
Predicting Invariant Nodes in Large Scale Semantic Graphs

Damian Barsotti Martin Ariel Dominguez
FaMAF-UNC / Cordoba, Argentina

damian,mdoming,pablod@famaf.unc.edu.ar

Pablo Ariel Duboue

Abstract

We are interested in understanding and
predicting how large knowledge graphs
change over time. An important subprob-
lem is predicting which nodes within the
graph won’t have any edges deleted or
changed (what we call add-only nodes).
Predicting add-only nodes correctly has
practical importance, as such nodes can
then be cached or represented using a
more efficient data structure. This pa-
per presents a logistic regression ap-
proach using attribute-values as features
that achieves 95%+ precision on DBpe-
dia yearly changes trained using Apache
Spark. It concludes by outlining how we
plan to use these models for Natural Lan-
guage Generation.

1 Introduction

We are interested in understanding and predicting
how large knowledge graphs change over time. An
important subproblem is predicting which nodes
within the graph won’t have any edges deleted
or changed (what we call add-only nodes) or un-
dergo any changes at all (what we call constant
nodes). Predicting add-only nodes correctly has
practical importance, as such nodes can then be
cached or represented using a more efficient data
structure. In this paper we show a logistic regres-
sion approach using attribute-values as features
that achieves 95%+ precision on DBpedia1 yearly
changes, as trained using Apache Spark. We con-
clude by outlining how we plan to use these mod-
els for Natural Language Generation.

Definition. Given a multigraph G0 with named
edges such that each source node S is linked
through an edge labeled V to a target node O,

1http://dbpedia.org

which we will call a triple hS, V,Oi, we will
say a given node S is an add-only node if in a
next version (G1) of the multigraph, all triples
starting on S in G0 are also in G1. That is,
S is add � only i↵ :

8v, o/ hS, v, oi 2 G0 ) hS, v, oi 2 G1

This type of nodes can be efficiently represented
as static information, for example by leveraging
large scale perfect hashes (Botelho and Ziviani,
2007).

Our intuition is that in large scale semantic
graphs holding an imperfect representation of the
real world, there will be two types of changes,
(1) model enhancements, where the truth about
the world is better captured by the model and (2)
model corrections, where the world has changed
and the model is updated. Updates of the first type
result in new information added to the graph, with-
out modifying existing data. Finding such nodes is
the objective of our work.

This work is structured as follows. In the next
section we summarize related work. In Section 2
we discuss DBpedia, the semantic graph we used
for our experiments. Our methods and result fol-
lows, closing with a discussion of our intended ap-
plication in Natural Language Generation.

2 Related Work

Mining graphs for nodes with special properties is
not new to Big Data mining (Drury et al., 2015).
With the development DBpedia much research has
been devoted to exploiting this resource in AI
tasks as well as to model its changes. For exam-
ple, there is research on modeling DBpedia’s cur-
rency (Rula et al., 2014), that is, the age of the data
in it and the speed at which those changes can be
captured by any system. Although currency could

64



be computed based on the modification/creation
dates of the resources, this information is not al-
ways present in Wikipedia pages. To overcome
this, the authors propose a model to estimate cur-
rency combining information from the original re-
lated pages and a couple of currency metrics mea-
suring the speed of retrieval by a system and ba-
sic currency or timestamp. Their experiments sug-
gest that entities with high system currency are as-
sociated with more complete DBpedia resources
and entities with low system currency appear as-
sociated with Wikipedia pages that are not eas-
ily tractable (or that “could not provide real world
information” according with the authors). While
both the authors and us look into changes in DBpe-
dia, we are interested in changes that for the most
part do not result from changes in the real world,
as Lehman and others are interested.

The need to account for changes in ontologies
has long been acknowledged, given that they may
not be useful in real world applications if the rep-
resentation of the knowledge they contain is out-
dated. Eder and Koncilia (Eder and Koncilia,
2004) present a formalism to represent ontolo-
gies as graphs that contain a time model includ-
ing time intervals and valid times for concepts.
They base their formalism on techniques devel-
oped for temporal databases, namely the version-
ing of databases instead of their evolution and they
provide some guidelines about its possible imple-
mentation. Our work can be used to improve the
internal representation of such temporal databases
(Cheng et al., 2014).

Another source of ontology transformation is
spatiotemporal changes. Dealing with spatial
changes in historical data (or over time series) is
crucial for some NLP tasks, such as information
retrieval (Kauppinen and Hyvnen, 2007). In their
case, the authors deal with the evolution of the on-
tology’s underlying domain instead of its version-
ing or evolution due to developments or refine-
ments. Their main result is the definition of partial
overlaps between concepts in a given time series,
which was applied to build a Finnish Temporal Re-
gion Ontology, showing promising results.

Finally, we see parallelisms between change
tracking in other large graphs: object graphs
in garbage collection systems. State of the art
garbage collection will single out objects that
survive multiple garbage collections (Stefanović
et al., 1999) and stop considering them for collec-

tion. It is this type of optimizations that we expect
detection of invariable nodes will help semantic
graphs updates.

3 Data

As a large scale naturally occurring knowledge
graph with a rich update history, we use DBpedia,
a knowledge graph derived from the Wikipedia
collaborative encyclopedia started in January 2001
at present containing over 37 million articles in
284 languages.

Given that the content in Wikipedia pages is
stored in a structured way, it is possible to ex-
tract and organize it in an ontology-like manner as
implemented in the DBpedia community project.
This is accomplished by mapping Wikipedia in-
foboxes from each page to a curated shared on-
tology that contains 529 classes and around 2,300
different properties. DBpedia contains the knowl-
edge from 111 different language editions of
Wikipedia and, for English the knowledge base
consists of more than 400 million facts describing
3.7 million things (Lehmann et al., 2015). A noble
feature of this resource is that it is freely available
to download in the form of dumps or it can be con-
sulted using specific tools developed to query it.

These dumps contain the information in a lan-
guage called Resource Description Framework
(RDF) (Lassila et al., 1998). The WWW Con-
sortium (W3C) has developed RDF to encode the
knowledge present in web pages, so that it is com-
prehensible and exploitable by agents during any
information search. RDF is based on the concept
of making statements about (web) resources using
expressions in the subject-predicate-object form.
These expressions are known as triples, where the
subject denotes the resource being described, the
predicate denotes a characteristic of the subject
and describes the relation between the subject and
the object. A collection of such RDF declarations
can be formally represented as a labeled directed
multi-graph, naturally appropriate to represent on-
tologies.

Table 1 shows the different years employed in
this work. The DBpedia project obtains its data
through a series of scripts run over Wikipedia,
which on itself is a user-generated resource.
Changes to the DBpedia scripts or to Wikipedia it-
self sometimes result in dramatic differences from
one year to the next. Besides the overall sizes,
what is relevant to this work is the total number

65



Table 1: Data sizes.
Version # Nodes # Links
2010-3.6 1,668,503 19,969,604
2011-3.7 1,831,219 26,770,236
2012-3.8 2,350,907 33,742,028
2013-3.9 3,243,478 41,804,713
2014 4,218,628 61,481,509
2015-04 4,080,388 37,791,134
2015-10 4,995,949 40,617,978
2016-04 5,109,879 40,407,197

Table 2: Percentage of entities which remains con-
stant or add-only calculated between two consec-
utive versions of DBPedia.

Consecutive versions % Const. % Add.
2010-3.6 2011-3.7 9.71 45.73
2011-3.7 2012-3.8 30.28 65.51
2012-3.8 2013-3.9 38.72 76.79
2013-3.9 2014 16.61 49.32
2014 2015-04 14.01 29.01
2015-04 2015-10 3.76 20.54
2015-10 2016-04 83.63 90.52

of additions and deletions, shown in Table 2.

4 Methods

Our prediction system is implemented using
Apache Spark2 using its Logistic Regression pack-
age. In our algorithm the feature vector itself is
comprised of binary features indicating whether or
not a given relation object holds for the subject in
OLD; that is, we do not look at whether the Vi

!Oi

have changed, just their existence in OLD. The
class is, given a node in subject position, S:

add-only: {(Vi, Oi)}OLD ✓ {(Vi, Oi)}NEW

constant: {(Vi, Oi)}OLD = {(Vi, Oi)}NEW

The feature vector underneath has a dimension
of kV k ⇥ kOk, a potentially very large number
given the millions of values in O. We leverage
Apache Spark Mlib pipelines to filter out this ex-
tremely large feature vector to the top million en-
tries.

Figure 1 shows a small example of feature and
class extraction. A four node graph OLD evolves
into a five node graph NEW . The classes for each
node are computed over OLD, using three binary
features.

2https://spark.apache.org/

5 Results

Using the machine learning method described in
the previous section we took three consecutive
year, Gy1 , Gy2 , Gy3 , built a model M on Gy1 !
Gy2 , apply M on Gy2 , obtaining G0

y3 and evaluate
it by comparing it to Gy3 . Table 3 shows our re-
sults. We can see that for pairs close in size (from
Table 1) we obtain a precision close to 90% with
recall ranging from 20% to 58% (and F-measure
as high as 66%). As our numbers were obtained
by optimizing F1 on a binary classification prob-
lem, precision and recall are dual and treated as
identical quantities by the optimizer (this can be
easily seen from a confusion table). The rows
marked with an asterisk in the table were inverted
in our experiments. The low numbers for the last
row in the table can be attributed to ontological
re-estructuring on Wikipedia/DBpedia on 2015-
04/10 period (second to last row on Table 2) were
few entities remained constant through 2015.

From the table we can also see that detecting
constant nodes, on the other hand, it is a much
more difficult task that might be ill-defined given
the nature of the updates discussed in the intro. Ta-
ble 4 shows some examples of correctly and incor-
rectly predicted nodes.

5.1 Discussion
How useful are these results? For the task we
have in mind, building statistically plausible future
versions of existing semantic graphs for the pur-
pose of testing Natural Language Generation algo-
rithms (Duboue et al., 2016), successfully predict-
ing add-only nodes help us immediately with the
performance of the prediction system. Our high
precision results will then carry over to direct im-
provements on our full system: if our system has
an error rate of 30% and there are 25% of add-only
nodes, our current system will reduce error by up
to 12% (in the case of 50% recall).

Another case is for maintaining the data. The
add-only nodes and relations can be pre-cached
using more efficient data structures such as perfect
hashes (Botelho and Ziviani, 2007).

6 Conclusions and Future Work

In Natural Language Generation (Reiter and Dale,
2000), Referring Expressions Generation (REG),
is the task that, given an entity (the referent) and
a set of competing entities (the set of distractors),
involves creating a mention to the referent so that,

66



OLD NEW

Node Features Target
S a=T, a=U add-only ¬ constant
T ; add-only ¬ constant
U b=V ¬ add-only ¬ constant
V ; add-only constant

Figure 1: Feature generation from an ontology OLD and NEW . In this example most nodes are add-
only (shaded in OLD), only U loses a relation and it is thus not add-only.

Table 3: Training in two consecutive years and evaluating on a third. Training maximizing F1.

Train Eval System
Source Target Target Add-only Constant

Precision Recall Precision Recall
2010-3.6 2011-3.7 2012-3.8 0.560 0.579 0.704 0.887
2011-3.7 2012-3.8 2013-3.9 0.448 0.444 0.658 0.569
2012-3.8 2013-3.9 2014 0.916 0.224 0.890 0.472
2013-3.9 2014 2015-04 0.971 0.506 0.965 0.770
2014 2015-04 2015-10 0.989 0.650 0.971 0.820
2015-04 2015-10 2016-04 0.945 0.196 0.908 0.068

Table 4: Example predictions and mispredictions, using 2015-04 ! 2015-10 as training and tested on
2016-04.

Correctly predicted add-only
Iasi Botanical Garden constant
USS Breakwater (SP-681) constant
Interborough Handicap constant
Thode Island added archipelago!Marshall Archipelago
Colonel Reeves Stakes added location!Perth

added location!Australia

Incorrectly predicted as add-only
Beverly Hills Handicap disappears due to name change
First Ward Park disappears due to name change
2012 Shonan Bellmare season changes league!2012 J. League Division 2

to league!2012 J.League Division 2

67



in the eyes of the reader, it is clearly distinguish-
able from any other entity in the set of distractors.
Therefore REG algorithms are expected to select
attributes that unambiguously identify an entity
with respect to a set of distractors.

Our current work is part of a plan to simulate
natural perturbations on the data in order to find
the conditions on which REG algorithms start to
fail (for example, a simulated DBpedia 25 years in
the future).

In previous work we explored the robustness for
the particular case of Referring Expressions Gen-
eration (REG) algorithms by means of different
versions of an ontology (Duboue et al., 2016).

In (Duboue and Domı́nguez, 2016) we pre-
sented experiments on two types of entities (peo-
ple and organizations) and using different versions
of DBpedia we found that robustness of the tuned
algorithm and its parameters do coincide but more
work is needed to learn these parameters from data
in a generalizable fashion.

We plan to extend the current model with a
specific model for additions and deletions us-
ing techniques from statistical machine translation
(Koehn, 2010) and investigate techniques based on
knowledge embedding models (Xie et al., 2017).

Acknowledgments

The authors would like to thank the Secretaria de
Ciencia y Tecnica of Cordoba Province for support
and the anonymous reviewers for helpful com-
ments and suggestions.

References
Fabiano C. Botelho and Nivio Ziviani. 2007. External

perfect hashing for very large key sets. In Proceed-
ings of the Sixteenth ACM Conference on Confer-
ence on Information and Knowledge Management.
ACM, New York, NY, USA, CIKM ’07, pages 653–
662. https://doi.org/10.1145/1321440.1321532.

S. Cheng, A. Termehchy, and V. Hristidis. 2014.
Efficient prediction of difficult keyword queries
over databases. IEEE Transactions on Knowl-
edge and Data Engineering 26(6):1507–1520.
https://doi.org/10.1109/TKDE.2013.140.

Brett Drury, Jorge Carlos Valverde-Rebaza, and Al-
neu de Andrade Lopes. 2015. Causation generaliza-
tion through the identification of equivalent nodes
in causal sparse graphs constructed from text us-
ing node similarity strategies. In Proceedings of
the 2nd Annual International Symposium on Infor-
mation Management and Big Data - SIMBig 2015,

Cusco, Peru, September 2-4, 2015.. pages 58–65.
http://ceur-ws.org/Vol-1478/paper6.pdf.

Pablo Ariel Duboue and Martin Ariel Domı́nguez.
2016. Using Robustness to Learn to Order Se-
mantic Properties in Referring Expression Genera-
tion, Springer International Publishing, Cham, pages
163–174.

Pablo Ariel Duboue, Martin Ariel Domınguez, and
Paula Estrella. 2016. On the robustness of stan-
dalone referring expression generation algorithms
using rdf data. WebNLG 2016 page 17.

Johann Eder and Christian Koncilia. 2004. C.: Mod-
elling changes in ontologies. In In: Proceedings of
On The Move - Federated Conferences, OTM 2004,
Springer (2004) LNCS 3292. pages 662–673.

Tomi Kauppinen and Eero Hyvnen. 2007. Modeling
and reasoning about changes in ontology time se-
ries. In Integrated Series in Information Systems.
Springer-Verlag, pages 319–338.

Philipp Koehn. 2010. Statistical Machine Translation.
Cambridge University Press, New York, NY, USA,
1st edition.

Ora Lassila, Ralph R. Swick, World Wide, and Web
Consortium. 1998. Resource description framework
(rdf) model and syntax specification.

Jens Lehmann, Robert Isele, Max Jakob, Anja
Jentzsch, Dimitris Kontokostas, Pablo N. Mendes,
Sebastian Hellmann, Mohamed Morsey, Patrick van
Kleef, Sören Auer, and Christian Bizer. 2015. DB-
pedia - a large-scale, multilingual knowledge base
extracted from wikipedia. Semantic Web Journal
6(2):167–195.

Ehud Reiter and Robert Dale. 2000. Building Natural
Language Generation Systems. Cambridge Univer-
sity Press.

Anisa Rula, Luca Panziera, Matteo Palmonari, and An-
drea Maurino. 2014. Capturing the currency of db-
pedia descriptions and get insight into their validity.
In Proceedings of the 5th International Workshop on
Consuming Linked Data (COLD 2014) co-located
with the 13th International Semantic Web Confer-
ence (ISWC 2014), Riva del Garda, Italy, October
20, 2014..

Darko Stefanović, Kathryn S McKinley, and J Eliot B
Moss. 1999. Age-based garbage collection. ACM
SIGPLAN Notices 34(10):370–381.

Qizhe Xie, Xuezhe Ma, Zihang Dai, and Eduard Hovy.
2017. An interpretable knowledge transfer model
for knowledge base completion. In ACL 2017: Pro-
ceedings of the Annual Meeting on Association for
Computational Linguistics. Association for Compu-
tational Linguistics, Vancouver, Canada.

68


