
JPoT: Just another Populator of TBoxes

Jean-Rémi Bourguet

Università degli Studi di Sassari (UNISS)
Sassari, RAS – Italia

Universidade Federal do Espírito Santo (UFES)
Vitória, ES – Brasil

Abstract

The OWL2’s populators are currently an
important support to empirically evaluate
the reasoners and/or to escort the practi-
tioners by leveraging instantiations in their
knowledge bases. In this paper, after hav-
ing evoked the closest approach describing
their strengths and weakness, we present
Just another Populator of TBOX (JPoT).
This purely syntactic and domain indepen-
dent populator is based on a random pro-
cess of concept, role and data instantia-
tions guaranteeing consistency of knowl-
edge bases founded on TBOXes expressed
in ALCQ(D). Moreover, we demonstrate
that data instantiations can be tricky when
the expectation of the modeler is to obtain
a sound knowledge base able to pass the
equivalent of a Turing test. Finally, we
evaluate the performances of JPoT.

1 Introduction

The rise of the domain ontologies in OWL2
compelled more and more practitioners to make
their data available (Shadbolt et al., 2006). To
interface with this potential myriad of instantia-
tions (involving concepts, abstract and concrete
roles) they will have to deal with bit by bit, one of
their expectations is to have some leverages help-
ing them to test their solutions in the context of
big data before deploying in the real world. One
solution often considered by default is a semi-
automated nay manual population dependent on
the proper terminological axioms (named TBOX)
of the ontologies. Nonetheless, these solutions
have the disadvantages of being time-consuming
and prone to inconsistency. Furthermore, some ap-
proaches may need to dispose such steps of popu-
lation in order to empirically perform the reason-

ing tasks (Bourguet and Pulina, 2013). For exam-
ple, this situation occurs in the community of con-
ceptual modeling where it is a frequent practice
to design model alternatives and perform an em-
pirical comparison between them (Batsakis et al.,
2009). Finally, the reasoners engineers could de-
vote more attention for ontology populations in
the future. For example, during the first edi-
tion of the OWL Reasoner Evaluation (ORE) in
2012, a method was proposed to generate a bench-
mark and effectively evaluate semantic reasoners
by generating realistic synthetic semantic data (Li
et al., 2012). According to the international aca-
demic publisher IGI-global, the ontology popula-
tion is defined as the process of creating instances
(named ABOX) for an ontology usually involving
the linking of various data sources to the elements
of the ontology. However, this domain has been
constantly hackneyed like the task of recognizing
the new elements that should go into a domain on-
tology (Bedini and Nguyen, 2007). In fact, an
Ontology Populator can behave either as an Ex-
tracted Data Generator (EDG), or as a Synthetic
Data Generator (SDG). The SDGs can be split in
two sets: i-the domain dependent SDGs i.e. those
performing only populations of a given domain
ontology and ii-the domain independent SDGs i.e.
those performing populations of specific expres-
sive fragments of computable languages.

Our proposal is to create a tool that is Just
another Populator of TBOX (JPoT) performing
populations like a domain independent SDG and
guaranteeing consistency of the knowledge base
(that is defined as the union of the TBOX and the
ABOX). The subsequent parts of the article are as
follows: Section 2 presents the related works, Sec-
tion 3 presents JPoT, Section 4 performs an eval-
uation and Section 5 explores some perspectives.

109

2 Related Works

Very few SDGs have been developed in order
to perform some stress tests before deploying an
ontology in a Semantic Web application.

According to the creators, the Lehigh Univer-
sity Benchmark (Guo et al., 2005) was the first
knowledge base generator. The idea of LUBM
was to feature a university domain ontology
with one statically predefined TBOX, and allow
different sizes of an artificial generated dataset
i.e. an ABOX. A set of 14 different queries was
included in the benchmark in order to evaluate
the perfomance of reasoners by processing the
predefined queries on the different generated
knowledge bases. Due to the growing need to
better profile the behaviour of an ontology with
regards to differing numbers and complexities of
the axioms in the TBOX, an extension of LUBM,
the so-called University Ontology Benchmark
(UOB) has been introduced (Ma et al., 2006).

Another remarkable tool named OTAGen (On-
genae et al., 2008) has the specificity to generate
complete knowledge bases providing the capi-
bility of specifying a large range of parameters
characterising them, both on TBOX as well as
ABOX level, the tool can also generate some
corresponding queries.

Note that after this proposal, another approach
proposed a purely TBOX generation with different
reasoning complexities resulting from the relative
proportions of the design patterns of biomed-
ical structures representation (Boeker et al., 2011).

Finally, the only approach that can handle a
lack or inaccessibility of data in ABOXes when a
TBOX is already available is SKTI - a synthetic
data generator (Chowdhury, 2012). This system
generates synthetic instances based on a source
ontology and user specifications. Note that to
mimic the real world scenario the system also
allows the insertion of noisy and erroneous
instances into the dataset.

This last solution is the closest related work
with JPoT as a domain independent SDG that can
populate TBOXes provided by users. Next, we
will describe the heuristics JPoT follows to pop-
ulate these TBOXes by guaranteeing consistency.

3 Synthetic Data Generation

Formally, every Description Logic is based on
some finite sets: a set CA of concepts names, a
set DT of datatype names, a set RA of abstract
role names and a set RT of concrete role names.
Baader and Nutt introduced the notion of interpre-
tation in first-order logic (Baader and Nutt, 2003).

Note that the definition we introduce below is
an adaptation of the interpretation presented in the
OWL2 direct semantic1.

Definition (Interpretation). An interpretation I is
a tuple I = h�I ,�D, ·Ii where:
- �I is the domain, i.e. a set of individuals,
- �D is a data-type domain disjoint with �I ,
- ·I is the interpretation function which maps:

- each A 2 CA to a set AI ✓ �I ,
- each r 2 RA to a relation rI ✓ �I ⇥�I ,
- each D 2 DT to a value space DI ✓ �D,
- each t 2 RT to a relation tI ✓ �I ⇥�D.

JPoT can actually parse and populate guar-
anteeing consistency the expressive power of the
fragment ALCQ(D) described below:

R ::=>R | RA | RT

D ::=C | DT

C ::=CA | ¬C | >C | ?C | (C uC) | (C tC) |
9R.D | 8R.D | nR.D | �nR.D | =nR.D

Definition (TBOX). Given the concepts C,D 2
C , we call a TBOX a finite set of i-concept equiv-
alences i.e. ’C ⌘ D’ or ii-concept inclusions, i.e.
’C v D’. An interpretation I is a model of a TBOX
iff for all the axioms ' 2 TBOX, I � ', with:

- I � (C v D) iff CI ✓ DI

- I � (C ⌘ D) iff CI = DI

JPoT deals only with unequivocal
TBOX (Baader and Nutt, 2003) as a finite
set of equivalence or inclusions for which the
left-hand side of each axiom is an atomic concept
and for every atomic concept there is at most one
axiom where it occurs on the left-hand side.

Definition (ABOX). Given a, b 2 �I , d 2 �D, C
2 C, r 2 RA, t 2 RT, we call an ABOX a finite
set of class, role or data assertions. An interpre-
tation I is a model of an ABOX A iff for all the
assertions ' 2 A, I � ', with:

- I � C(a) iff a 2 CI Concept Assertion
- I � r(a, b) iff (a, b) 2 rI Role Assertion
- I � t(a, d) iff (a, d) 2 tI Data Assertion
1https://www.w3.org/TR/owl2-direct-semantics/

110

The set of all the concept, role and data as-
sertions are respectively denoted Ac, Ar and Ad.
JPoT is designed to populate TBOX in function
of

i - a number n of potential individuals2

n=|�I |

ii - a total number m of assertions

m=|Ac [Ar [Ad|

iii - a ratio ⌧ of the number of concept assertions
on the total number of assertions

⌧ = |Ac|
|Ac[Ar[Ad|

iv - a ratio ⇢ of the number of role assertions on
the number of data assertions

⇢ = |Ar|
|Ar[Ad|

3.1 Concept Assertions
The process of concept assertions initiates with

the computation of the set of all the disjoint class
denoted 0T such that 0T = {{C,D}|C v+ ¬D}
with v+ is the transitive closure of v.

Algorithm 1: Concept Assertions (CAs)
Data: TBOX, m, ⌧
Result: round(m · ⌧) CAs
x= 0;
while x round(m · ⌧) do

�i = Draw(�I);
⇥=FALSE;
while ¬⇥ do

Cj = Draw(C);
if {{C,Cj}|�i 2 CI} \ 0T = ;;
then

⇥=TRUE;
end

end
Cj(�i);
x++;

end

Next, each individual drawn will instantiate the
first concept drawn that is not disjointed with
the concepts the individual already instantiates.
The Algorithm 1 describes the concept assertions
phase of JPoT. Note that, the function Draw(S)
returns a randomly drawn element from a set S.

2Here “potential” means the possibility to have non drawn
individuals that are not involved in any assertion.

3.2 Role Assertions

JPoT dealing only with unequivocal TBOX, an
axiom ti s.t. ti 2 TBOX can be defined like that:
ti = {Ai v⌘

dF
l

Bl
dF
j,k

8qj .Dk
dF
o,p

9ro.Cp
dF
u,v

Ssu.Ev}

with
dF

2 {
d
,
F
}, v⌘2 {v,⌘} and S2 {=,�,}

We introduce a rearrangement of TBOXes to
gather a set of axioms with concepts, datatypes,
roles and constructors. The claim of JPoT is to
populate TBOXes respecting the consistency but
due to the Open World Assumption (OWA), we
treat indifferently intersection and union.

A derivation of a TBOX is defined like that:
TBOX0 = {M(ti)|ti 2 TBOX} with
M(t

i

) = {
S
j,k

{A
i

, 8q
j

.D
k

}
S
o,p

{A
i

, 9r
o

.C
p

}
S
u,v

{A
i

,S s
u

.E
v

}}

During this stage, JPoT draws abstract roles
and try to instantiate them. The Algorithm 2 uses
the following heuristic: once an abstract role is
drawn, an individual subject is drawn and the con-
cepts it already instantiates are confronted to the
domain of the abstract role. In case of disjointness
another individual is drawn. After this step, the
concepts of the chosen individual are confronted
with the universal quantification axioms implying
the abstract role in order to build a set of manda-
tory concepts for the individual object that has to
be drawn in the next step. In the event the drawn
individual i-has a concept in common with the
mandatory ones, ii-doesn’t have concepts disjoint
with the range of the abstract and iii-doesn’t vio-
late the max cardinality restriction, this object in-
dividual will participate to the instantiation with
the abstract role and the subject individual. In case
of a violation of the cardinality restriction, another
abstract role will be drawn and the process of se-
lection will restart. For example, in the TBOX
axiom "Scholarship v 9managedBy.Referrer
F

9supervisedBy.Organisation", the algorithm
will randomly choose one of the element of
the disjunction either involving the management
or the supervision (or the both if the scholar-
ship is drawn again). Moreover, in the ax-
iom "Scholarship v 8remunerates.Researcher
d

9providesBy.Organisation", the algorithm will
either ensure that if a scholarship remunerates
someone it will be a researcher or suggest (in
absence of an axiom concerning a range) that a
scholarship is provided by an organisation.

111

Algorithm 2: Role Assertions (RAs)
Data: TBOX, TBOX0, m, ⌧ , ⇢
Result: round(m · (1� ⌧) · ⇢) RAs
y= 0;
while y round(m · (1� ⌧) · ⇢) do

⌅ =FALSE;
while ¬⌅ do

⌅ =TRUE;
rk = Draw(RA);
P9 = {(C,D)|C , 9rk.D};
(A,B) = Draw(P9);
if domain(rk) = ; then I = {A};
else I = domain(rk);
⇥=FALSE;
while ¬⇥ do

�i = Draw(�I) s.t. 9C. �i 2 CI ;
if {{C, I}|�i 2 CI} \ ⌦T = ;
then ⇥=TRUE;

end
P8 = {(C,D)|C , 8rk.D};
foreach c 2 {C|�i 2 CI} do

if 9(E,F) 2 P8 s.t. c v E then
F 2 W ;

end
if range(rk) = ; then J = {B};
else J = range(rk);
⇥=FALSE;
while ¬⇥ do

�j = Draw(�I) s.t. 9C. �j 2 CI ;
if {{C, J}|�j 2 CI} \ ⌦T = ;
AND W ✓ {C|�j 2 CI} then
⇥=TRUE;

end
T={hC,D, li|C,lrk.D _ C,=lrk.D};
l = 0;
foreach c 2 {C|�i 2 CI} do

if 9hE,F, Li 2 T s.t. c v E then
foreach
d 2 {D|�h2DI^(�i, �h)2rk}
do

if d ✓ F then l++;
end
if l = L then ⌅ =FALSE;

end
end

end
(�i, �j) 2 rk;
y++;

end

3.3 Data Assertions

The populations performed by JPoT follow
heuristics that guarantee consistencies of the
knowledge bases only on the basis of the axioms
in the TBOXes, in other words without any
consideration of a specific domain. The produced
ABOXes are somewhere semantically consistent
because the population respects the semantic rules
of the world present in the TBOXes. While the
URIs of the individuals are all based on an integer
in a selected range, the concepts they instantiate
(concept assertions) and more the relation in
which they are involved (role assertions) can
represent an artificial but apparently real world.
Let’s imagine the equivalent of the Turing test for
a SDG model in which the ABOXes should appear
as real 70% of the time to succeed the test. Even if
we didn’t lead this experiment, we can objectively
assume that a JPoT’s population implying only
concept and role assertions could pass this test.

The test gets much more complicated to pass
when JPoT has to deal with concrete roles due
to a set of issues concerning the creation of data
values. First, the usage of datatype has to be tack-
led with caution under a penalty of undecidability.
OWL2 solved this problem by recommending
datatypes defining a datatype map3 which lists
the datatypes that can be used in the knowledge
bases. Even restricting a population to this subset
of datatypes, JPoT could fail a Turing test for
SDG by strictly following the heuristic described
in the Algorithm 3 due to a lack of semantic
soundness in the generation of the data values for
the data assertions. For example, let’s imagine a
TBOX with the following axioms: each person
has exactly one age that is an integer, an author
has exactly one number of citations and hindex
that are integers and if a person has a name it
is always a string. As it is, JPoT could give an
inhuman age for a person, assert a number of
citations inferior to the hindex squared for a same
author and provide an absurd name that would
just be a random sequence of characters.

We implemented functions Gen(D, t) generat-
ing data values in adequation with a datatype D
and with a concrete role t facing with different
issues concerning the automatic population.

3https://www.w3.org/TR/owl2-syntax/
#Datatype_Maps

112

In the following, we will describe three issues
for this generation of data values corresponding to
three kinds of data assertions illustrating through
the concrete roles hasAge (3.3.1), citations/hindex

(3.3.2) and hasName (3.3.3).

Algorithm 3: Data Assertions (DAs)
Data: TBOX, TBOX0, m, ⌧ , ⇢
Result: round(m · (1� ⌧) · (1� ⇢)) DAs
z= 0;
while z round(m · (1� ⌧) · (1� ⇢)) do

⌅ =FALSE;
while ¬⌅ do

⌅ =TRUE;
tk = Draw(RT);
P9 = {(C,D)|C , 9tk.D};
(A,B) = Draw(P9);
if domain(tk) = ; then I = {A};
else I = domain(tk);
⇥=FALSE;
while ¬⇥ do

�i = Draw(�I) s.t. 9C. �i 2 CI ;
if {{C, I}|�i 2 CI} \ ⌦T = ;
then ⇥=TRUE;

end
P8 = {(C,D)|C , 8tk.D};
foreach c 2 {C|�i 2 CI} do

if 9(E,F) 2 P8 s.t. c v E then
F 2 W ;

end
if range(tk) = ; then J = {B};
else J = range(tk);
dj = Gen(J, tk);
T={hC,D, li|C,ltk.D _ C,=ltk.D};
l = 0;
foreach c 2 {C|�i 2 CI} do

if 9hE,F, Li 2 T s.t. c v E then
foreach
d 2 {D|dh2DI^(�i, dh)2tk}
do

if d ✓ F then l++;
end
if l = L then ⌅ =FALSE;

end
end

end
(�i, dj) 2 tk;
z++;

end

3.3.1 Using a facet space
The usage of facet spaces is the royal road

for the modeler to obtain a knowledge base
capable of passing the SDG Turing test. The
facet space was introduced as a set of pairs of
the form (F,v) where F is a constraining facet
and v a constraining value. Each such pair is
mapped to a subset of the value space of the
datatype. Thus, the data range of concrete roles
can be restricted using a datatypeRestriction
which restricts the value space of a datatype by
a constraining facet. In the example of hasAge,
the modeler can use a datatypeRestriction that
would restrict the datatype xsd:nonNegativeInteger

by using a singleton facet space i.e. the pair
(xsd:maxExclusive,"123"ˆˆxsd:nonNegativeInteger)
that corresponds to the limit for an age never
reached in the history of the humanity. In addition
in JPoT, we used a Gaussian distribution (with
an expectation of 42 and a standard deviation of
10) in order to simulate an age distribution of
researchers following a pyramidal shape.

3.3.2 Using a linear equation
Ensuring the soundness of data assertions re-

stricting dataranges using datatypeRestrictions
can still produce knowledge bases incapable of
passing the SDG Turing test. In fact, one can say
that the value of the subject of a data assertion
has to be an integer less than 123, but one can-
not say that the value of the subject of one data
assertion is less than that of another data assertion.
In the example of citations and hindex, the modeler
doesn’t have the ability with the current expressiv-
ity of OWL2 to constraint the TBOX with the fact
that the total number of citations of an author is
greater than the hindex-squared. A proposition of
extension for OWL24 allows the expression of lin-
ear equations but not of polynomial equations.

3.3.3 Using an API
As we described for a numerical datatype, it

is also possible to restrict dataranges using a
datatypeRestriction for String with a pattern (well
known as a regular expression). This expressivity
can be usefull to generate knowledge bases
capable of passing the SDG Turing test. For
example, a model that would represent a social
security number could use such a pattern.

4https://www.w3.org/2007/OWL/wiki/
Data_Range_Extension:_Linear_Equations

113

But when the concrete role is hasName, even
the usage of space facet doesn’t prevent to pro-
duce knowledge ineligible for a SDG Turing test.
In this case, the only solution is to use another
generator or API to produce a soundness value.
Then we used the API JaNaG (Java Name Gen-
erator) which is a random name generator based
on a name fragment database that creates rela-
tively reasonably sounding names from different
cultures/influences.

4 Performances of JPOT

We performed an evaluation of the populator
JPoT (the version of JPoT based on the OWL-
API 4.1.0) using a simplified model of the scholar
domain illustrated in Figure 1. We highlight here
that the ontological choices made at this example
are intuitive, but arguable. Our aim was to de-
scribe the performance of JPoT, not to propose
an ontological analysis of the scholar domain.

Figure 1: UML diagram of the scholar domain

In this domain, Authors (which are Persons
with names) write Publications, which can be
classified into Papers, Articles, Chapter
or Books. A Publication can be quoted
by another Publication, and Authors
have a total number of citations and an hin-

dex. A Researcher can be remunerated by
Scholarships provided by Organisations
in such a way that an Organisation can provide

several Scholarships, and a Scholarship
can remunerate a maximum of two Researchers
(e.g. organisations authorizing to change one
time the “owner” of a scholarship). Authors
and Organisations can be associated. There
are two kinds of Organisations: Team
and University. A Team can be part of

Universities.

We introduce here a UML interpretation for
the fragment ALCQ(D). We denote CA a set
of concept names, RA a set of abstract role
names, RT a set of concrete role names, DT a
set of datatype names and S a set of symbols
for Descriptions logics interpreted in first order
logic (Baader and Nutt, 2003), ⌦ a set of UML
cardinalities and a function `(⌦ ! S) such that
`(⇤) 7! 8, `(n) 7! 8=n, `(⇤..n) 7! 8n and
`(n..⇤) 7! 8�n (with n > 0).

Note that we use the following notations:
- 8=nr.C ⌘ 8r.C u =nr.C
- 8�nr.C ⌘ 8r.C u �nr.C
- 8nr.C ⌘ 8r.C u nr.C

Definition (UML Interpretation U). Let
{C,D1, . . . , Dn, E} ✓ C, {r1, . . . , rn} ✓ RA,
{t1, . . . , tm} ✓ RT, {�1, . . . ,�m} ✓ DT and
{µ1, . . . , µn, 1, . . . , m} ✓ ⌦:

E

C DnD1
r1 rn

µ
n

µ1

-t1:�1[1]
...

-tm:�m[m]

m
(C v E u

nd
i=1

`(µi)ri.Di u
md
j=1

`(j)tj .�j)U

Our empirical analysis has been performed on a
machine equipped with an Intel Core at 3.30GHz
and Ubuntu 15.04. We ran the Java-based reasoner
Pellet 2.4.0 with Sun Java 1.8, and we set the
maximum heap space to 7.5 GB. We populated
the Tbox stemming from the UML interpretation
of the Figure 1. We performed all the populations
with n and m equal and with ⌧ = 0.5 meaning in
other words that the half of the assertions were
concept assertions. For each pair (n,m), we
performed three populations: i- with ⇢ = 0, ii-
with ⇢ = 0.5 and iii- with ⇢ = 1.

Figure 2 shows the required CPU times of the
populations and the consistency tasks. We used a
range of total number of potential individuals and
assertions going up to around one million.

114

0 25000
50000
75000
100000
125000
150000
175000
200000
225000
250000
275000
300000
325000
350000
375000
400000
425000
450000
475000
500000
525000
550000
575000
600000
625000
650000
675000
700000
725000
750000
775000
800000
825000
850000
875000
900000
925000
950000
975000
1000000
1025000
1050000

Assertions

0

500000

1000000

1500000

2000000

2500000

3000000

tim
e

(m
s)

Population (= 1)
Reasoning (= 1)
Heap Space (= 1)
Population (= 0.5)
Reasoning (= 0.5)
Heap Space (= 0.5)
Population (= 0)
Reasoning (= 0)
Heap Space (= 0)

Figure 2: Some metrics about JPoT’s populations

Pellet output systematically that the ABOXes
were consistent with the TBOX when the con-
sistency checks were possible. After a certain
amount of assertions, the reasoning tasks were im-
possible to conclude due to a heap space error
thrown whenever the JVM reached the heap size
limit. For ⇢ = 0.5 at n,m⇡ 930.000, the first limit
was detected. The same limit appeared for ⇢ = 0 at
n,m⇡ 970.000 and for ⇢ = 1 at n,m⇡ 1.020.000.
We can observe on the Figure2, the linear evolu-
tion of CPU times for the populator JPoT and the
heap space limits (marked with bow ties) concern-
ing the consistency checks of Pellet.

5 Conclusion

In this paper, we just presented another popula-
tor of TBOX: JPoT5. To the best of our knowl-
edge, this is the first domain independent SDG
guaranteeing consistency of the knowledge base
founded on TBOXes expressed in ALCQ(D). The
issues of the data assertions were tackled and some
performances presented. For future work, we in-
tend that JPoT deals with an higher expressive-
ness to cover the whole fragment SROIQ(D).

Acknowledgments

This work has been made possible by “la Re-
gione Autonoma della Sardegna e Autorità Por-
tuale di Cagliari con L.R. 7/2007, Tender 16
2011, CRP-49656 con il projeto: Metodi inno-
vativi per il supporto alle decisioni riguardanti
l’ottimizzazione delle attività in un terminal con-
tainer” and by “o EDITAL FAPES/CAPES N�

009/2014 (Bolsa de fixacão de doutores) com a
proposta: Melhor integração de tecnologias de
representação de conhecimento e raciocínio nas
utilizações local e Web”.

5
JPoT is available at http://bit.ly/2vh5YE4

References
Franz Baader and Werner Nutt. 2003. Basic Descrip-

tion Logics, Cambridge University Press, pages 43–
95.

Sotiris Batsakis, Euripides Petrakis, Ilias Tachmazidis,
and Grigoris Antoniou. 2009. Temporal represen-
tation and reasoning in OWL2. Semantic Web
(Preprint):1–20.

Ivan Bedini and Benjamin Nguyen. 2007. Automatic
ontology generation: State of the art. PRiSM Labo-
ratory Technical Report. University of Versailles .

Martin Boeker, Janna Hastings, Daniel Schober, and
Stefan Schulz. 2011. A T-Box generator for test-
ing scalability of owl mereotopological patterns. In
Michel Dumontier and Mélanie Courtot, editors,
Proceedings of the 8th International Workshop on
OWL: Experiences and Directions. volume 796 of
CEUR Workshop Proceedings.

Jean-Rémi Bourguet and Luca Pulina. 2013. FRaQuE:
A framework for rapid query processing evalua-
tion. In Samantha Bail, Birte Glimm, Rafael S.
Gonçalves, Ernesto Jiménez-Ruiz, Yevgeny Kaza-
kov, Nicolas Matentzoglu, and Bijan Parsia, editors,
Proceedings of the 2nd International Workshop on
OWL Reasoner Evaluation. volume 1015 of CEUR
Workshop Proceedings, pages 53–60.

Nafisa Chowdhury. 2012. Ontoevaluator – SKTI
Synthetic Data Generator Synthetic Data Generator.
http://aimlab-server.cs.uoregon.edu/services/skti-
datagen/.

Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. 2005.
LUBM: A benchmark for owl knowledge base sys-
tems. Web Semantics: Science, Services and Agents
on the World Wide Web 3(2):158–182.

Yingjie Li, Yang Yu, and Jeff Heflin. 2012. Evalu-
ating reasoners under realistic semantic web con-
ditions. In Ian Horrocks, Mikalai Yatskevich, and
Ernesto Jiménez-Ruiz, editors, Proceedings of the
1st International Workshop on OWL Reasoner Eval-
uation. CEUR-WS.org, volume 858 of CEUR Work-
shop Proceedings.

Li Ma, Yang Yang, Zhaoming Qiu, Guotong Xie, Yue
Pan, and Shengping Liu. 2006. Towards a complete
OWL ontology benchmark. In European Semantic
Web Conference. Springer, pages 125–139.

Femke Ongenae, Stijn Verstichel, Filip De Turck, Tom
Dhaene, Bart Dhoedt, and Piet Demeester. 2008.
OTAGen: A tunable ontology generator for bench-
marking ontology-based agent collaboration. In
32nd Annual IEEE International on Computer Soft-
ware and Applications. IEEE, pages 529–530.

Nigel Shadbolt, Tim Berners-Lee, and Wendy Hall.
2006. The semantic web revisited. IEEE intelligent
systems 21(3):96–101.

115

