracted traces. Once again, this temporal infor-
mation can be exploited in further analyses. In particular, the similarity

metric we adopt in trace comparison can deal with all types of temporal
constraints.

Specifically, the procedure to abstract a trace operates as follows:

– for every action i in the trace:
• i is abstracted as its ancestor at the taxonomy level selected by the user;
the macro-action m i, labeled as the identified ancestor, is created;

• for every element j following i in the trace:
⇤ if j is a delay, its length is added to a variable tot�delay, that stores

the total delay duration accumulated so far during the creation of
m i;

⇤ if j is an interleaved action, its length is added to a variable tot �
inter, that stores the total interleaved actions durations accumulated
so far during the creation of m i;

⇤ if j is an action that, according to domain knowledge, abstracts as
the same ancestor as i, m i is extended to include j, provided that

180



1. RESEARCH SUMMARY

tot�delay and tot� inter do not exceed domain-defined thresholds.
j is then removed from the actions in the trace that could start a new
macro-action, since it has already been incorporated into an existing
one;

• the macro-action m i is appended to the output abstracted trace which,
in the end, will contain the list of all the macro-actions that have been
created by the procedure.

The variables tot � delay and tot � inter, accumulated during abstraction,
are also provided as an output attribute of each macro-action and they will be
used as a penalty in abstracted trace similarity calculation.

The most significant and original methodological contributions of the work
thus consist in:

1. having defined a proper mechanism for abstracting event log traces,
able to manage non trivial situations (originating from the treatment of in-
terleaving actions or delays between two actions sharing the same ancestor);

2. having provided a trace comparison facility, which resorts to a similar-

ity metric (extending the metric presented in [6]), able to take into account
also the information recorded during the abstraction phase.

In the third year, I will concentrate on experimental work referring to trace
comparison and I will deal with operational support, agile workflow management,
or other activities, including process mining on abstracted traces. As regards
process mining, in particular, we wish to test when abstraction allows to make
clear and more readable process model.

1.2 Current development stage

With the help of an expert physician in stroke patient management, we have
formalized medical domain knowledge in a taxonomy (which has been organized
by goals) by using the Protègè ontology editor [7]. Actions in traces are mapped
to the taxonomy leaves, so navigating the taxonomy it is possibile to abstract
actions by goals. we have worked on a metric for trace comparison that is able
to manage both temporal and non temporal information in traces, and to take
into account information collected during the abstraction process.

The system architecture we have developed, is shown in Figure 1. Rectangles
represent computational modules, while ovals and cylinders represent domain
knowledge sources and the database. The first step to be executed is event log

preparation, that takes in input the available database (DB), and exploits domain
knowledge (the taxonomy); the event log will then undergo abstraction. The
abstracted event log will be given as an input to trace comparison resorting to
the metric we have developed, or to process mining, operational support, or other
activities, that we plan to realize by resorting to ProM.

181



Manuel Striani

Trace
comparison	

Multi-level	
abstraction

Event	log
preparationDB Event	log

Abstracted	
event	log

.RDF
Taxonomy

Process	mining
Operational	support
Agile	workflow	management

Fig. 1. Framework architecture and data flow

1.3 Future work

During my last PhD year, the framework will be tested in the field of stroke
management, where we will adopt multi-level abstraction and trace comparison
to cluster event logs of di↵erent stroke units, in order to highlight correct and
incorrect behaviors, abstracting from details (such as local resource constraints or
local protocols). The goal will be to show that, the application of the abstraction
mechanism allows to obtain more homogeneous and compact clusters (i.e., able to
aggregate closer examples), still making outliers clearly identifiable, and isolated
in the cluster hierarchy. Some first encouraging results are already available.

As regards process mining, the ground processes (process learned on trace at
the same level of taxonomy leaves) are typically ”spaghetti-like”: they presents
an extremely large number of nodes and edges which make it hard to identify
details. Our hypothesis is that models learned on abstracted traces will be much
more compact and it will be possible for medical experts to analyze them. This
topic will be studied during my last year as well.

Finally, we will provide abstracted traces as an input to operational support
or agile workflow management facilities.

182



Manuel Striani

References

1. A. Aamodt and E. Plaza. Case-based reasoning: foundational issues, methodolog-
ical variations and systems approaches. AI Communications, 7:39–59, 1994.

2. F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow evolutions. Data and

Knowledge Engineering, 24:211–238, 1998.
3. W. Van der Aalst. Process Mining. Discovery, Conformance and Enhancement of

Business Processes. Springer, 2011.
4. P. Heimann, G. Joeris, C. Krapp, and B. Westfechtel. Dynamite: dynamic task

nets for software process management. In Proceedings International Conference of

Software Engineering, pages 331–341, Berlin, 1996.
5. http : //www.win.tue.nl/ieeetfpm. IEEE Taskforce on Process Mining: Process

Mining Manifesto (last accessed on 4/11/2013).
6. S. Montani and G. Leonardi. Retrieval and clustering for supporting business

process adjustment and analysis. Information Systems, 40:128–141, 2014.
7. The Protégé Team. The Protégé website: urlhttp://protege.stanford.edu/, 2013.
8. M. Reichert and P. Dadam. Adeptflex-supporting dynamic changes of workflows

without losing control. J. Intell. Inf. Syst., 10:93–129, 1998.
9. S. Rinderle, M. Reichtert, and P. Dadam. Correctness criteria for dynamic changes

in workflow systems - a survey. Data and Knowledge Engineering, 50:9–34, 2004.
10. B. Weber and W. Wild. Towards the agile management of business processes.

In K. D. Altho↵, A. Dengel, R. Bergmann, M. Nick, and T. Roth-Berghofer, edi-
tors, Professional knowledge management WM 2005, LNCS 3782, pages 409–419,
Washington DC, 2005. Springer, Berlin.

183


