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Abstract

This work revisits the age-old problem of
balancing search precision and recall us-
ing the promising new approach of Se-
lective Search which partitions the doc-
ument collection into topic-based shards
and searches a select few shards for any
query. In prior work Selective Search
has demonstrated strong search precision,
however, this improvement has come at
the cost of search recall. In this work,
we test the hypothesis that improving the
effectiveness of shard selection can better
balance search precision and recall. To-
ward this goal we investigate two new
shard selection approaches, and conduct
a series of experiments that lead to three
new findings:- 1. Big-document based
shard selection approaches can substan-
tially outperform the small-document ap-
proaches when provided with richer query
representation, 2. Applying Learning-To-
Rank approach for shard ranking provides
the most effective Selective Search setup,
3. If the relevant documents for a query are
spread across less than 10% of the shards
then Selective Search can successfully bal-
ance precision and recall.

1 Introduction

The problem of balancing search precision and re-
call is not new to the IR (Information Retrieval)
community. Improving one, almost always re-
sults in degrading the other. The most promi-
nent example of IR, Web search, makes it seem
that search precision is more important than re-
call. However, there are many other use cases of
IR where search recall is equally, if not more, im-
portant than precision. Medical or health informa-
tion retrieval, prior-art search, and legal informa-

tion retrieval are a few examples of the same. Mo-
tivated by these observations, we take a fresh look
at the problem of balancing search precision and
recall through the lenses of a promising new ap-
proach of Selective Search (Kulkarni and Callan,
2015). Selective Search is a distributed query pro-
cessing approach that has been shown to improve
search efficiency tremendously while sustaining
the effectiveness. To accomplish this, at indexing
time Selective Search partitions the document col-
lection into shards based on document similarity.
The resulting shards are topically homogeneous,
that is, documents about the same or related top-
ics are in the same shard. At query time, Selec-
tive Search exploits this topical organization by
restricting query processing to a select few shards.
This is contrary to the traditional distributed query
processing approach where the query is processed
at all the shards (Exhaustive Search). This is
needed because Exhaustive Search uses random
shards where documents are allocated to shards
at random. As a result, the relevant documents
to a query may be spread across many (or all)
shards. For topical shards, however, the relevant
documents for a query are likely to be concen-
trated into a few (or one) shards because these doc-
uments are typically similar to each other (Xu and
Croft, 1999). These shards that are likely to con-
tain relevant documents to the query are identified
using shard ranking algorithms.

We believe that the topical organization of the
document collection along with the selective na-
ture of this search approach, can support a search
environment that can balance precision and re-
call. We test this hypothesis in this paper through
a series of experiments where we apply well-
established shard ranking approach, and propose
improvements to these algorithms that leverage
the topic-based organization of the documents.
Selective Search has consistently demonstrated
good performance on precision-oriented metrics.
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The reason for this trend is the purity of the search
space. The few topical shards that are selected
and searched for a query contain much less noise,
that is, false-positive documents, than the com-
plete collection. A purer search space reduces the
chances of non-relevant documents being included
in the search results, which directly improves the
precision. In order to improve recall, Selective
Search needs to identify all the shards containing
relevant documents. Thus when optimizing for re-
call, more than a few shards need to be searched.
As such the accuracy of shard ranking algorithm
at deeper ranks also becomes critical. This ob-
servation suggests that an effective shard ranking
algorithm would be able to improve search re-
call without degrading precision. We test this hy-
pothesis thoroughly using empirical evaluation as
early and deeper ranks. Finally, we introduce a
novel shard ranking approach, Learning to Rank
Shards (LeToR-S), that is based on the successful
Learning-to-Rank document approach (Qin et al.,
2010).

This paper is organized as follows. The prior
work that has informed and influenced our work is
described in the next section. The proposed shard
ranking approaches are described in Sections 3
and 4. The experimental setup used for evalua-
tion is described in Section 5, followed by Results
and Analysis, Section 6. The conclusions we draw
from this work are provided in Section 7.

2 Related Work

Selective Search falls under the subfield of dis-
tributed information retrieval (Callan, 2002; Shok-
ouhi et al., 2011) where the goal is to search across
multiple existing resources, and to aggregate the
results. One of the important research problems
in distributed IR is that of ranking the resources
(shards) based on the number of relevant docu-
ments they contain for the query. A long line
of research has studied this problem. The pro-
posed algorithms can be roughly categorized into
two groups: Big-document approaches, which are
based on term frequency statistics of the resources.
And Small-document approaches, which are based
on a small sample of documents from each re-
source. Algorithms from both these categorize are
described next.

2.1 Big-document approaches
In cooperative environments, the providers of tar-
get resources are willing to share the term statis-
tics and metadata of the documents collections.
The methods ranking resources based on the
term statistics are called big-document approaches
since the model can be extended from document
retrieval model by treat each resource as a entity.

GlOSS(Gravano et al., 1994), and its extended
versions gGloss (Gravano and Garcia-Molina,
1999) and vGlOSS(Gravano et al., 1999) provide
a solution of text database discovery problem. The
algorithms uses the ratio of term frequency and
database size, also other metadata like field infor-
mation(title, body, links) for choosing the candi-
date resources.

CORI(Callan et al., 1995)(Callan, 2002) algo-
rithm keeps document frequency(df) and shard
frequency(sf) of each term, and computes the
score of every shard by a variation of tf.idf for-
mula.

T =
dfi

dfi + 50 + 150 ⇤ swi/avg sw
(1)

I =
log(S+0.5

sf )

log(S + 1.0)
(2)

Score(tk|Si) = b+ (1� b) ⇤ T ⇤ I (3)

dfi: the document frequency of the term tk in
shard i.
sf : the shard frequency of the term tk (The

number of shards contain tk).
swi: the number of total words in the shard i.
avg sw: the average number of total words in

one shard.
S: the number of shards.
tk: the kth term in the user query.
b: the minimum belief component, set to 0.4
CORI inherited the query operators from IN-

QUERY(Callan et al., 1992) document retrieval
system which based upon Bayesian inference net-
work model. The operator set used by INQUERY
[sum, wsum, and, or, not] can work unchanged for
ranking both documents and databases.

Taily(Aly et al., 2013) is another big document
approach. According to Kanoulas et al’s work
(Kanoulas et al., 2010), the term frequency based
document score across whole collection can be
modeled by gamma curve distribution. Thus, Taily
pre-computes two parameters scaler ✓ and K of
gamma distribution to fit the document score for
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every single-term query against every shard. By
storing the score distribution of single-term query
against every shard, it can estimate the score dis-
tribution of user query with multiple terms.

2.2 Small-document approaches
In uncooperative environments, the important
statistics such as term frequency or collection size
can not be obtained. Therefore, big-document ap-
proaches are not capable to compute the shard
scores. Small-document algorithms solve this is-
sue by approximating the document distribution
inside a resource by sampling a small subset,
which is called centralized sample database, or
centralized sample index (CSI) structure.

The ReDDE(Si and Callan, 2003) algorithm
runs the user query against the CSI and assumes
that the top n retrieved documents are relevant.
The original version of ReDDE compute a score
for each shard as follow equation:

Score(Sq
i ) = Count(n, Sq

i )⇥
|SCSI

i |
|Si|

(4)

Count(n, Sq
i ) is the count of documents occurred

in top n retrieved documents in CSI |Si| is the size
of the shard and |SCSI

i |is the size of its sample
. The shard scores are then normalized to obtain
a valid probability distribution used to rank the
shards.

CRCS(Shokouhi, 2007) passes the user queries
to CSI and compute the score of each resource
from the returned document rank. Two version of
CRCS are introduces by modifying the function
of rank. CRCS(1) uses a simple linear decreasing
model, and CRCS(e) uses an exponential decaying
model for the document score.

SUSHI(Thomas and Shokouhi, 2009) passes
the user queries to CSI and uses the returned docu-
ment scores to estimate the score distribution. For
each shard, SUSHI fits one of three types of distri-
bution curves, linear, logarithmic, and exponential
to the scores of returned documents in CSI.

3 CORI Uni+Bi & ReDDE Uni+Bi

The scenario in which Selective Search operates is
cooperative, that is, CORI has access to the com-
plete term statistics for each shard. While ReDDE
estimates the shard ranking based on the small
sample of each shard. As such, one would ex-
pect CORI to perform at least on par, if not out-
perform, ReDDE. However, the term statistics that

CORI uses, although complete are highly mislead-
ing. This is so because traditional CORI uses un-
igram model where each query term is treated as
an individual entity. This leads to a very poor rep-
resentation of the query. For example, the query
arizona fish and game when decomposed into un-
igrams, looses the central topic fishing in arizona.
CORI cannot distinguish between shards are on
topic, and shards that contain documents about
arizona in some other context, and about fishing
in some other state.

These observations motivated the following in-
vestigation were a richer representation of the
query is used by both CORI and ReDDE. Given
a query with n terms, n � 1 bigrams are gener-
ated by enumerating all pairs of consecutive terms.
Bigrams with stopwords are discarded, and the
remaining bigrams are added to the original un-
igram query. As an example, for query obama
family tree, this approach generates the following
query representation using the Indri Query Lan-
guage: #combine(obama family tree #uw2(obama
family) #uw2(family tree)), where the #combine
operator coalesces the scores from all the element
of the query, and the #uwX operator is used for
specifying an unordered phrase of length X. The
ReDDE Uni+Bi runs the query generated using
the above procedure against the CSI, and the rest
of the search process is same as before. In case of
CORI Uni+Bi, frequency statistics for bigrams, in
addition to unigrams, are used in order to evalu-
ate the richer query representation. Since the bi-
gram statistics can be precomputed off-line, the re-
sponse time of shard ranking, and query evaluation
is not affected. Single-term queries or the queries
containing no phrases because of stop words (e.g.
”to be or not to be”), remain unchanged. Higher-
order n-grams, such as, trigrams were not included
due to two reasons: 1. cost of the computing the
statistics for trigrams is substantially high, and 3.
the benefits from trigram representation are ex-
pected to be marginal because most queries are
short, two or fewer terms. In search scenarios
where the user queries are longer (legal or med-
ical retrieval), trigram query representation could
be worth the additional cost. This is part of future
work.

4 Learning to Rank Shards (LeToR-S)

The Learning-to-Rank approaches have been suc-
cessfully used to improve the document rank-
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ing task (Freund et al., 2003)(Xu and Li,
2007)(Burges, 2010). We wished to investigate if
a ranking model can be learned for the shard rank-
ing task as well. To test this intuition we started by
defining the set of features for the ranking model,
and the target variable. The number of relevant
documents in the shard for the query, is used as
the target. Instead of using integer rank values,
this target captures more information. The shards
are ranked in the descending order of the predicted
target value.
LeToR-S Features
The different fields or sections of the document
inform the features. The title, body, heading,
url, whole document each generate a separate
set of features. Several variants of CORI scores
for the query are evaluated against the document
fields, and are used as features. More specifically,
CORI SUM, CORI MIN, and CORI VAR are the
three variants of CORI as defined in Equations
5 through 7. Each of these scores is computed
for two different query representations:- unigram,
and phrasal, against all of the different document
fields.

CORI SUM(Q|Si) =
X

tk2Q
Score(tk|Si) (5)

CORI MIN(Q|Si) = min
tk2Q

Score(tk|Si) (6)

µ =
1

n

X

tk2Q
Score(tk|Si) (7)

CORI V AR(Q|Si) =
X

tk2Q
(Score(tk|Si)� µ)2

(8)
Where Score(tk|Si) is the same as Equation 3,

and µ = 1
n

P
tk2Q Score(tk|Si)

For each query and shard pair, the above vec-
tor of features is compiled, in order to learn
the ranking model or to predict the ranking us-
ing the RandomForest(Breiman, 2001) model im-
plemented by RankLib(Dang, 2013) from Lemur
Project(Croft and Callan, 2000).

5 Experimental Setup

For the empirical evaluation the experimental
setup that was undertaken is described next. We
use the CategoryB dataset of ClueWeb09, which

contains 50,220,423 documents. The 92 topical
shards created for CategoryB dataset by Kulka-
rni and Callan(Kulkarni et al., 2012) are used in
this work. The evaluation queries are from TREC
Web Track 2009-2012. Out of the 200 queries,
6 queries do not contain any relevant document
in this dataset, and thus are discarded. The re-
maining 194 queries are divided into 10-fold for
the LeToR-S experiment to facilitate 10-fold cross
validation. For the small-document approach,
ReDDE, we construct the CSI by randomly sam-
pling 0.5% of the documents from every shard.
For all the ReDDE experiments the same CSI
was employed, to minimize any spurious effects
caused by sampling. The search engine used in
our experiment is Indri 5.9 (Strohman et al., 2005)
from Lemur Project. For all the Selective Search
experiments reported in Sections 6.1 through 6.5,
the top 10 shards were searched for each query.
This corresponds to a search space of about 5.5
million documents. This is an order of magnitude
smaller than the search space of Exhaustive Search
(50+ million documents).

6 Results and Analysis

This section describes the experiments that were
conducted to test the various hypotheses about
improving search effectives by leveraging topical
shards. Table 1 presents a comprehensive set of
results for four different investigations that we un-
dertook. We describe these next in the following
subsections, and analyze the results in Table 1.

6.1 Big-Document versus Small-Document
Shard Ranking Approach

Traditionally the choice of small- or big-document
approach was dictated by the type of search
environment:- uncooperative, or cooperative, re-
spectively. Although, our scenario would catego-
rize as cooperative, we choose to also experiment
with small-document approaches because the con-
ventional belief has been that small-document
approaches provide superior search effectiveness
than big-document approaches. This first exper-
iment empirically tests this belief, specifically in
the context of topical shards. We also compare
Exhaustive Search with Selective Search with big-
document, and small-document approaches. The
first three rows in Table 1 are the focus of this anal-
ysis.

As compared to Exhaustive Search, CORI and

154



# #Qrys Run P@30 P@100 map R@30 R@100 ndcg
1 194 Exh 0.254 0.189 0.181 0.174 0.374 0.429
2 194 CORI 0.255 0.178 0.164 0.158 0.329 0.370
3 194 ReDDE 0.256 0.182 0.172 0.175 0.360† 0.400†
4 52 (len=1) CORI 0.260 0.189 0.163 0.132 0.296 0.391
5 52 (len=1) ReDDE 0.250 0.184 0.155 0.131 0.295 0.387
6 142 (len>1) CORI 0.254 0.173 0.164 0.167 0.341 0.362
7 142 (len>1) ReDDE 0.258 0.181 0.178 0.191† 0.384† 0.404†
8 194 CORI Uni+Bi 0.271§‡ 0.188§ 0.181§ 0.180§ 0.363§ 0.408§
9 194 ReDDE Uni+Bi 0.263 0.184 0.175 0.182 0.363 0.398
10 194 LeToR-S 0.270‡ 0.194¶ 0.186¶ 0.179 0.377¶ 0.417¶

Table 1: Search Effectiveness for Exhaustive Search, and for Selective Search with CORI and ReDDE
under various configurations. † indicates statistically significant improvements when comparing ReDDE
with CORI. § indicates statistically significant improvement when comparing MTD Uni+Bi with MTD.
‡ indicates statistically significant improvement over Exhaustive Search. ¶ indicates statistically sig-
nificant improvement when comparing LeToR-S with MTD Uni+Bi. Underline indicates significantly
worse values when compared to Exhaustive Search. Statistical significance testing was performed using
paired T-test at p<0.05.

ReDDE, both struggle at deeper ranks. CORI,
the big document approach, is consistently inferior
to ReDDE, the small document approach, across
all the metrics. In fact, at deeper ranks (R@100
and ndcg) the improvements over CORI, with
ReDDE are statistically significant. These results
confirm that the conventional unigram language
model based shard ranking approach adopted by
CORI struggles to differentiate the relevant shards
from non-relevant shards. This is so even for top-
ical shards where the distribution of relevant doc-
uments across shards is highly skewed. Also, note
that CORI has access to the vocabulary of the
complete collection whereas ReDDE is only us-
ing 0.5% subset of the collection for estimating the
shard ranking. Thus CORI’s inferior performance
is especially surprising. These observations moti-
vate the experiment described next.

6.2 Effect of Query Length

Our hypothesis that we test in this section is
that for multi-term queries the unigram language
model used by CORI severally misinforms the
shard ranking estimation. This is especially true
for multi-term queries which consist of phrase(s).
For example, in the query, obama family tree, it
is critically important to treat the terms family and
tree as a phrase and not as unigrams. The results
in rows 4 through 7 in Table 1 provide evidence
in support of the above hypothesis. Rows 4 and
5 are results for 52 queries, all of which are sin-

gleton queries. Across all the metrics the search
effectiveness with CORI is higher in magnitude
than that with ReDDE, which is exactly the oppo-
site trend seen with multi-term queries. These re-
sults establish that CORI’s subpar performance is
restricted to multi-term queries. On the other hand
ReDDE struggles more with singleton queries be-
cause estimation errors due to under-sampling are
more likely when there is only one term in the
query to inform the shard ranking.

6.3 Effect of Richer Query Representation

CORI’s inferior performance with multi-term
queries motivates the investigation in this section.
The results with CORI and ReDDE when using
this richer query representation are given in rows
8 and 9 of Table 1. These results show an op-
posite trend as that with unigram query repre-
sentation (rows 2 and 3). The big-document ap-
proach (CORI Uni+Bi) performances better, al-
though not significantly, than the small-document
approach (ReDDE Uni+Bi). CORI clearly ben-
efits more from the richer query representation
than ReDDE. CORI Uni+Bi results are signifi-
cantly better than those with CORI. This is not
the case for ReDDE Uni+Bi. At early ranks,
CORI Uni+Bi is significantly better than even Ex-
haustive Search. This indicates substantial reduc-
tion in false-positives in the retrieved documents
at early ranks. This is facilitated by two factors:-
topic-based shards reduce the noise (false-positive
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matches) in each shard, and CORI Uni+Bi selects
the shards such that the resulting search space is
purer than that used by Exhaustive Search.

Although, not shown in the table, the results
for multi-term queries show similar trends as
before:- for all the metrics the magnitude of search
effectiveness with CORI Uni+Bi is higher than
with ReDDE Uni+Bi, and CORI Uni+Bi is sig-
nificantly better than CORI. However, for ReDDE
that is not the case. For singleton queries the re-
sults do not change because the richer query repre-
sentation does not yield a different query. In sum-
mary, CORI Uni+Bi provides the best search ef-
fectiveness until now. In the next section we inves-
tigate if we can improve the performance further.

6.4 Learning to Rank Shards

The last row in Table 1 reports the results with
Learning to Rank Shards approach (LeToR-S).
The first obvious trend in these results is that
LeToR-S significantly outperforms the current
best, CORI Uni+Bi, at deeper ranks. At early
ranks, however, the two approaches provide com-
parable precision and recall. To understand these
results better we analyze a few queries in detail.

For one of the queries, getting organized,
CORI Uni+Bi ranks the shard with most num-
ber of relevant documents at 11th position, while
LeToR-S ranks it at 3rd. This is a difficult query
because both the query terms are common terms.
Even when the terms are treated as a phrase, it
is still not a focused query. This is reflected
in the low scores assigned to relevant shards by
CORI Uni+Bi. LeToR-S, however, uses meta-
data in addition to the document contents for
defining the features. One particular meta-data
feature, url field, proves to be especially valu-
able for this query that consists of common terms.
Documents that contain getting organized in their
field are relevant to the query. In turn, shards that
contain such documents should be ranked higher
too. In short, LeToR-S benefits from having the
field score features, while CORI Uni+Bi suffers
because it only uses document contents for shard
ranking. A few more example queries that high-
light the value of the field score features are bat-
tles in the civil war and kansas city mo. For
both queries, CORI Uni+Bi ranks the most rele-
vant shard at a much deeper rank than LeToR-S.

Another feature category that helps LeToR-S
outperform CORI Uni+Bi is the CORI minimum

score features. Recall that the CORI minimum
score feature is lowest CORI score computed for
the individual query terms against a shard. This
feature models the intuition that all of the query
terms should have high CORI score for a rele-
vant shard. Low CORI score, even if only for
one of the query terms, indicates less likelihood
of shard relevance. For query, pacific northwest
laboratory only one shard contains all the rele-
vant documents, LeToR-S ranks this shard at 8th
place, while CORI Uni+Bi ranks it at 11. Through
the CORI minimum score feature, several false-
positive shards are eliminated by LeToR-S from
the shard ranking. These false-positive shards
have high overall CORI score because some of
the query terms have high CORI score, and thus
dominate the cumulative score. However, the
CORI minimum score captures that some query
terms have low CORI score for these false-positive
shards and thus push them down in the shard rank-
ing.

The results in Table 1 also indicate that at early
ranks LeToR-S performs significantly better than
Exhaustive Search. This improvement often but
not always comes from single term queries that
may have one than one meaning or aspect associ-
ated with them (euclid, avp, iron, unc). The topic-
based partitioning of the collection organizes the
documents with similar meaning or aspect into the
same shard. Often one of the meanings is more
dominant than others in the collection, that is also
often the relevant meaning for the query. Shards
with the dominant meaning have higher document
frequency (df ) than shards with the rare meaning,
and thus documents with dominant meaning only
are searched. This reduces the false-positive doc-
uments (documents with rare meaning) from the
result, and thus improves the search precision.

6.5 Effect of Distribution of Relevant
Documents

When comparing the best performing Selec-
tive Search approach, LeToR-S, with Exhaustive
Search we see in Table 1 that at early ranks,
LeToR-S performs at par or better than Exhaus-
tive Search in precision and recall both. However,
at deeper ranks, LeToR-S struggles on recall more
than precision, which is indicated by the signifi-
cantly lower ndcg value. Our hypothesis for the
reason behind this trend is that LeToR-S is unable
to retrieve all the shards containing relevant docu-
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Figure 1: Histogram of number of shards containing relevant documents for the query.

ments. In order to test this hypothesis we conduct
the following experiment.

The effectiveness of shard ranking algorithm is
dependent on the distribution of the relevant doc-
uments across shards. If all the relevant docu-
ments are concentrated in a few shards then the
shard ranking task is straightforward, however if
the relevant documents are spread across many
shards then task is much more challenging for any
shard ranker. Figure 1 provides the histogram
of the spread of relevant documents for the 194
queries. For a large fraction of the queries (27)
the spread of the relevant documents are restricted
to 4 shards. 70% of the total queries have a
spread of 7 or less. For the remaining 30% of
the queries the relevant documents can be spread
across as many as 31 shards, indicating that the
topic-based sharding approach failed to concen-
trate the relevant documents into few shards for
these queries. We are however interested in the
70% of the queries for which the spread of relevant
documents is restricted to 7 shards. We believe
that LeToR-S should be able to provide effective
shard ranking for these subset of queries, which
in turn should help improve both, precision and

recall. To test this intuition we separate the 194
queries into two groups based on the spread cutoff
of  7. This gives us one group of 133 queries for
which the relevant documents are spread across 7
or fewer shards, and the other group contains 61
queries.

The results for the two query groups with the
various search approaches are given in Tables 2
and 3. For the first group of queries (Table 2)
LeToR-S (and also CORI Uni+Bi) provides sta-
tistically significant improvement over Exhaustive
Search in precision at both, early and deep ranks.
Furthermore these improvements in precision do
not come at the cost of recall, the recall (at all
ranks) with LeToR-S stays comparable to that with
Exhaustive Search. Even ndcg with LeToR-S is
not statistically different from that of Exhaustive
Search. This is a rare phenomenon:- a search ap-
proach being able to balance precision and recall.

The results in Table 3 tell a different story. At
deeper ranks, precision and recall, both suffer with
all the Selective Search approaches. These results
clearly establish the importance of concentrating
the relevant documents into few shards. Doing so
not only reduces the search cost but substantially

157



Search Approach P@30 P@100 map R@30 R@100 ndcg
Exh 0.218 0.153 0.166 0.198 0.399 0.405
CORI 0.229 0.154 0.165 0.178 0.361 0.369
ReDDE 0.225 0.154 0.169 0.202 0.397 0.391
CORI Uni+Bi 0.241‡ 0.163 0.179‡ 0.205 0.401 0.400
ReDDE Uni+Bi 0.233‡ 0.156 0.171 0.209 0.400 0.385
LeToR-S 0.239 ‡ 0.164‡ 0.178‡ 0.204 0.411 0.401

Table 2: Results on 133 Queries with number of relevant shards  7. ‡ indicates statistically significant
improvement over Exhaustive Search. Underline indicates significantly worse values when compared to
Exhaustive Search. Statistical significance testing was performed using paired T-test at p<0.05.

Search Approach P@30 P@100 map R@30 R@100 ndcg
Exh 0.332 0.265 0.215 0.124 0.320 0.482
CORI 0.312 0.228 0.162 0.114 0.258 0.372
ReDDE 0.322 0.243 0.179 0.118 0.279 0.418
CORI Uni+Bi 0.336 0.243 0.187 0.125 0.282 0.424
ReDDE Uni+Bi 0.331 0.246 0.185 0.122 0.283 0.424
LeToR-S 0.340 0.261 ¶ 0.204 ¶ 0.124 0.303 ¶ 0.452 ¶

Table 3: Results on 61 Queries with number of relevant shard > 7. ¶ indicates statistically significant
improvement when comparing LeToR-S with MTD Uni+Bi. Underline indicates significantly worse
values when compared to Exhaustive Search. Statistical significance testing was performed using paired
T-test at p<0.05.

improves search precision without degrading the
recall.

6.6 Effect of Number of Shards Searched

For all the experiments until now we have held the
parameter, shard cutoff (T), constant at 10. That
is, for all the Selective Search experiments the top
10 shards, out of 92 shards, were searched for
each query. Changing this parameter directly af-
fects the cost of Selective Search, and it also in-
fluences the search effectiveness. The influence
of this parameter in the general distributed search
seup has been extensively investigated by Markov
and Crestani (Markov and Crestani, 2014). In this
section we study the effect of parameter T on the
two best performing Selective Search approaches,
CORI Uni+Bi and LeToR-S, and compare them to
Exhaustive Search.

Table 4 provides the results for this analysis.
At early ranks, LeToR-S performs on par with
Exhaustive Search while searching just the top
three shards. The corresponding search cost, ap-
proximated by A, is orders of magnitude lower
for LeToR-S than for Exhaustive Search. When
comparing LeToR-S with CORI Uni+Bi, the for-
mer consistently outperforms the latter at all the

shard cutoff values. Even the search cost for
LeToR-S are marginally lower than those with
CORI Uni+Bi, indicating a bias toward smaller
shards in case of LeToR-S.

As more shards are searched the recall at deeper
ranks with LeToR-S becomes on par with Exhaus-
tive. The analysis in the previous section demon-
strated that LeToR-S becomes comparable to Ex-
haustive Search even on the ndcg metric if the
spread of the relevant documents is restricted. The
corresponding search cost of Selective Search ap-
proaches is at least an order of magnitude lower
than that of Exhaustive Search.

7 Conclusion

Our goal for this work was to investigate ways
to balance search precision and recall. Selective
Search proved to be an effective search environ-
ment for this investigation, and focusing on the
shard ranking problem to achieve this goal also
proved to the correct choice. We revived an old
shard selection approach, CORI, which supported
competitive search performance when it was pro-
vided with richer query representation. We also
introduced a novel shard ranking algorithm based
on the well-established Learning-To-Ranking ap-
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T A Search Approach P@30 P@100 map R@30 R@100 ndcg
92 50.22 Exh 0.254 0.189 0.181 0.174 0.374 0.429
1 0.561 CORI Uni-Bi 0.215 0.124 0.120 0.133 0.223 0.247

0.560 LeToR-S 0.230 0.139¶ 0.124 0.139¶ 0.246 0.266
3 1.672 CORI Uni-Bi 0.267 0.174 0.166 0.174 0.327 0.353

1.666 LeToR-S 0.281‡ 0.183 0.174 0.180 0.342 0.380¶
5 2.773 CORI Uni-Bi 0.272 0.182 0.174 0.177 0.342 0.375

2.768 LeToR-S 0.275‡ 0.185 0.176 0.180 0.351 0.396¶
7 3.874 CORI Uni-Bi 0.275‡ 0.187 0.178 0.171 0.350 0.393

3.869 LeToR-S 0.274‡ 0.190 0.181 0.177 0.365 0.406
10 5.513 CORI Uni+Bi 0.271‡ 0.188 0.181 0.180 0.363 0.408

5.510 LeToR-S 0.270‡ 0.194 ¶ 0.186 0.179 0.377¶ 0.417¶

Table 4: Results for Exhaustive, and Selective Search with CORI Uni+Bi and with LeToR-S at various
shard cutoffs (T). A: The average search space size per query in million documents. ¶ indicates statis-
tically significant improvement when comparing LeToR-S with CORI Uni+Bi. ‡ indicates statistically
significant improvement when comparing LeToR-S or CORI Uni+Bi with Exhaustive. Underline indi-
cates significantly worse values when compared to Exhaustive Search. Statistical significance testing
was performed using paired T-test at p<0.05.

proach, which provided the best search precision
while also sustaining the recall. A thorough anal-
ysis of the results showed that simply searching
more shards does not necessarily increase search
effectiveness. Instead the two factors that are crit-
ically important for Selective Search to success-
fully balance precision and recall are:- 1. parti-
tioning the collection such that the relevant doc-
uments for the query are spread across less than
10% of the shards, and 2. to employ an effective
shard ranking approach, like the ones proposed in
this work.
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