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Abstract

The ever-greater number of technolo-
gies providing location-based services
has given rise to a deluge of trajectory
data. However, most of these trajectories
are low-sampling-rate and, consequently,
many movement details are lost. Due to
that, trajectory reconstruction techniques
have been created to infer the missing
movement details and reduce uncertainty.
Nevertheless, most effort has been put into
reconstructing vehicle trajectories. There-
fore, we study the reconstruction of pedes-
trian trajectories by using road network in-
formation. We compare a simple tech-
nique that only uses road network infor-
mation with a more complex technique
that, besides the road network, uses his-
torical trajectory data. Additionally, we
use three different trajectory segmentation
settings to analyze their influence over re-
construction. Our experiment results show
that, with the limited pedestrian trajec-
tory data available, a simple technique that
does not use historical data performs con-
siderably better than a more complex tech-
nique that does use it. Furthermore, our re-
sults also show that trajectories segmented
in such a way as to allow a greater dis-
tance and time span between consecutive
points obtain better reconstruction results
in the majority of the cases, regardless of
the technique used.

1 Introduction

Currently, there are many technologies providing
location-based services. Some of them are the
GPS (Global Position System), RFID (Radio Fre-
quency Identification), smartphone sensors, ultra-
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sonic and infrared systems, etc (Feng and Zhu,
2016). All these technologies allow a large-scale
generation of trajectory data of moving objects,
which can be used to perform several data mining
tasks. Thus, this scenario paved the way for the
rise of the trajectory data mining field. There are
several trajectory data mining applications such as
path discovery, location prediction, behavior anal-
ysis, urban services improvement, etc. However,
there are still some important challenges to be ad-
dressed regarding storage, computation and trajec-
tory data mining (Baraniuk, 2011). Due to stor-
age and transmission issues, these trajectories are
generally collected at low sampling rates, conse-
quently, they have long time intervals between lo-
cation updates. In general, these trajectories pro-
vide a very limited representation of the real paths.
This type of trajectories are called uncertain trajec-
tories (Zheng and Zhou, 2011).

Most often, trajectories can be tracked very ac-
curately with GPS-embedded devices like smart-
phones or automotive navigation systems. Never-
theless, a recent study has demonstrated that, aim-
ing at reducing energy consumption, the majority
of taxis of big cities use sampling intervals of two
minutes (Wei et al., 2012).

The high energy consumption of GPS impairs
its use in smartphones for long periods of time.
Furthermore, most social networks provide check-
in services, which allow user location sharing.
Thus, it is possible to create trajectories by sort-
ing these check-ins chronologically. In a simi-
lar way, trajectories can be generated from geo-
tagged photos in photo sharing sites like Flickr
I, In spite of that, the location updates generated
through these sites are low-sampling-rate.

Addressing this issue is very important for sev-
eral different trajectory data mining applications.

"https://www.flickr.com/



For instance, trajectories generated from geo-
tagged photos could be reconstructed and used
in itinerary recommendations applications. Ad-
ditionally, other tasks like indexing and querying
processing efficiency can be affected (Zheng et al.,
2012).

Motivated by this problem, many works on tra-
jectory reconstruction have been published. Most
of them use road network information through a
graph whose nodes represent intersections and ter-
minal points, and the edges depict road segments.
On the other hand, there are also some works
that do not take into account this kind of infor-
mation (Wei et al., 2012). These works aim to
reconstruct trajectories in rural areas where there
is no road network, and, also, trajectories of an-
imals and certain natural phenomena like hurri-
canes. However, here we are focused on pedes-
trian trajectory reconstruction in urban areas. An
example of a method of reconstruction that uses
road network information is Infertra (Banerjee
et al., 2014). This technique, instead of predict-
ing the most likely route, returns an edge-weighted
graph that summarizes all probable routes. The
trajectory reconstruction process employs Gibss
sampling by learning a Network Mobility Model
(NMM) from a database of historical trajectories.
Other works that also use road information are
Hunter (2013), Zheng (2012), Li (2015) and Chi-
ang (2013), to cite a few.

Nevertheless, most works are focused on re-
constructing vehicle trajectories. This is mainly
due to the fact that some pedestrian routes com-
prise small alleys and trails that are so narrowed
to be traversed by other transportation mode dif-
ferent from walk. Despite of that, free collabo-
rative maps like OpenStreetMap? allow the addi-
tion of these type of routes exclusively traversed
by pedestrians to the road network. This way, it
would be possible to reconstruct pedestrian tra-
jectories using road network information. Con-
sidering that, we aim to study the reconstruction
of pedestrian trajectories using road network in-
formation. Consequently, we depict a framework
to reconstruct pedestrian trajectories composed by
three phases. Firstly, we segment trajectories by
using three different settings in order to study
their influence over the quality of the reconstruc-
tion. Secondly, we perform a map matching task
on these segmented trajectories using a free tool,

https://www.openstreetmap.org
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thereby generating a set of network-constrained
trajectories. Thirdly, we apply two different tra-
jectory reconstruction techniques on this new tra-
jectory set. We compare these two techniques,
one of them a simple technique that only takes
into account the road network information, and a
more complex one that besides the road network
structure uses historical trajectory data. We show
that, under limited data conditions, the simpler
technique greatly outperforms the more complex
technique in pedestrian trajectory reconstruction.
Furthermore, our results also demonstrate that tra-
jectories segmented in such a way as to allow a
greater distance and time span between consecu-
tive points obtain better reconstruction results in
the majority of the cases, regardless of the tech-
nique used.

2 Reconstructing uncertain pedestrian
trajectories

In this section, we describe the framework used to
reconstruct pedestrians trajectories.

2.1 Trajectory Segmentation

GPS logs generally record people’s movement for
long periods, in which the person could make mul-
tiple trips. When the person stops for a relatively
long time, this could indicate the end of a trajec-
tory and the start of the next one. Therefore, in or-
der to reflect the real pedestrian intention as well
as possible, we segment the GPS logs into effec-
tive trajectories, which have specific source and
destination stay points.

In the Table 1, we observe three different seg-
mentation settings based on the degree of toler-
ance, which is based on two criteria, the time be-
tween one GPS point to the next one and the dis-
tance between them. A GPS point is the represen-
tation of a location update in terms of space and
time by means of geographic coordinates (latitude
and longitude) and a timestamp.

Medium | High | Low
Distance (m) 300 600 150
Time (mins) 10 20 5

Table 1: Trajectory segmentation settings

The rationale behind this arrangement of val-
ues lies mainly in the medium tolerance setting.
This setting states that if the distance between a
location update and the next one is greater than



the combined lengths of three average city blocks
(100m (HARRIS et al., 2008; Yeang et al., 2000;
of the German Aerospace Center et al., 2012)), the
previous location update is considered as the end
of a trajectory and the last one as the start of the
next trajectory. Likewise, if the time between two
location updates is more than 10 minutes, the first
location update and its successor are considered as
the end and the start, respectively, of two different
and successive trajectories. The idea behind the
period of 10 minutes is to assume that a pedestrian
can make some small stops due to external fac-
tors such as a quick conversation with some unex-
pected acquaintance on the way or waiting for the
traffic light to change to cross a street, which far
from meaning a source or destination, are just trip
interruptions. Thus, finally, the half and the double
of the values of these time and distance thresholds
are allocated to the low and high tolerance settings
respectively.

2.2 Map matching

The second phase of this framework is the map
matching process, which aims to transform our set
of GPS trajectories into network-constrained tra-
jectories by matching each GPS point to an edge of
the road network of a certain city. As already men-
tioned, with the use of free collaborative maps,
now, these edges can also represent small alleys
and trails walked exclusively by pedestrians. Map
matching is an important research topic and there
are many works focused on it (Lou et al., 2009;
Greenfeld, 2002; Yuan et al., 2010). Addition-
ally, there are free tools available that perform map
matching tasks as Graphhopper 3. Using a cor-
rect map matching method to align GPS points
onto the road segments is relevant because the
GPS points do not reflect their true position due
to the GPS measurement error. Finally, this way,
we used the Graphhopper tool to create a set of
network-constrained trajectories that are used by
the reconstructing methods in the next phase.

2.3 Reconstruction

One of the best techniques of trajectory recon-
struction using road network information is Infer-
Tra (Banerjee et al., 2014). This method outper-
forms other state-of-the-art techniques by a large
margin. Infertra is composed by two phases.
Firstly, this technique uses the historical network-

Shttps://www.graphhopper.com
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constrained trajectories and a road network to cre-
ate a generative model called Network Mobil-
ity Model (NMM), which is a weighted directed
graph whose edge weights denote the probabil-
ity of the corresponding road segment being tra-
versed. Hence, NMM learns the mobility pat-
terns in a road network from a database of his-
torical trajectories. Secondly, given an uncertain
trajectory (a trajectory with low-sample-rate loca-
tion updates), NMM is used to generate a weighted
subgraph that depicts the probabilities associated
to each possible trajectory arising from the uncer-
tain trajectory location updates. On the other hand,
we also used the Shortest Path technique to estab-
lish contrast with InferTra. The Shortest Path is
a much simpler technique compared to InferTra,
so this comparison can reveal whether a simple or
more complex approach performs better when it
comes to reconstructing pedestrian trajectories us-
ing road network information.

3 Experiments

We use two data sets to perform the reconstruc-
tion of pedestrian trajectories. In each data set, the
three trajectory segmentation settings previously
depicted are used, low, medium and high toler-
ance, in order to study their influence over the per-
formance of the reconstruction. Finally, we com-
pare the performance of Infertra (Banerjee et al.,
2014) and Shortest Path for different sampling in-
tervals.

3.1 Data sets

The data sets considered in our experiments are
(i) RadrPlus and (ii) Geolife (Zheng et al., 2009,
2008, 2010). RardPlus is a location-based social
network developed in the University of Sao Paulo,
campus of Sao Carlos, Brazil. This social network
has the unique characteristic of being focused on
communities. Therefore, RadrPlus provides func-
tionalities not just for individual users like tradi-
tional social networks, but for groups of users as
well, within a geolocated environment. The Radr-
Plus data set comprises trajectories of a group of
15 users in a period of 9 months. These trajec-
tories were recorded in different parts of the city
of Sdo Carlos, but mainly around the campus of
the university and its surroundings. Additionally,
RadrPlus data set trajectories were labeled with
two transportation modes, car and walk. The sec-
ond data set is provided by the Geolife project, a



location-based social network developed by Mi-
crosoft Research Asia. The Geolife data set con-
tains trajectories of 182 users in a period of over
five years. These trajectories were recorded in 30
cities of China and some cities in USA and Eu-
rope; however, most trajectories were recorded in
the city of Beijing, China. In addition to that, a
group of 73 users labeled their trajectories with
transportation modes like walk, bike, bus, car,
train, airplane and others. In spite of the variety
of trajectory data of both data sets, we only se-
lect for our experiments the trajectories made by
pedestrians, i.e, trajectories labeled with walk as
transportation mode.

3.2 [Experimental Results

We present and discuss the results of using the
InferTra and Shortest Path techniques in the re-
construction of pedestrian trajectories. Each tech-
nique was implemented in Java. We segment tra-
jectories from RadrPlus and Geolife data sets by
using the low, medium and high tolerance set-
tings and for each resulting trajectory set, we use
the Graphhopper tool to transform these trajecto-
ries into network-constrained trajectories. Finally,
we apply the aforementioned reconstruction tech-
niques on the six different data sets generated as
showed in Table 2. The main characteristics de-
picted in that table are the Number of Trajectories
(NT), Average Length (AL), which is the average
number of points per trajectory (pp), and the Av-
erage Duration (AD) of the trajectories.

NT | AL (pp) | AD (secs)
RadrPlus (LT) 76 14.12 487.48
RadrPlus MT) | 116 17.31 604.15
RadrPlus (HT) | 155 21.06 1045.61
Geolife (LT) 3895 13.06 721.74
Geolife (MT) 3601 13.71 819.57
Geolife (HT) 3134 13.79 877.2
Table 2:  Main characteristics of each result-

ing trajectory data set after applying segmentation
settings Low Tolerance (LT), Medium Tolerance
(MT) and High Tolerance (HT) on RadrPlus and
Geolife data sets.

We notice that, in the case of Geolife, the lower
the tolerance, the greater the number of trajecto-
ries, and the shorter the trajectory length and du-
ration. However, in the case of RadrPlus, the lower
the tolerance, the lesser the number of trajectories,
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Sampling LT MT HT
Interval

RadrPlus (SP) 1 0.944 0.930 0.963
2 0.846 0.852 0.903

3 0.770 0.790 0.857

4 0.796 0.771 0.800

5 0.793 0.748 0.762

6 0.746 0.689 0.732

7 0.718 0.680 0.717

8 0.639 0.636 0.700

9 0.558 0.567 0.676

10 0.578 0.558 0.673

Geolife (SP) 1 0.959 0.960 0.962
2 0.902 0.909 0.907

3 0.862 0.868 0.870

4 0.818 0.835 0.837

5 0.775 0.789 0.797

6 0.754 0.782 0.783

7 0.746 0.766 0.771

8 0.721 0.751 0.761

9 0.694 0.717 0.732

10 0.671 0.705 0.727

RadrPlus (IT) 1 0.502 0.608 0.654
2 0.510 0.481 0.593

3 0.446 0.430 0.539

4 0.467 0.404 0.507

5 0.404 0.350 0.434

6 0.298 0.323 0.411

7 0.205 0.303 0.353

8 0.197 0.237 0.315

9 0.018 0.230 0.273

10 0.005 0.154 0.231

Geolife (IT) 1 0.558 0.569 0.558
2 0.484 0.494 0.490

3 0.437 0.455 0.450

4 0.395 0.421 0.424

5 0.363 0.382 0.401

6 0.342 0.371 0.386

7 0.314 0.344 0.369

8 0.281 0.326 0.346

9 0.264 0.300 0.326

10 0.250 0.285 0.309

Table 3: Results of trajectory reconstruction on

RadrPlus and Geolife data sets under trajectory
segmentation configurations High Tolerance (HT),
Medium Tolerance (MT) and Low Tolerance (LT)
for different sampling intervals.

and the shorter the trajectory length and duration.
These results are interesting due to the fact that
Geolife’s data was collected with a fixed, short
sampling interval (Static Duty Cycle (Wu et al.,
2011)) while RadrPlus’ data collection process
used a dynamic system that allocates short and
long sampling intervals depending on the context
(Dynamic Duty Cycle (Wu et al., 2011)). There-
fore, we observe how the election of the data col-
lection method affects the main characteristics of
the resulting segmented trajectories.

On the other hand, since Infertra reconstructs a
trajectory as a weighted graph, we use the adapted
F-score measure described in Banerjee (2014) to
evaluate Infertra performance, whereas the stan-
dard F-score was used in the case of Shortest Path.

These two techniques are evaluated for different
sampling rates expressed in minutes.

From Figures 1 and 2, we can easily observe
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Figure 1: Results of the trajectory reconstruction on the RadrPlus data set using InferTra and Shortest
Path algorithms. Each point in the figure indicates the value of the F-score for a certain sampling interval,

expressed in minutes, under the segmentation settings
Low Tolerance.
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Figure 2: Results of the trajectory reconstruction on the Geolife data set using InferTra and Shortest Path
algorithms. Each point in the figure indicates the value of the F-score for a certain sampling interval,

expressed in minutes, under the segmentation settings
Low Tolerance.

that Shortest Path greatly outperforms InferTra,
regardless of the data set, trajectory segmenta-
tion setting and sampling interval used. Addition-
ally, as expected, we also observe that the best re-
sults correspond to the shortest sampling intervals.
Nevertheless, it is not clear if there is a difference
among trajectory segmentation settings. Thus, to
analyze the impact of these settings over the recon-
struction, we organize the data so that we can eas-
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(a) High Tolerance, (b) Medium Tolerance and (c)

ily compare the obtained results for each setting.
This way, in Table 3, we observe a clear evidence
that the High Tolerance (HT) setting obtains better
results for the majority of the cases. This setting
only presents lesser values of F-score in the 17.5%
of the cases.



4 Conclusion

We studied the reconstruction of pedestrian tra-
jectories using road network information. Three
different segmentation settings were proposed
to study their influence over the reconstruction.
These settings were established based on the con-
cept of tolerance which was defined based on two
criteria that comprise the distance and time span
between points in a trajectory. Moreover, two
state-of-the-art techniques were tested. One of
these techniques uses both road network informa-
tion and historical trajectories, whereas the sim-
pler one only uses the road network structure. Em-
pirical analysis of these two techniques on two
data sets shows that the simpler technique per-
forms better under limited data conditions than the
more complex one when it comes to pedestrian
trajectories. Additionally, the high tolerance seg-
mentation setting proposed obtains better recon-
struction results in a majority of the cases for both
techniques.

Acknowledgments

This work was supported by FAPESP grant
2015/14228-9, CNPq grants 302645/2015-2,
162262/2014-0 and CAPES grant PROEX-
9152559/M.

References

Prithu Banerjee, Sayan Ranu, and Sriram Raghavan.
2014. Inferring uncertain trajectories from partial
observations. In 2014 IEEE International Confer-
ence on Data Mining. IEEE, pages 30-39.

Richard G Baraniuk. 2011. More is less: sig-
nal processing and the data deluge.  Science
331(6018):717-719.

Meng-Fen Chiang, Yung-Hsiang Lin, Wen-Chih Peng,
and Philip S Yu. 2013. Inferring distant-time loca-
tion in low-sampling-rate trajectories. In Proceed-
ings of the 19th ACM SIGKDD international con-
ference on Knowledge discovery and data mining.
ACM, pages 1454-1457.

Zhenni Feng and Yanmin Zhu. 2016. A survey on tra-
jectory data mining: Techniques and applications.
IEEE Access 4:2056-2067.

Joshua S Greenfeld. 2002. Matching gps observations
to locations on a digital map. In Transportation Re-
search Board 81st Annual Meeting.

DMIM HARRIS, AECOM, and Clarke Caton Hintz.
2008. New jersey long range transportation plan
2030. technical memorandum. task 11: Local street

166

connectivity redefined. Technical report, The New
Jersey Department of Transportation, New Jersey.

Timothy Hunter, Pieter Abbeel, and Alexandre M
Bayen. 2013. The path inference filter: model-based
low-latency map matching of probe vehicle data. In
Algorithmic Foundations of Robotics X, Springer,
pages 591-607.

Mu Li, Amr Ahmed, and Alexander J Smola. 2015. In-
ferring movement trajectories from gps snippets. In
Proceedings of the Eighth ACM International Con-
ference on Web Search and Data Mining. ACM,
pages 325-334.

Yin Lou, Chengyang Zhang, Yu Zheng, Xing Xie, Wei
Wang, and Yan Huang. 2009. Map-matching for
low-sampling-rate gps trajectories. In Proceedings
of the 17th ACM SIGSPATIAL international confer-
ence on advances in geographic information sys-
tems. ACM, pages 352-361.

Transportation Studies Group of the German
Aerospace Center et al. 2012. Urban Block
Design guideline / manual to best practice - Project
METRASYS.

Ling-Yin Wei, Yu Zheng, and Wen-Chih Peng. 2012.
Constructing popular routes from uncertain trajecto-
ries. In Proceedings of the 18th ACM SIGKDD in-
ternational conference on Knowledge discovery and
data mining. ACM, pages 195-203.

Chao-Lin Wu, Yu-Te Huang, Cheng-Lung Wu, Hao-
hua Chu, Polly Huang, and Ling-Jyh Chen. 2011.
An adaptive duty-cycle scheme for gps scheduling
in mobile location sensing applications. Proc. of
PhoneSense .

Llewelyn Davies Yeang et al. 2000. Urban design com-
pendium. English Partnerships/Housing Corpora-
tion, London .

Jing Yuan, Yu Zheng, Chengyang Zhang, Xing Xie,
and Guang-Zhong Sun. 2010. An interactive-voting
based map matching algorithm. In Mobile Data
Management (MDM), 2010 Eleventh International
Conference on. IEEE, pages 43-52.

Kai Zheng, Yu Zheng, Xing Xie, and Xiaofang Zhou.
2012.  Reducing uncertainty of low-sampling-
rate trajectories. In Data Engineering (ICDE),
2012 IEEE 28th International Conference on. IEEE,
pages 1144-1155.

Yu Zheng, Quannan Li, Yukun Chen, Xing Xie, and
Wei-Ying Ma. 2008. Understanding mobility based
on gps data. In Proceedings of the 10th international
conference on Ubiquitous computing. ACM, pages
312-321.

Yu Zheng, Xing Xie, and Wei-Ying Ma. 2010. Geolife:
A collaborative social networking service among
user, location and trajectory. IEEE Data Eng. Bull.
33(2):32-39.



Yu Zheng, Lizhu Zhang, Xing Xie, and Wei-Ying Ma.
2009. Mining interesting locations and travel se-
quences from gps trajectories. In Proceedings of the
18th international conference on World wide web.
ACM, pages 791-800.

Yu Zheng and Xiaofang Zhou. 2011. Computing with
Spatial Trajectories. Springer New York.

167



