
Parallelization of Query Processing over Expressive Ontologies

E. Patrick Shironoshita1, Da Zhang2, Mansur R. Kabuka1,2 and Jia Xu2

1INFOTECH Soft, Inc.
1201 Brickell Avenue, Suite 220

Miami, Florida 33131, USA
patrick@infotechsoft.com

2University of Miami
Coral Gables, Florida 33124, USA

Abstract
Efficient query answering over Descrip-
tion Logic (DL) ontologies with very large
datasets is becoming increasingly vital.
Recent years have seen the development
of various approaches to ABox partition-
ing to enable parallel processing. Instance
checking using the enhanced most spe-
cific concept (MSC) method is a partic-
ularly promising approach. The applica-
bility of these distributed reasoning meth-
ods to typical ontologies has been shown
mainly through anecdotal observation. In
this paper, we present an analysis method
that makes use of random graph theory to
show that the enhanced MSC method re-
sults in very small, tractable concepts pro-
vided that the number of role assertions re-
moved from consideration is large enough.
We also present execution time and ef-
ficiency of a parallel implementation de-
ployed over computing clusters of various
sizes, showing the ability of the method to
process instance checking for large scale
datasets.

1 Introduction
Description Logics (DL) are increasingly being
used to model and represent structured and semi-
structured data in different applications (Horrocks,
2008). A core task for DL systems is to provide
an efficient way to answer queries over the exten-
sional level of the ontology, that is, to compute
answers that are not only asserted, but logically
implied by the ontology (Calvanese et al., 2013).
Considerable efforts have been dedicated to the
optimization of algorithms for query answering in
recent years (Calvanese et al., 2013; Möller et al.,
2007; Motik et al., 2007). One of the challenges
faced in this era of increasing data wealth is to pro-
duce responsive results for queries over very large

data sets (Priya et al., 2014). However, even as rea-
soners for very expressive DLs have been created,
performing reasoning over very large ABoxes is
still prohibitive (Calvanese et al., 2013; Donini,
2003; Glimm et al., 2007).

In the last few years, methods for parallel and
distributed reasoning over expressive ontologies
have been published (Xu et al., 2013, 2015b; Priya
et al., 2014; Wandelt and Möller, 2012); these
methods generally seek to make use of fast syn-
tactic checks to generate a set of independent par-
titions that can be processed in parallel. In (Xu
et al., 2015a), a method for instance checking
is proposed, combining the work in (Xu et al.,
2013, 2015b) with the idea of a most specific con-
cept (MSC) (Nebel, 1990; Donini and Era, 1992;
Donini et al., 1994) to move the reasoning task
from the very large ABox into a much smaller
TBox. Empirical evaluation of the method has
shown its ability to perform sound and complete
instance checking over SHI DLs within reason-
able time. Moreover, the method is inherently par-
allelizable, lending itself to implementation within
clusters of commodity hardware. In this paper, we
examine the enhanced MSC method and its paral-
lelization implementation.

2 The Enhanced Most Specific Concept
(MSC) method

2.1 Basic MSC Method

A Description Logics (DL) knowledge base, also
referred to as an ontology, is typically defined a tu-
ple, denoted K = (T ,A), where the terminologi-
cal component or TBox T contains definitions of
concepts and roles, and the assertional component
or ABox A contains assertions about membership
of individuals in concepts and about role relations
between individuals. The set of roles, concepts,
and individual instances in an ontology are de-
noted respectively by R, C, and I. The discussion

116

TBox

Headmaster v Professor
Professor v Person
MagicCourse v Course
Muggle v ¬Wizard
takesCourse.MagicCourse v Wizard
9isHeadOf.School u Person v Headmaster

ABox

School(hogwarts)
Professor(albus)
Professor(severus)
MagicCourse(potions)
MagicCourse(transfiguration)
Course(math)
Student(harry)
Muggle(dudley)
isHeadOf(hogwarts, albus)
takesCourse(harry, transfiguration)
taughtBy(transfiguration, albus)
taughtBy(potions, severus)

Table 1: Example ABox

in this paper assumes that the reader is familiar
with DL concepts and notations; refer to (Baader
et al., 2003) for details. For the discussion below,
we will use the example illustrated in Table 1.

Definition 1 (Most Specific Concept) (Nebel,
1990; Donini and Era, 1992) Let K = {T ,A}
be an ontology, and a be an individual in
I. The most specific concept for a w.r.t.
A, written MSCT (A, a), is a concept such
that for every concept D where K |= D(a),
T |= MSCT (A.a) v D.

If MSCT (A, a) can be derived, then, to test
whether K |= Q(a) holds for an arbitrary con-
cept Q it suffices to test if (T [{Q}) |=
MSCT [{Q}(A, a) v Q. We call the concept Q
the query. Note that Q needs to be inserted into the
TBox in simple form, which may require in turn
the insertion of additional named concepts as well
as general concept inclusion (GCI) axioms to ex-
press the necessary equivalences for these inserted
concepts. In the remainder of this paper, we will
assume that the query Q has been inserted into the
TBox so that MSCT (A, a) denotes the MSC cal-
culated considering Q.

Computation of the MSC for a given individ-
ual a as defined above can be performed using a
rolling up procedure adapted from the one first in-
troduced in (Horrocks and Tessaris, 2000).
Definition 2 (Basic MSC Rollup Procedure)
Provided that the ABox does not contain assertion
cycles, computation of the MSC can be performed
recursively as follows:

1. for a given individual a, start with an empty
MSCT (A, a);

2. for every concept assertion C(a) ,
MSCT (A, a) MSCT (A, a) u C;

3. for every role assertion R(a, b),
MSCT (A, a) MSCT (A, a)
u 9R.MSCT (A\{R(a, b)}, b);

4. for every individual equality assertion a = a0,
MSCT (A, a) MSCT (A, a)
uMSCT (A, a0).

So, in the example ABox above, the MSC for
severus is

Professor u 9taughtBy�.Course (1)

It is important to note that while class asser-
tions generate relatively simple concepts, role as-
sertions are capable of generating very complex
concepts. Suppose for example that ABox An

consists of role assertions R0(a0, a1), R1(a1, a2),
. . . , Rn(an, an+1); then:

MSCT (An, a0) =

9R1.(9R2.(. . . (9Rn.MSCT (an+1)) . . .)) (2)

Thus, in the example ABox of Table 1, the MSC
for harry is

Student u 9takesCourse�.

(Course u 9taughtBy.

(Professor u isHeadOf�.School)) (3)

Two main issues preclude this basic MSC
method from proving fully useful with expressive
ontologies. First, if assertion cycles are present in
the ABox, the method does not terminate. For ex-
ample, consider what would happen if

isProtegeOf(albus,harry) (4)

is inserted into the ABox, then a cycle forms
among the individuals harry, transfiguration,
and albus.

Second, unless the ABox is highly discon-
nected, the method has the potential to generate
very large concepts, of size in the same order of
the ABox itself. Consider what happens if the fol-
lowing assertion is added to the ABox:

takesCourse(harry,potions) (5)

In this case, all individuals become connected
with each other, and the MSC of every individual
ends up being the same size of the ABox.

117

Xu et.al. (2015a) define a set of improvements
that result in the Enhanced MSC Method. This en-
hancement consists of two parts: a mechanism to
address assertion cycles, and a set of syntactic con-
ditions to reduce the size of the MSCs in practical
ontologies.

2.2 MSC Computation with Assertion Cycles
To address assertion cycles, Xu et.al. (2015a) use
nominals to indicate the joint node of a cycle, as
previously suggested in (Donini and Era, 1992;
Schaerf, 1994).

Definition 3 (MSC Rollup of Assertion Cycles)
When a cycle is found starting and ending at in-
dividual ac, the individual is represented by
its corresponding nominal class {ac}, and the
conversion of role assertions within the cycle
requires modification of the rollup method as
follows: If ac is an individual where a cycle is
found, select a direction to go through the cycle
and:
• for R(ac, x), x 6= ac

MSCT (A, ac) MSCT (A, ac)u
({ac}u 9R.MSCT (A\{R(ac, x)}, x))

• for R(y, ac), y 6= ac
MSCT (A, y) MSCT (A, y) u 9R.{ac}

• for R(ac, ac),
MSCT (A, ac) MSCT (A, ac) u {ac}
u9R.{ac}

• for any other R(x, y) in the cycle, for x 6= ac
and y 6= ac,

MSCT (A, x) MSCT (A, x)
u9R.MSCT (A\{R(x, y)}, y)

Thus, if an ABox

Ac = {R0(a0, a1), R1(a1, a2), . . . , Rn(an, a0)}

the MSC of an assertion cycle is obtained as fol-
lows:

MSCT (Ac, a0) =

{a0} u 9R1.(9R2.(. . . (9Rn.{a0}) . . .)) (6)

So, suppose that the ABox in Table 1 is aug-
mented with the assertion in equation (4), then the
MSC for harry becomes

{harry} u Student u 9takesCourse�.

(Course u 9taughtBy.

(Professor u isHeadOf�.School

u isProtegeOf�.{harry})) (7)

Use of the MSC method to perform instance re-
trieval is straightforward. Suppose it is desired to
query an ABox to retrieve all instances of a con-
cept Q. It suffices to generate MSCT (A, a) for ev-
ery individual a in the ABox, and then accept ev-
ery individual where (T [Q) |= MSCT (A, a) v
Q. Note that the query concept Q is added to the
TBox being verified.

2.3 Syntactic Conditions
In (Xu et al., 2015a), syntactic conditions verifi-
able in polynomial time or better were defined, to
enable reduction on the size of the MSC and thus
permit TBox reasoning in tractable time. These
conditions are based on the following:

Lemma 1 Given two individuals a and b and a
role R, a role assertion R(a, b) influences the clas-
sification of individual a into concept A if and only
if

K |= 9R.B uA0 v A (8)

where K |= B(b) and where A0 6v A summarizes
information about a not contained in A.

Proposition 1 Let K = (T ,A) be a SHI on-
tology containing named concept A, concepts A0

and B, and role R. If equation (8) holds, there
must exist some GCIs in T of the form

9R0.C1 ./ C2 v C3 (9)

where R v R0, ./ is a placeholder for either u or
t, and Ci’s are concepts.

Proof of this proposition can be found in (Xu et al.,
2013).

Proposition 1 directly leads to a first syntactic
condition denoted SYN COND.

Definition 4 (SYN COND) Role assertions of
the form R(a, b) are said to be true for
SYN COND if role R participates in at least one
axiom that can be logically converted to the form
of equation 9 for some R v R0, false otherwise.

Assertions R(a, b) with SYN COND = false do
not affect the classification of a unless either R
or some R0 such that R ✓ R0 exist in the query,
and can be safely removed from the calculation
of MSCT (A, a). By symmetry to the inverse role
R�, this condition also applies to b. In practice,
the axioms more likely to be found are of the form
C v 9R.D, which is equivalent to C u > v
9R.D. Also note that (C v 8R.D) ⌘ (9R.¬C v
¬D). In the example in Table 1, assertions with

118

role isHeadOf have SYN COND=true, while as-
sertions with roles takesCourse and taughtBy

have SYN COND=false and can be safely re-
moved from consideration, unless the roles exist
in the query itself. Note that in this case, the MSC
for harry is reduced to

Student u 9takesCourse�.Course (10)

A second syntactic condition presented in (Xu
et al., 2015a) relies on the identification of explicit
concept assertions and disjointness axioms that in-
dicate that an individual cannot be classified to an
existential restriction:

Definition 5 (SYN COND DJ) Role assertions
R(a, b) with SYN COND= true are said to be
true for SYN COND DJ if there do not exist any
of:

• an explicit concept assertion B0(b) such that
K |= B0 v ¬C1;

• an explicit concept assertion A0(a) such that
K |= A0 v ¬C3; or

• an explicit concept assertion A0(a) such that
K |= A0 v ¬(C3 t ¬C2)

for C1, C2, an C3 as in Eq.(9) and R v R0.

Role assertions with SYN COND DJ=false can
be safely removed from the calculation of the
MSC of any individual, since they do not affect
classification of either a or b. For example, in Ta-
ble 1, role assertions with role takesCourse have
SYN COND=true due to the assertion

takesCourse.MagicCourse v Wizard.

However, suppose that the following assertion
were inserted into the ABox:

takesCourse(dudley,math) (11)

This assertion has SYN COND DJ=false, since
dudley is an instance of Muggle, which in turn is
disjoint with Wizard, the filler concept in the as-
sertion above.

Definition 6 (SYN COND SC) Role assertions
R(a, b) with SYN COND= true are said to be
true for SYN COND SC if, for every GCI of the
form in Eq.(9) there exists an explicit concept as-
sertion A0(a) such that K |= A0 v C3.

Role assertions with SYN COND SC=true are
redundant for the classification of a, and can there-
fore be safely removed from the calculation of the

MSC of any individual. For example, the role as-
sertion

Headmaster(albus) (12)

would have SYN COND SC=true.
Application of these three syntactic conditions

to the computation of the MSC of a given individ-
ual results in a significant reduction in the size of
the MSC for practical ontologies. The reasons for
this reduction will be established in more detail in
the next section, but first we provide a definition
for the parallelization of the algorithm.

Remark 1 The MSC method is guaranteed to be
sound and complete for SHI DL (Xu et al.,
2015a). It can be extended to DL with expressiv-
ity SHIQ with unique name assumption, that is,
if it is assumed that two individuals a and b are
different if they have different names. Details of
such extension are outside the scope of this paper,
but they are straightforward, and generally follow
the extensions to equality-free module extraction
detailed in (Xu et al., 2013).

2.4 Parallelization of the MSC Method
The MSC method, including the syntactic condi-
tions detailed above, is highly parallelizable, due
to the following:

Proposition 2 For a given knowledge base K =
(T ,A), computation of MSCT (A, a) for an in-
dividual a can be performed independently of the
computation of the MSC of any other individual.

Proof of this proposition follows directly from the
definition of the MSC computation in Definitions
2 and 3, as well as in the definition of the syntac-
tic conditions, where it should be clear that MSC
computation depends only on the initial state of
the knowledge base. This means that the calcula-
tion of the MSCs for all individuals can be done in
parallel. Instance checking then needs to be per-
formed against T [MSCT (A, a) for every indi-
vidual a.

Note that naive parallelized processing of in-
dividual equality assertions (i.e., owl:sameAs ex-
pressions) using the procedures outlined in Defi-
nition 2 results in redundant computations. Pre-
computation of the reflexive-transitive closure of
these equalities avoids such redundancy. Note
also that anonymous individuals, typically pre-
sented as blank nodes in OWL, are processed in
the same way as named individuals for calculation
purposes.

119

As is shown later in Section 4, parallelization
of the MSC method allows for the processing of
extremely large ABoxes within clusters of com-
modity hardware. The resulting computational
complexity is sublinear with respect to the size
of the ABox, which indicates linear complexity
for single-machine implementation. In the next
section, we present an analysis of the expected
computational complexity of the enhanced MSC
method, and show why it has tractable expected
performance for practical ontologies.

3 Data Complexity and Random Graphs

3.1 MSC Method Worst-Case Complexity
Typically, the size of the ABox as measured by
the number of facts it contains is orders of mag-
nitude greater than the size of the TBox, and also
much larger than the size of the query. While it has
been shown that, even with exponential time com-
plexity, TBoxes of realistic size can be processed
in realistic time (Donini, 2003), practical ABoxes
can contain million of individuals. Data complex-
ity for instance checking in DLs with expressiv-
ity SHIQ has an upper bound of 2EXPTIME
(Glimm et al., 2007). A family of less expres-
sive languages called DL-Lite have been shown to
be first-order-logic rewritable and thus with data
complexity in AC0, while even small additions to
this language family renders the data complexity
for instance checking in co-NP complete or worse
(Calvanese et al., 2013).

It is clear that the MSC method for instance
checking is EXPTIME-complete for SHI. Since
the computation of the MSC is PTIME, as it is es-
sentially depth-first search, complexity of check-
ing depends on TBox reasoning. From Definition
1, it should be clear that for a connected ABox,
the size of the MSC is the size of the ABox it-
self. Since testing for the subsumption of the
MSC against a concept in the TBox is reducible
to satisfiability testing of the union of the TBox
and the MSC, instance checking with the MSC
method is equivalent to satisfiability testing for
SHI DLs, which is EXPTIME-complete (Tobies,
2001). Given that the syntactic conditions defined
in subsection 2.3 do not guarantee that any role
assertions will be actually removed from the cal-
culation of the MSC, the worst-case complexity
of the enhanced MSC method is still EXPTIME.
This situation is unlikely to occur in practice how-
ever, as it would mean that every role in the ABox

would have to be involved in a GCI of the form of
equation (9).

From a practical standpoint, it seems more in-
teresting to study the performance of the enhanced
MSC method when used with typical ABoxes.
Graph theory, and particularly random graph the-
ory, provide methods and tools for the study of
typical graphs.

3.2 Random Graph Theory
Random graph theory is concerned with the study
of graphs as probabilistic random variables with a
defined probability distribution. Here we provide
a short summary of the points of interest to this
paper; the reader is referred to (Chung, 2009) for
more details.

Many real-world network structures are so-
called scale-free, that is, they exhibit power-law
degree distributions (Mika, 2007; Newman, 2002).
A random power-law graph model can be defined
as G(C,↵), where the number of nodes nk with
degree k is given by

nk = C · k�↵ (13)

where C is the volume of the graph and ↵ is the
log-log rate of growth of the graph.

It is important to note that random power-law
graphs do not contain nodes with degree of 0,
since at this value the distribution is undefined;
therefore, analysis of random power-law graphs
discards all zero-degree nodes. Where it is nec-
essary to make the distinction, we will denote the
number of non-zero-degree nodes the effective or-
der of the graph.

It has been shown that a phase transition oc-
curs as the average node degree increases (where
the degree of a node is the number of edges con-
nected to it.), so that at a critical value a giant com-
ponent forms with high probability 1 (Erdős and
Rényi, 1960; Molloy and Reed, 1995). A compo-
nent (also called connected component) is a maxi-
mal subset of the nodes of the graph and all edges
between those nodes such that there is a path be-
tween any two nodes in the component. A giant
component is a connected component with num-
ber of nodes in the same order of magnitude as the
graph itself. For any random graph, the phase tran-
sition occurs at the point given by the solution of:

1Since random graph theory is probabilistic, conclusions
are always obtained ”with high probability”. Henceforth, we
will abbreviate this as w.h.p. This is also sometimes stated as
”asymptotically almost surely”, or just ”almost surely”.

120

1X

k=0

k(k � 2)pk = 0 (14)

where pk is the degree distribution. For power-law
graphs, this reduces to (Newman, 2002; Chung,
2009):

1X

k=0

k1�↵k2�↵ = ⇣(↵� 2)� 2⇣(↵� 1) = 0

(15)

after integration, where ⇣(t) =
P1

n=1 n
�t is the

Riemann zeta function. Thus, the phase transi-
tion point occurs at the value of the power-law ex-
ponent ↵0 = 3.47875.... Graphs with exponent
↵ < ↵0 show a unique giant component of size
O(n) w.h.p. It can also be shown that for ↵ > 2
the second largest component is in size ✓(log n),
for 1 < ↵ < 2 the second largest component is
in ✓(1), and for ↵ < 1 the graph is connected, all
w.h.p (Chung, 2009).

3.3 Random Graphs and the MSC method
To apply random graph theory to the study of DL
ABoxes, we define the role assertion graph as fol-
lows:

Definition 7 (ABox Role Assertion Graph)
The set of role assertions in a SHI ABox define
an unlabeled, undirected graph GA, where the
nodes represent the individuals in the ABox, and
where there is an edge between nodes if there is
at least one role assertion between the underlying
individuals.

In other words, the ABox graph GA replaces
multiple parallel edges between two nodes with
a single, unlabeled edge. Self-loops are still
allowed. Note that with respect to the MSC
method, parallel edges result in only a small in-
crease in MSC size, equivalent to the number of
parallel edges. Suppose multiple role assertions
R1(a, b), R2(a, b), . . . , Rn(a, b) exist in between
individuals a and b in the ABox A; application of
the rollup procedure for assertion cycles in Defini-
tion 3 results in the following:

MSCT (A, a) MSCT (A, a) u {a}
u 9R1.(9R�

2 {a} u · · · u 9R�
n {a}

uMSCT (A\{R1(a, b), R2(a, b)

. . . Rn(a, b)}, b)) (16)

Thus, collapsing parallel edges into a single un-
labeled edge results in minimal reduction in the
complexity of MSC calculations.

Certain properties in the role assertion graph GA
can be readily related to expected characteristics
of the MSCs calculated for the underlying ABox.
Specifically:

• the size of MSCT (A, a), as measured by
number of simple form concepts that it con-
tains, is equivalent to the order of the con-
nected component that contains the node that
represents the individual a.

• the number of conjuncts at the top level of
MSCT (A, a) is proportional to the degree of
the node representing a.

• the maximum quantification depth of
MSCT (A, a) is given by the diameter of the
connected component containing the node
corresponding to a.

It is clear that the appearance of a giant component
then means that the MSC for a significant number
of individuals is in O(n), and that therefore the
complexity of MSC instance checking is exponen-
tial in n.

The application of the syntactic conditions out-
lined in subsection 2.3 can be reflected in the role
assertion graph through the removal of assertions
that do not satisfy the conditions. An important
question to ask is how such removal affects the
characteristics of the resulting graph. Since ran-
dom graphs are generative processes, it is reason-
able to assume that removal of edges follows the
same degree distribution as the original generation
of the graphs themselves. If this is the case, the
resulting graphs retain their power-law degree dis-
tribution. Thus, if the original ABox role assertion
graph had a giant component of size O(n), for n
the number of nodes, w.h.p. the modified graph
will also show a giant component.

Note however that the reduction in the number
of edges necessarily results also in a reduction in
the effective order of the graph, that is, in the num-
ber of non-zero-degree nodes. It is in fact possible
to calculate both the number of nodes n and num-
ber of edges E in the graph based on the volume
and log growth rate parameters from equation 13.
For ↵ > 2, the equations are as follows (Chung,
2009):

n =
1X

k=1

C · k�↵ ⇡ C · ⇣(↵) (17)

121

Classes Existential
Restrictions

MSC HermiT MSC HermiT
Min. 7.82 0.67 7.30 0.76
Max. 19.66 780.20 26.94 2,848.68
Avg. 8.38 19.42 9.14 489.95
Std. Dev. 1.42 90.50 3.24 698.14
Median 8.16 0.79 8.19 135.94

Table 2: Times (in seconds) for execution of class
and existential restriction queries

E =
1

2

1X

k=1

k · C · k�↵ ⇡ 1

2
· C · ⇣(↵� 1) (18)

The ratio n
E is then

n

E
⇡ 2⇣(↵)

⇣(↵� 1)
(19)

which depends only on ↵. Therefore, if ↵ remains
constant, a reduction in the number of edges
necessarily results in a proportional reduction
in the number of (non-zero-degree) nodes, that
is, in the effective order of the graph. As will be
shown in Section 4, it is this property that enables
the enhanced MSC method to provide extremely
good performance for very large ABoxes.

4 Experimental Evaluation

4.1 Accuracy
To test both the accuracy and to measure paral-
lelization speedup of the enhanced MSC method,
we set up clusters of compute-optimized instances
through Amazon Web Services (AWS)2. The en-
hanced MSC method with syntactic condition cor-
rection was implemented in Java and Scala to work
over Apache Spark3, installed over Hadoop HDFS
and YARN.

For the accuracy tests, we used an in-memory
version of our enhanced MSC implementation.
We set up clusters of two c4.xlarge machines, each
containing 4 virtual CPUs and 7.5GB of mem-
ory, to run the enhanced MSC method, and com-
pared the results against the HermiT reasoner ver-
sion 3.8.14, running on a single c4.xlarge ma-
chine; HermiT was chosen as a comparison stan-
dard due to its stability and speed; future tests will

2aws.amazon.com
3https://spark.apache.org/
4http://www.hermit-reasoner.com

be done against other reasoners such as Pellet5 and
Konclude6. These tests were performed against a
single department dataset for the University On-
tology Benchmark (UOBM) (Ma et al., 2006),
containing about 150,000 triples. The UOBM
TBox was modified to convert cardinality restric-
tions to existential restrictions, since our current
implementation only handles expressivity up to
SHI. This modified version can be provided upon
request. The UOBM Tbox contains a total of
113 named classes and 35 object properties. We
tested our enhanced MSC implementation against
all 35 named class queries, and all 3,955 possi-
ble single-depth existential restriction queries, and
verified 100% agreement between our enhanced
MSC method implementation and HermiT. In ad-
dition, we recorded the running time for all query
executions - the results can be seen in Table 2. It is
interesting to note that the enhanced MSC method
performs much better than HermiT for existential
restrictions. Also note the large standard deviation
found when running a hypertableaux-based rea-
soner like HermiT, where a few queries take a very
long time to finish. This result also suggests the
possibility of using enhanced MSC in tandem with
a traditional reasoner when dealing with smaller
datasets.

4.2 Parallelization
To test the parallelization of the MSC method,
we used the c3.8xlarge instances,which provide 32
virtual CPUs and 60 GBs of storage. We used
the Lehigh University Benchmark (LUBM) (Guo
et al., 2005) to generate data sets of up to 500 mil-
lion triples. LUBM was chosen as an initial test
ontology due to its ability to generate datasets of
varying size, while providing a reasonably expres-
sive TBox. These data sets were stored using the
TitanDB7 graph database interface over an Apache
HBase8 backend. Both TitanDB and HBase were
installed over Hadoop HDFS 2.7. Our prototype
application over Spark accesses TitanDB through
its standard Java interface. Data distribution and
replication are performed by the database and are
transparent to our application.

A test was performed to evaluate the scalability
of the parallel MSC method over the number of
triples in the ABox. This test was performed over

5https://github.com/stardog-union/pellet
6http://derivo.de/produkte/konclude/
7http://thinkaurelius.github.io/titan/
8http://hbase.apache.org/

122

Figure 1: Execution time vs. data set size with
LUBM datasets, in AWS, for 10 c3.8xlarge ma-
chines with 32 cores each.

a cluster of 10 c3.8xlarge machines in AWS. The
results are shown in the log-log diagram in Figure
1. As can be observed, the method shows clear
sub-linear performance with respect to the size of
the data set, as expected from an algorithm with
linear performance in a sequential machine.

The performance with respect to the number of
machines was evaluated in two parts. First, to
evaluate under small cluster conditions, a 500,000
triple set was assembled and used to test against
1 to 10 machines. The execution time and the
efficiency with respect to single-machine execu-
tion are shown in Figure 2a. To obtain evaluation
for large numbers of machines, we used the ABox
with 500 million triples and ran it against 10 to
50 machines; to provide a more realistic estima-
tion, the efficiency value was corrected against the
result for 500,000 triples in 10 machines. These
higher scalability results are shown in Figure 2b.

In terms of raw performance, the parallel en-
hanced MSC algorithm was capable of performing
instance checking for a dataset with 500 million
triples and over 110 million individual instances
in about 1,240 seconds, or around 20 min., using
a cluster of 10 machines and a total of 320 execu-
tion cores. Using 50 machines, the execution time
was 346 seconds, or somewhat less than 6 min-
utes. As a comparison, although the difference
in algorithms means that execution times are not
directly comparable, Oracle reports full ABox in-
ference over 869 million triples in 62 minutes, and
query performance over this pre-reasoned ABox in
about 4.3 min., using specialized hardware (W3C,
2015). It is also important to note that, since tests
were performed over an uncontrolled environ-
ment, external perturbations could have affected

(a) Efficiency for small number of machines

(b) Efficiency for large number of machines

Figure 2: Execution time and efficiency of paral-
lelization.

some measurements. Nevertheless, it is clear that
the MSC method provides performance compara-
ble with top-of-the-line database technologies and
very broad scalability.

These results demonstrate that the enhanced
MSC method is inherently parallelizable, enabling
it to work with large scale ABoxes. They also
show that the fact that in the worst case the en-
hanced MSC method is in EXPTIME does not
preclude its usefulness with practical ontologies.
In the next section, we evaluate the characteristics
of typical ABoxes that support this assertion using
random graph models.

4.3 Random Graph Complexity Analysis
For this purpose, we have created ABox role as-
sertion graphs for the same set of ontologies used
for the empirical evaluation in (Xu et al., 2015a),
and have calculated the least-squares fit for their
degree distributions. The data sets used are the
following:

1. LUBM1 and LUBM4: Lehigh University
Benchmark ontologies about higher educa-
tion entities generated using the tool provided
by (Guo et al., 2005); and

2. Arabidopsis thaliana (AT) and Caenorhabdi-
tis elegans (CE), two ABoxes built over the
BioPAX TBox about biomedical pathways in

123

n E C ↵ R2

LUBM1 17,174 49,321 19,608 2.051 0.75
LUBM4 78,579 236,514 162,116 2.276 0.72

AT 42,695 74,680 75,558 2.653 0.92
CE 37,162 68,034 147,066 2.89 0.92

Table 3: Degree distribution of role assertion
graphs of common ontologies: The least-squares
fit approximation for the degree distributions of
the role assertion graphs of selected common on-
tologies is shown. n is the number of nodes; E the
number of edges; C and ↵ are the volume and log-
growth of the power law; and R2 is the correlation
coefficient of the approximation.

the respective organisms; the TBox and both
ABoxes can be provided upon request.

We have performed the least-squares fit up to
a maximum degree of 100, which accounts for
over 99.8% of all nodes in every graph considered.
Since there usually are discrepancies when the de-
gree is very small or very large (Chung, 2009), this
truncation eliminates a significant source of inac-
curacy in the models. Table 3 provides the total
number of edges and nodes of the role assertion
graph (remember that the number of edges differs
from the total number of properties in the ABoxes
due to the conversion to a graph), values for C and
↵ in Equation 13, and correlation coefficient R2.
Note that the larger graphs approximate a power-
law degree distribution to a very high degree. Note
also that the exponents of the approximations are
all between 2 and 3, which is the typical range for
small-world, scale-free networks (Mika, 2007).

We have then calculated the effective order and
log-growth rate of the degree distribution of the
ABox role assertion graphs for all ontologies after
application of SYN COND, SYN COND DJ, and
SYN COND SC; the results, shown in Table 4,
demonstrate that these conditions indeed produce
a drastic reduction in the effective order of the role
assertion graph and thus in the size of the result-
ing connected components, even if a giant compo-
nent still appears. Observe in particular that for
the LUBM ontologies, the reduction is so signifi-
cant that only a very small number of individuals
remain connected to others.

It is interesting to examine the relative impact
of the various syntactic conditions. Note that
SYN COND must always be applied, since with-
out it, the other conditions do not make sense.
Table 5 shows the impact for the application of

Eff. E
n

LUBM1 30 15
LUBM4 142 71
AT 11,364 11,573
CE 9,123 8,240

Max. Avg. non-
Size Size sngltn

LUBM1 17,160 2 1.00 15
LUBM4 78,508 2 1.00 71
AT 32,911 442 1.30 1,580
CE 29,913 251 1.24 1,874

Table 4: Component sizes after application of syn-
tactic conditions. The ’non-sngltn” column gives
the number of components that have more than
one node.

the different conditions on the AT ABox; similar
trends can be seen with the other data sources. As
can be seen, the initial SYN COND condition ac-
counts for a significant portion of the reduction,
but still leaves highly connected components, and
is therefore not sufficient on its own to enable
processing of instance checking in realistic time.
Both the disjointness and subclass conditions con-
tribute to a further reduction, resulting finally in a
realistic component size for TBox reasoning pur-
poses. In general, SYN COND SC contributes
more of the reduction in size, for all studied on-
tologies. It should be also noted that a very large
number of resulting components are singletons,
which in the MSC method result in subsumption
checking based only on class assertions; this can
be performed very fast since the class hierarchy of
the TBox can be precomputed.

Up to now, we have assumed that the power
law exponent remains constant after application of
the various syntactic conditions. It is interesting
then to evaluate the behavior of the exponent in
the power law distribution of equation 13. Figure
3 shows this for the AT data source on a log-log
scale; as can be seen, other than significant de-
viations at very low degree values, the exponent
remains relatively constant.

5 Discussion and Future Work

The enhanced MSC method is inherently paral-
lelizable, since instance checking for every indi-
vidual in the ABox can be performed indepen-
dently. Coupled with recent advances in clus-
ter computing such as Apache Spark, large triple

124

Graph size Components

Effective E # Max. Avg. non-
n Size Size sngltn

SYN COND 33,235 33,015 12,447 2,411 3.43 2,987
SYN COND DJ 23,377 22,374 22,161 862 1.93 2,843
SYN COND SC 19,197 19,099 25,801 1,695 1.66 2,303
SYN COND ALL 11,364 11,573 32,911 442 1.30 1,580

Table 5: Component sizes after application of different syntactic conditions on the AT data set.
SYN COND ALL refers to the application of all conditions.

Figure 3: Power law distribution of AT data source
after application of different syntactic conditions.

stores can be queried efficiently using commodity
hardware clusters or cloud platforms.

Even as worst-case complexity of the method
is in exponential time for a single sequential ma-
chine, and thus intractable for parallelization, the
method performs within realistic time in practi-
cal, real-world ontologies, which typically present
a power-law degree distribution. As discussed in
our random graph theory analysis, this is due to the
ability of the method to reduce the size of the con-
nected components formed within the ABox Role
Assertion Graph, which in turn means a reduction
in the size of the MSCs generated for the individ-
uals in the ABox. Our method is thus most ef-
fective when the different syntactic conditions can
be applied to effect this reduction, and will possi-
bly prove less beneficial if most of the roles in the
TBox are engaged in axioms of the form of equa-
tion (9).

We are currently exploring the use of the
method to address full conjunctive queries over
DL knowledge bases expressed in the SPARQL
query language. This requires the expansion of the
MSC method to retrieve individuals a and b that
can be inferred to be in a relation R(a, b). This
extension is being implemented based on Theorem
4.1 in (Xu et al., 2015a). The implementation of

SPARQL query answering will also enable us to
perform tests with other existing benchmarks such
as the DBPedia SPARQL Benchmark (DBPSB).
In addition, we are working on improvements in
the efficiency of the parallelization of the MSC
method. In particular, we are looking into com-
bining multiple individuals that form part of the
same connected component in the ABox role as-
sertion graph in the same parallel task, since it can
be seen in Definitions 2 and 3 that portions of the
MSC computation can be shared among individu-
als provided that they are connected to each other.

6 Conclusion
In this paper, we have presented a parallel imple-
mentation of the enhanced MSC method, and we
have evaluated execution time and efficiency as we
varied the size of the data and the number of pro-
cessors used. Since the method performs indepen-
dent checking for every individual in the ABox, it
is inherently parallelizable. The results show sub-
linear performance with respect to the size of the
ABox, which stems from its performance in linear
time in the computation of the MSCs, and almost
constant time for reasoning due to the small size
of the resulting MSC.

Acknowledgements
This work is supported by grant # R44GM097851
from the National Institute of General Medical
Sciences (NIGMS), part of the U.S. National In-
stitutes of Health (NIH).

References
Franz Baader, Diego Calvanese, Deborah L. McGuin-

ness, Daniele Nardi, and Peter F. Patel-Schneider,
editors. 2003. The description logic handbook: the-
ory, implementation, and applications. Cambridge
University Press, New York, NY, USA.

Diego Calvanese, Giuseppe De Giacomo, Domenico
Lembo, Maurizio Lenzerini, and Riccardo Rosati.

125

2013. Data complexity of query answering in de-
scription logics. Artificial Intelligence 195:335–
360. https://doi.org/10.1016/j.artint.2012.10.003.

Fan Chung. 2009. A whirlwind tour of random graphs.
In Robert A. Meyers, editor, Encyclopedia of Com-
plexity and Systems Science, Springer, pages 7493–
7505.

F Donini and A Era. 1992. Most specific concepts for
knowledge bases with incomplete information. In
Proceedings of CIKM. Baltimore, MD, USA, pages
545–551.

Francesco M. Donini. 2003. Complexity of Reason-
ing. In Franz Baader, Diego Calvanese, Debo-
rah L. McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors, The description logic hand-
book: theory, implementation, and applications,
Cambridge University Press, New York, NY, USA,
pages 96–136.

Francesco M. Donini, Maurizio Lenzerini, Daniele
Nardi, and Andrea Schaerf. 1994. Deduction in
Concept Languages: from Subsumption to Instance
Checking. J Logic Computation 4(4):423–452.
https://doi.org/10.1093/logcom/4.4.423.

P. Erdős and A. Rényi. 1960. On the Evolution of Ran-
dom Graphs. In Publication of the Mathematical In-
stitute of the Hungarian Academy of Sciences. pages
17–61.

Birte Glimm, Ian Horrocks, Carsten Lutz, and Uli Sat-
tler. 2007. Conjunctive Query Answering for the
Description Logic SHIQ. In Proceedings of the 20th
International Joint Conference on Artifical Intelli-
gence. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, IJCAI’07, pages 399–404.

Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. 2005.
LUBM: A Benchmark for OWL Knowledge Base
Systems. Web Semant. 3(2-3):158–182.

Ian Horrocks. 2008. Ontologies and the Se-
mantic Web. Commun. ACM 51(12):58–67.
https://doi.org/10.1145/1409360.1409377.

Ian Horrocks and Sergio Tessaris. 2000. A conjunctive
query language for description logic ABoxes. In In
In AAAI/IAAI. pages 399–404.

Li Ma, Yang Yang, Zhaoming Qiu, Guotong Xie, Yue
Pan, and Shengping Liu. 2006. Towards a Com-
plete OWL Ontology Benchmark. In The Semantic
Web: Research and Applications. Springer, Berlin,
Heidelberg, pages 125–139.

Peter Mika. 2007. Social Networks and the Seman-
tic Web, volume 5 of Semantic Web and Beyond.
Springer US, Boston, MA.

Michael Molloy and Bruce Reed. 1995. A critical point
for random graphs with a given degree sequence.
Random Struct. Alg. 6(2-3):161–180.

Boris Motik, Rob Shearer, and Ian Horrocks. 2007.
Optimized Reasoning in Description Logics Using
Hypertableaux. In Frank Pfenning, editor, Auto-
mated Deduction – CADE-21, Springer Berlin Hei-
delberg, number 4603 in Lecture Notes in Computer
Science, pages 67–83.

Ralf Möller, Volker Haarslev, and Michael Wessel.
2007. On the Scalability of Description Logic
Instance Retrieval. In Christian Freksa, Michael
Kohlhase, and Kerstin Schill, editors, KI 2006:
Advances in Artificial Intelligence, Springer Berlin
Heidelberg, number 4314 in Lecture Notes in Com-
puter Science, pages 188–201.

Bernhard Nebel. 1990. Reasoning and Revision in Hy-
brid Representation Systems. In Lecture Notes in
Artificial Intelligence. Springer-Verlag.

Mark E. J. Newman. 2002. Random graphs as models
of networks. In Stefan Bornholdt and Hans Georg
Schuster, editors, Handbook of Graphs and Net-
works, Wiley-VCH Verlag GmbH & Co. KGaA,
pages 35–68.

Sambhawa Priya, Yuanbo Guo, Michael Spear, and
Jeff Heflin. 2014. Partitioning OWL Knowledge
Bases for Parallel Reasoning. IEEE, pages 108–115.
https://doi.org/10.1109/ICSC.2014.34.

Andrea Schaerf. 1994. Reasoning with individuals in
concept languages. Data & Knowledge Engineering
13(2):141–176.

Stephan Tobies. 2001. Complexity Results and Practi-
cal Algorithms for Logics in Knowledge Represen-
tation. arXiv:cs/0106031 ArXiv: cs/0106031.

W3C. 2015. Large Triple Stores - W3c Wiki.
https://www.w3.org/wiki/LargeTripleStores.

Sebastian Wandelt and Ralf Möller. 2012. Towards
ABox Modularization of Semi-expressive Descrip-
tion Logics. Appl. Ontol. 7(2):133–167.

Jia Xu, Patrick Shironoshita, Ubbo Visser, Nigel John,
and Mansur Kabuka. 2013. Extract ABox Modules
for Efficient Ontology Querying. arXiv:1305.4859
[cs] ArXiv: 1305.4859.

Jia Xu, Patrick Shironoshita, Ubbo Visser, Nigel
John, and Mansur Kabuka. 2015a. Convert-
ing Instance Checking to Subsumption: A Re-
think for Object Queries over Practical On-
tologies. International Journal of Intelligence
Science 05(01):44–62. ArXiv: 1412.7585.
https://doi.org/10.4236/ijis.2015.51005.

Jia Xu, Patrick Shironoshita, Ubbo Visser, Nigel
John, and Mansur Kabuka. 2015b. Module Ex-
traction for Efficient Object Queries over On-
tologies with Large ABoxes. AIA 2(1):8–31.
https://doi.org/10.15764/AIA.2015.01002.

126

